

Lecture Notes in Computer Science 3629
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

José Luiz Fiadeiro Neil Harman
Markus Roggenbach Jan Rutten (Eds.)

Algebra and Coalgebra
in Computer Science

First International Conference, CALCO 2005
Swansea, UK, September 3-6, 2005
Proceedings

13

Volume Editors

José Luiz Fiadeiro
University of Leicester, Department of Computer Science
University Road, Leicester LE1 7RH, UK
E-mail: jose@fiadeiro.org

Neil Harman
Markus Roggenbach
University of Wales Swansea, Department of Computer Science
Singleton Park, Swansea SA2 8PP, UK
E-mail: {n.a.harman, m.roggenbach}@swansea.ac.uk

Jan Rutten
Vrije Universiteit Amsterdam, Centre for Mathematics and Computer Science (CWI)
Department of Software Technology
Kruislaan 413, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: janr@cwi.nl

Library of Congress Control Number: 2005931121

CR Subject Classification (1998): F.3.1, F.4, D.2.1, I.1

ISSN 0302-9743
ISBN-10 3-540-28620-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28620-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11548133 06/3142 5 4 3 2 1 0

Preface

In April 2004, after one year of intense debate, CMCS, the International Workshop
on Coalgebraic Methods in Computer Science, and WADT, the Workshop on Alge-
braic Development Techniques, decided to join their forces and reputations into a
new high-level biennial conference. CALCO, the Conference on Algebra and Coal-
gebra in Computer Science, was created to bring together researchers and practitio-
ners to exchange new results related to foundational aspects, and both traditional and
emerging uses of algebras and coalgebras in computer science. A steering committee
was put together by merging those of CMCS and WADT: Jiri Adamek, Ataru Naka-
gawa, Michel Bidoit, José Fiadeiro (co-chair), Hans-Peter Gumm, Bart Jacobs, Hans-
Jörg Kreowski, Ugo Montanari, Larry Moss, Peter Mosses, Fernando Orejas, Fran-
cesco Parisi-Presicce, John Power, Horst Reichel, Markus Roggenbach, Jan Rutten
(co-chair), and Andrzej Tarlecki.

CALCO 2005 was the first instance of this new conference. The interest that it
generated in the scientific community suggests that it will not be the last. Indeed, it
attracted as many as 62 submissions covering a wide range of topics roughly divided
into two areas:

Algebras and Coalgebras as Mathematical Objects: Automata and languages;
categorical semantics; hybrid, probabilistic, and timed systems; inductive and coin-
ductive methods; modal logics; relational systems and term rewriting.

Algebras and Coalgebras in Computer Science: Abstract data types; algebraic and
coalgebraic specification; calculi and models of concurrent, distributed, mobile, and
context-aware computing; formal testing and quality assurance; general systems the-
ory and computational models (chemical, biological, etc); generative programming
and model-driven development; models, correctness and (re)configuration of hard-
ware/middleware/architectures; re-engineering techniques (program transformation);
semantics of conceptual modelling methods and techniques; semantics of program-
ming languages; validation and verification.

Every submission received three or four reviews, which were generally of excel-
lent quality. We want to thank all reviewers, the list of which is at the end of this
preface, for carrying out their task with competence and precision, but also with the
enthusiasm that comes from contributing to the birth of a new conference. Decisions
were made during two weeks of animated e-mail discussion. In the end, a total of 25
papers were selected, the revised versions of which can be found in this volume. We
were also lucky to have invited talks by three expert researchers: Samson Abramsky,
Gordon Plotkin and Vladimiro Sassone. We are very grateful to the three of them.

The technical programme of the conference was preceded by a Young Researchers
Workshop, CALCO-jnr, dedicated to presentations by PhD students and by those who
had completed their doctoral studies in recent years, thus following on one of the
traditional features of WADT. A technical report collects contributions selected from

Preface VI

the presentations. CALCO-jnr was organized by Peter Mosses, John Power and
Monika Seisenberger. A meeting of the IFIP WG1.3 – Foundations of System Speci-
fication – took place immediately after the conference and was hosted by Peter
Mosses.

The project of hosting this first edition of CALCO was seized with both hands by a
young and enthusiastic team led by Neal Harman and Markus Roggenbach from the
University of Wales Swansea. The organizers would like to thank John V. Tucker and
Monika Seisenberger for their invaluable advice and support, and IT Wales and the
support staff, especially Sue Phillips, for making the event possible. CALCO 2005
received generous contributions from the Welsh Development Agency (WDA), IFIP,
BCS-FACS, Digita and IT Wales.

Alfred Hofmann and his team at Springer lent us their support from Day –1 by
agreeing to publish this volume. The work of the PC was supported by the Confer-
ence Online Service; Tiziana Margaria, Bernhard Steffen and their team deserve all
our applause; it was very reassuring to feel that Martin Karusseit was available 24
hours a day, 7 days a week, but the truth is that we only needed him to sort out our
own silly mistakes …

We would like to reserve our final words of thanks to all the authors who have
contributed such good quality papers to CALCO 2005.

June 2005

José Luiz Fiadeiro and Jan Rutten Neal Harman and Markus Roggenbach
Program Co-chairs Organizing Co-chairs

Organization

Program Committee

Luca Aceto, Aalborg University, Denmark and Reykjavík University, Iceland
Jiri Adamek, University of Braunschweig e ma
Christel Baier, University of Bonn,
Michel Bidoit, CNRS, Cachan, France
Jules Desharnais, Laval University, Canada
José Luiz Fiadeiro, University of Leicester, UK (co-chair)
Marie-Claude Gaudel, LRI-CNRS, Paris, France
Reiko Heckel, University of Leicester, UK
Hans-Peter Gumm, Philipps University, Marburg,
Ugo Montanari, University of Pisa, I l
Larry Moss, Indiana University, USA
Peter Mosses, University of Wales Swansea, UK
Fernando Orejas, Politechnical University of Catalunia, Barcelona, Spain
Francesco Parisi-Presicce, George Mason University, Fairfax, USA
John Power, University of Edinburgh, UK
Horst Reichel, Technical University of Dresden,
Jan Rutten, CWI & Free University Amsterdam, The Netherlands (co-chair)
Eugene Stark, Stony Brook University, New York, USA
Andrzej Tarlecki, Warsaw University, Poland
John Tucker, University of Wales Swansea, UK
Martin Wirsing, Ludwig Maximilian University, Muenchen,

Additional Reviewers

Thorsten Altenkirch
Serge Autexier
Denis Bechet
Gerd Behrmann
Marco Bernardo
Rocco De Nicola
Stéphane Demri
Josée Desharnais
Wan Fokkink
Magne Haveraaen
Rolf Hennicker
Wolfram Kahl
Alexander Kurz
Slawek Lasota

Mohamed Mejri
Stefan Milius
Marco Pistore
Steffen Priebe
Markus Roggenbach
Grigore Rosu
Marie-Christine Rousset
Emil Sekerinski
Pawel Sobocinski
Pascal Tesson
Hendrik Tews
Robert Walters
James Worrell

G r ny

ta y

,
e ma G r ny

e ma G r ny

e ma G r ny

e ma G r ny

Table of Contents

Invited Talks

Abstract Scalars, Loops, and Free Traced and Strongly Compact
Closed Categories

Samson Abramsky . 1

Labels from Reductions: Towards a General Theory
Bartek Klin, Vladimiro Sassone, Pawe�l Sobociński 30

Adequacy for Algebraic Effects with State
Gordon Plotkin . 51

Contributed Papers

Bisimilarity Is Not Finitely Based over BPA with Interrupt
Luca Aceto, Wan Fokkink, Anna Ingolfsdottir, Sumit Nain 52

Algebra ∩ Coalgebra = Presheaves
Jiři Adámek . 67

Strong Splitting Bisimulation Equivalence
Jan Bergstra, C.A. Middelburg . 83

Complete Axioms for Stateless Connectors
Roberto Bruni, Ivan Lanese, Ugo Montanari . 98

On the Semantics of Coinductive Types in Martin-Löf Type Theory
Federico De Marchi . 114

Look: Simple Stochastic Relations Are Just, Well, Simple
Ernst-Erich Doberkat . 127

Modelling Fusion Calculus Using HD-Automata
Gianluigi Ferrari, Ugo Montanari, Emilio Tuosto, Björn Victor,
Kidane Yemane . 142

An Algebraic Framework for Verifying the Correctness of Hardware
with Input and Output: A Formalization in HOL

Anthony Fox . 157

X Table of Contents

Using Proofs by Coinduction to Find “Traditional” Proofs
Clemens Grabmayer . 175

From T -Coalgebras to Filter Structures and Transition Systems
H. Peter Gumm . 194

Context-Free Languages via Coalgebraic Trace Semantics
Ichiro Hasuo, Bart Jacobs . 213

Towards a Coalgebraic Semantics of the Ambient Calculus
Daniel Hausmann, Till Mossakowski, Lutz Schröder 232

The Least Fibred Lifting and the Expressivity of Coalgebraic
Modal Logic

Bartek Klin . 247

Ultrafilter Extensions for Coalgebras
Clemens Kupke, Alexander Kurz, Dirk Pattinson 263

Equational Logic of Recursive Program Schemes
John G. Mersch . 278

The Category Theoretic Solution of Recursive Program Schemes
Stefan Milius, Lawrence S. Moss . 293

A Categorical Approach to Simulations
Miguel Palomino, José Meseguer, Narciso Mart́ı-Oliet 313

Behavioral Extensions of Institutions
Andrei Popescu, Grigore Roşu . 331

Discrete Lawvere Theories
John Power . 348

Final Semantics for Event-Pattern Reactive Programs
César Sánchez, Henny B. Sipma, Matteo Slanina, Zohar Manna 364

Complete Symbolic Reachability Analysis Using Back-and-Forth
Narrowing

Prasanna Thati, José Meseguer . 379

Final Sequences and Final Coalgebras for Measurable Spaces
Ignacio D. Viglizzo . 395

Bireachability and Final Multialgebras
Micha�l Walicki . 408

Table of Contents XI

Parametrized Exceptions
Dennis Walter, Lutz Schröder, Till Mossakowski 424

Property Preserving Redesign of Specifications
Artur Zaw�locki, Grzegorz Marczyński, Piotr Kosiuczenko 439

Author Index . 457

Abstract Scalars, Loops, and Free Traced and
Strongly Compact Closed Categories

Samson Abramsky

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K

http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/

Abstract. We study structures which have arisen in recent work by the
present author and Bob Coecke on a categorical axiomatics for Quantum
Mechanics; in particular, the notion of strongly compact closed category.
We explain how these structures support a notion of scalar which allows
quantitative aspects of physical theory to be expressed, and how the
notion of strong compact closure emerges as a significant refinement of
the more classical notion of compact closed category.

We then proceed to an extended discussion of free constructions for
a sequence of progressively more complex kinds of structured category,
culminating in the strongly compact closed case. The simple geometric
and combinatorial ideas underlying these constructions are emphasized.
We also discuss variations where a prescribed monoid of scalars can be
‘glued in’ to the free construction.

1 Introduction

In this preliminary section, we will discuss the background and motivation for
the technical results in the main body of the paper, in a fairly wide-ranging
fashion. The technical material itself should be essentially self-contained, from
the level of a basic familiarity with monoidal categories (for which see e.g. [20]).

1.1 Background

In recent work [4,5], the present author and Bob Coecke have developed a cat-
egorical axiomatics for Quantum Mechanics, as a foundation for high-level ap-
proaches to quantum informatics: type systems, logics, and languages for quan-
tum programming and quantum protocol specification. The central notion in our
axiomatic framework is that of strongly compact closed category. It turns out
that this rather simple and elegant structure suffices to capture most of the key
notions for quantum informatics: compound systems, unitary operations, pro-
jectors, preparations of entangled states, Dirac bra-ket notation, traces, scalars,
the Born rule. This axiomatic framework admits a range of models, including of
course the Hilbert space formulation of quantum mechanics.

Additional evidence for the scope of the framework is provided by recent work
of Selinger [25]. He shows that the framework of completely positive maps acting

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 1–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 S. Abramsky

on generalized states represented by density operators, used in his previous work
on the semantics of quantum programming languages [24], fits perfectly into the
framework of strongly compact closed categories.1 He also showed that a simple
construction (independently found and studied in some depth by Coecke [9]),
which can be carried out completely generally at the level of strongly compact
closed categories, corresponds to passing to the category of completely positive
maps (and specializes exactly to this in the case of Hilbert spaces).

1.2 Multiplicatives and Additives

We briefly mention a wider context for these ideas. To capture the branching
structure of measurements, and the flow of (classical) information from the result
of a measurement to the future evolution of the quantum system, an additional
additive level of structure is required, based on a functor ⊕, as well as the
multiplicative level of the compact closed structure based around the tensor
product (monoidal structure) ⊗. This delineation of additive and multiplicative
levels of Quantum Mechanics is one of the conceptually interesting outcomes of
our categorical axiomatics. (The terminology is based on that of Linear Logic
[12] — of which our structures can be seen as ‘collapsed models’). In terms of
ordinary algebra, the multiplicative level corresponds to the multilinear-algebraic
aspect of Quantum Mechanics, and the additive level to the linear-algebraic. But
this distinction is usually lost in the sea of matrices; in particular, it is a real
surprise how much can be done purely with the multiplicative structure.

It should be mentioned that we fully expect an exponential level to become
important, in the passage to the multi-particle, infinite dimensional, relativistic,
and eventually field-theoretic levels of quantum theory.

We shall not discuss the additive level further in this paper. For most pur-
poses, the additive structure can be regarded as freely generated, subject to
arithmetic requirements on the scalars (see [4]).

1.3 Explicit Constructions of Free Structured Categories

Our main aim in the present paper is to give explicit characterizations of free
constructions for various kinds of categories-with-structure, most notably, for
traced symmetric monoidal and strongly compact closed categories. We aim to
give a synthetic account, including some basic cases which are well known from
the existing literature [20,19]. We will progressively build up structure through
the following levels:

(1) Monoidal Categories
(2) Symmetric Monoidal Categories
(3) Traced Symmetric Monoidal Categories

1 Selinger prefers to use the term ‘dagger compact closed category’, since the notion
of adjoint which is formalized by the dagger operation ()† is a separate structure
which is meaningful in a more general setting.

Abstract Scalars, Loops, and Strongly Compact Closed Categories 3

(4) Compact Closed Categories
(5) Strongly Compact Closed Categories
(6) Strongly Compact Closed Categories with prescribed scalars

Of these, those cases which have not, to the best of our knowledge,, appeared
previously are (3), (5) and (6). But in any event, we hope that our account will
serve as a clear, accessible and useful reference.

Our constructions also serve to factor the Kelly-Laplaza construction [19]
of the free compact closed category through the G or Int construction [14,2] of
the compact closed category freely generated by a traced symmetric monoidal
category, which is a central part of (the mathematically civilised version of) the
so-called ‘Geometry of Interaction’ [12,3].

It should be emphasized that constructions (1)–(4) are free over categories,
(5) over categories with involutions, and (6) over a comma category of cate-
gories with involution with a specified evaluation of scalars. We note that Dusko
Pavlovic has give a free construction of traced categories over monoidal categories
[21]. His construction is elegant, but abstract and less combinatorial/geometric
than ours: perhaps necessarily so, since in our situation the monoidal struc-
ture, which itself has some spatial content, is added freely. Another reference is
by Katis, Sabadini and Walters [16]. They construct a free ‘feedback category’,
which is a trace minus the Yanking axiom — which is very important for the
dynamics of the trace — over a monoidal category, and then formally quotient
it to get a traced category. A treatment in the same style as the present paper
of free traced, compact closed and strongly compact closed categories over a
monoidal category remains a topic for future investigation.

Furthermore, we will work entirely with the strict versions of the categories-
with-structure we will study. Since in each case, every such category is monoidally
equivalent to a strict one, this does not really lose any generality; while by greatly
simplifying the description of the free constructions, it makes their essential
content, especially the geometry that begins to emerge as we add traces and
compact closure (paths and loops), much more apparent.

1.4 Diagrammatics

Our free constructions have immediate diagrammatic interpretations, which
make their geometric content quite clear and vivid. Diagrammatic notation for
tensor categories has been extensively developed with a view to applications in
categorical formulations of topological invariants, quantum groups, and topo-
logical quantum field theories [15]. Within the purely categorical literature, a
forerunner of these developments is the early work of Kelly on coherence [17,18];
while the are also several precursors in the non-categorical literature, notably
Penrose’s diagrammatic notation for abstract tensors [22].

DiagrammaticnotationhasplayedanimportantroleinourownworkwithCoecke
on applying our categorical axiomatics to quantum informatics, e.g. to quantum
protocols [4]. For example, the essence of the verification of the teleportation
protocol is the diagrammatic equality shown in Figure 1. For details, see [4,5].

4 S. Abramsky

βi

β−1
i

=
βi

β−1
i

=

Fig. 1. Diagrammatic proof of teleportation

1.5 Categorical Quantum Logic

The diagrammatics of our constructions leads in turn to the idea of a logical
formulation, in which the diagrammatic representation of a morphism in the
free category is thought of as a proof-net, in the same general sense as in Linear
Logic [11].

More precisely, morphisms in the free category will correspond to proof nets
in normal form, and the definition of composition in the category gives a direct
construction for normalizing a cut between two such proof nets. One advantage
of the logical formulation is that we get an explicit syntactic description of these
objects, and we can decompose the normalization process into cut-reduction
steps, so that the computation of the normal form can be captured by a rewrit-
ing system. This provides an explicit computational basis for deciding equality
of proofs, which corresponds in the categorical context to verifying the commu-
tativity of a diagram.

In the categorical approach to quantum informatics [4], verifying the correct-
ness of various quantum protocols is formulated as showing the commutativity
of certain diagrams; so a computational theory of the above kind is directly
applicable to such verifications.

In a joint paper with Ross Duncan [6], we have developed a system of Cate-
gorical Quantum Logic along these lines, incorporating additive as well as multi-
plicative features. This kind of logic, and its connection with Quantum Mechan-
ics, is very different to the traditional notion of ‘Quantum Logic’ [8]. Duncan is
continuing to develop this approach in his forthcoming thesis.

1.6 Overview

The further structure of the paper is as follows. In Section 2 we explore the
abstract notion of scalar which exists in any monoidal category. As we will see,
scalars play an important role in determining the structure of free traced and

Abstract Scalars, Loops, and Strongly Compact Closed Categories 5

strongly compact closed categories, as they correspond to the values of loops. In
Section 3, we review the notions of compact closed and strongly compact closed
categories. The need for the notion of strong compact closure, to capture the
structure of the complex spaces arising in Quantum Mechanics, is explained. In
Section 4, we turn to the free constructions themselves.

Notation. We set up some notation which will be useful. We define [n] :=
{1, . . . , n} for n ∈ N. We write S(n) for the symmetric group on [n]. If π ∈ S(n)
and σ ∈ S(m), we define π ⊗ σ ∈ S(n + m) by

π ⊗ σ(i) =

{
π(i), 1 ≤ i ≤ n

σ(i− n) + n, n + 1 ≤ i ≤ n + m.

Given λ : [n]→ X , μ : [m]→ X , we define [λ, μ] : [n + m]→ X by

[λ, μ](i) =

{
λ(i), 1 ≤ i ≤ n

μ(i− n), n + 1 ≤ i ≤ n + m.

We write M(X) for the free commutative monoid generated by a set X . Con-
cretely, these are the finite multisets over X , with the addition given by multiset
union, which we write as S � T .

2 Scalars in Monoidal Categories

The concept of a scalar as a basis for quantitative measurements is fundamental
in Physics. In particular, in Quantum Mechanics complex numbers α play the
role of probability amplitudes, with corresponding probabilities αᾱ = |α|2.

A key step in the development of the categorical axiomatics for Quantum Me-
chanics in [4] was the recognition that the notion of scalar is meaningful in great
generality — in fact, in any monoidal (not necessarily symmetric) category.2

Let (C,⊗, I) be a strict monoidal category . We define a scalar in C to be a
morphism s : I→ I, i.e. an endomorphism of the tensor unit.

Example 1. In FdVecK, the category of finite-dimensional vector spaces over
a field K, linear maps K → K are uniquely determined by the image of 1,
and hence correspond biuniquely to elements of K ; composition corresponds to
multiplication of scalars. In Rel, there are just two scalars, corresponding to the
Boolean values 0, 1.

2 Susbsequently, I became aware through Martin Hyland of the mathematical litera-
ture on Tannakian categories [23,10], stemming ultimately from Grothendiek. Tan-
nakian categories embody much stronger assumptions than ours, in particular that
the categories are abelian as well as compact closed, although the idea of strong
compact closure is absent. But they certainly exhibit a consonant development of a
large part of multilinear algebra in an abstract setting.

6 S. Abramsky

The (multiplicative) monoid of scalars is then just the endomorphism monoid
C(I, I). The first key point is the elementary but beautiful observation by Kelly
and Laplaza [19] that this monoid is always commutative.

Lemma 1. C(I, I) is a commutative monoid

Proof.

I ======== I⊗ I ====== I⊗ I ======== I

I

s

�

======== I⊗ I

s⊗ 1

�

s⊗ t� I⊗ I

1⊗ t

�
======== I

t

�

I

t

�
======== I⊗ I

1⊗ t

�
====== I⊗ I

s⊗ 1

�

======== I

s

�

�

We remark that in the non-strict case, where we have unit isomorphisms

λA : I⊗A→ A ρA : A⊗ I → A

the proof makes essential use of the coherence axiom λI = ρI.
The second point is that a good notion of scalar multiplication exists at this

level of generality. That is, each scalar s : I→ I induces a natural transformation

sA : A
	� I⊗A

s⊗ 1A� I⊗A
	� A .

with the naturality square

A
sA � A

B

f

�

sB

� B

f

�

We write s • f for f ◦ sA = sB ◦ f . Note that

1 • f = f (1)
s • (t • f) = (s ◦ t) • f (2)

(s • g) ◦ (t • f) = (s ◦ t) • (g ◦ f) (3)
(s • f)⊗ (t • g) = (s ◦ t) • (f ⊗ g) (4)

which exactly generalizes the multiplicative part of the usual properties of scalar
multiplication. Thus scalars act globally on the whole category.

Abstract Scalars, Loops, and Strongly Compact Closed Categories 7

3 Strongly Compact Closed Categories

A compact closed category is a symmetric monoidal category in which to each
object A a dual A∗, a unit ηA : I → A∗ ⊗ A and a counit εA : A ⊗ A∗ → I are
assigned in such a way that the following ‘triangular identities’ hold:

A
1A ⊗ ηA � A⊗A∗ ⊗A

εA ⊗ 1A � A = 1A

A∗ ηA ⊗ 1A� A∗ ⊗A⊗A∗ 1A ⊗ εA � A∗ = 1A∗

Viewing monoidal categories as bicategories with a single 0-cell, this amounts to
the axiom:

Every object (1-cell) has an adjoint

We can also view compact closed categories as *-autonomous categories [7] for
which ⊗ = �, and hence as ‘collapsed’ models of Linear Logic [11].

3.1 Examples

– (Rel,×): Sets, relations, and cartesian product. Here ηX ⊆ {∗} × (X ×X)
and we have

ηX = εc
X = {(∗, (x, x)) | x ∈ X} .

– (FdVecK,⊗): Vector spaces over a field K, linear maps, and tensor product.
The unit and counit in (FdVecC,⊗) are

ηV : C → V ∗ ⊗ V :: 1 →
i=n∑
i=1

ēi ⊗ ei

εV : V ⊗ V ∗ → C :: ej ⊗ ēi → 〈ēi | ej〉

where n is the dimension of V , {ei}i=n
i=1 is a basis for V and ēi is the linear

functional in V ∗ determined by ēj(ei) = δij .

3.2 Duality, Names and Conames

For each morphism f : A→ B in a compact closed category we can construct a
dual f∗ : B∗ → A∗:

f∗ = B∗ ηA ⊗ 1� A∗ ⊗A⊗B∗ 1⊗ f ⊗ 1� A∗ ⊗B ⊗B∗ 1⊗ εB� A∗

a name

�f� : I→ A∗ ⊗B = I
η� A∗ ⊗A

1⊗ f� A∗ ⊗B

and a coname

�f� : A⊗B∗ → I = A⊗B∗ f ⊗ 1� B ⊗B∗ ε � I

8 S. Abramsky

The assignment f → f∗ extends A → A∗ into a contravariant endofunctor with
A 	 A∗∗. In any compact closed category, we have

C(A⊗B∗, I) 	 C(A, B) 	 C(I, A∗ ⊗B).

For R ∈ Rel(X, Y) we have

�R� = {(∗, (x, y)) | xRy, x ∈ X, y ∈ Y }
�R� = {((x, y), ∗) | xRy, x ∈ X, y ∈ Y }

and for f ∈ FdVecK(V, W) with matrix (mij) in bases {eV
i }i=n

i=1 and {eW
j }

j=m
j=1

of V and W respectively:

�f� : K → V ∗ ⊗W :: 1 →
i,j=n,m∑

i,j=1

mij · ēV
i ⊗ eW

j

�f� : V ⊗W ∗ → K :: eV
i ⊗ ēW

j → mij .

3.3 Why Compact Closure Does Not Suffice

In inner-product spaces we have the adjoint :

A
f� B

A �f
†

B
〈fφ | ψ〉B = 〈φ | f †ψ〉A

This is not the same as the dual — the types are different. In “degenerate”
CCC’s in which A∗ = A, e.g. Rel or real inner-product spaces, we have f∗ = f †.
In complex inner-product spaces such as Hilbert spaces, the inner product is
sesquilinear

〈ψ | φ〉 = 〈φ | ψ〉
and the isomorphism A 	 A∗ is not linear, but conjugate linear :

〈λ • φ | −〉 = λ̄ • 〈φ | −〉

and hence does not live in the category Hilb at all!

3.4 Solution: Strong Compact Closure

We define the conjugate space of a Hilbert space H: this has the same additive
group of vectors as H, while the scalar multiplication and inner product are
“twisted” by complex conjugation:

α •H̄ φ := ᾱ •H φ 〈φ | ψ〉H̄ := 〈ψ | φ〉H
We can define H∗ = H̄, since H, H̄ have the same orthornormal bases, and we
can define the counit by

εH : H⊗ H̄ → C :: φ⊗ ψ → 〈ψ | φ〉H
which is indeed (bi)linear rather than sesquilinear!

Abstract Scalars, Loops, and Strongly Compact Closed Categories 9

The crucial observation is this: ()∗ has a covariant functorial extension f →
f∗, which is essentially identity on morphisms; and then we can define

f † = (f∗)∗ = (f∗)∗.

3.5 Axiomatization of Strong Compact Closure

In fact, there is a more concise and elegant axiomatization of strongly compact
closed categories, which takes the adjoint as primitive [5]. It suffices to require
the following structure on a (strict) symmetric monoidal category (C,⊗, I, τ):

– A strict monoidal involutive assignment A → A∗ on objects.
– An identity-on-objects, contravariant, strict monoidal, involutive functor

f → f †.
– For each object A a unit ηA : I → A∗ ⊗ A with ηA∗ = τA∗,A ◦ ηA and such

that either the diagram

A ======= A⊗ I
1A ⊗ ηA � A⊗ (A∗ ⊗A)

A

1A

�
======= I⊗A �

(η†
A ◦ τA,A∗)⊗ 1A

(A⊗A∗)⊗A

��������� (5)

or the diagram

A ======= I⊗A
ηA ⊗ 1A� (A∗⊗A)⊗A == A∗⊗ (A⊗A)

A

1A

�
======= I⊗A �

η†
A ⊗ 1A

(A∗⊗A)⊗A == A∗⊗ (A⊗A)

1A∗⊗ τA,A

�

(6)

commutes, where τA,A : A⊗A 	 A⊗A is the twist map.
– Given such a functor ()†, we define an isomorphism α to be unitary if

α−1 = α†. We additionally require that the canonical natural isomorphism
for symmetry given as part of the symmetric monoidal structure on C is
(componentwise) unitary in this sense.

While diagram (5) is the analogue to (3) with η†
A◦τA,A∗ playing the role of the

counit, diagram (6) expresses Yanking with respect to the canonical trace of the
compact closed structure.3 We only need one commuting diagram as compared
3 In fact, we have used the ‘left trace’ here rather than the more customary ‘right trace’

which we shall use in our subsequent discussion of traced monoidal categories. In
the symmetric context, the two are equivalent; we chose the left trace here because,
given our other notational conventions, it requires less use of symmetries in stating
the axiom.

10 S. Abramsky

to (3) and (3) in the definition of compact closure, since due to the strictness
assumption (i.e. A → A∗ being involutive) we were able to replace the second
diagram by ηA∗ = τA∗,A ◦ ηA.

Standard Triangular Identities Diagrammatically

= =

(εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ εA) ◦ (ηA ⊗ 1A∗) = 1A∗

Yanking Diagrammatically

=

(η†
A ⊗ 1A) ◦ (1A∗ ⊗ τA,A) ◦ (ηA ⊗ 1A) = 1A.

4 Free Constructions

We will now give detailed descriptions of free constructions for a number of types
of category-with-structure. We shall consider the following cases:

(1) Monoidal Categories
(2) Symmetric Monoidal Categories
(3) Traced Symmetric Monoidal Categories
(4) Compact Closed Categories
(5) Strongly Compact Closed Categories
(6) Strongly Compact Closed Categories with prescribed scalars

For cases (1)–(4), we shall consider adjunctions of the form

Cat
FS �
⊥�
US

S−Cat

Abstract Scalars, Loops, and Strongly Compact Closed Categories 11

where S ranges over the various kinds of structure. Specifically, we shall give
explicit descriptions in each case of FS(C) for a category C. This explicit descrip-
tion — not algebraically by generators and relations, but giving direct combina-
torial definitions of the normal forms and how they compose, thus solving the
word problem over these categories— is the strongest form of coherence theo-
rem available for notions such as compact closure and traces. In these cases, cyclic
structures arise, violating the compatibility requirements for stronger forms of
coherence developed in [17,18]. This point is discussed in the concluding section
of [19].

In case (5), we consider an adjunction

InvCat
FSCC �
⊥�

USCC

SCC−Cat

where InvCat is the category of categories with a specified involution, (what
Selinger calls ‘dagger categories’ in [25]), and functors which preserve the involu-
tion. Finally, in (6) we consider an adjunction with respect to a comma category,
which allows us to describe the free strongly compact slosed category generated
by a category C, together with a prescribed multiplicative monoid of scalars.

Our treatment will be incremental, reflecting the fact that in our sequence
(1)–(6), each term arises by adding structure to the previous one. Each form of
structure is reflected conceptually by a new feature arising in the corresponding
free construction:

M monoidal lists
SM symmetric monoidal permutations
Tr traced symmetric monoidal loops
CC compact closed polarities
SCC strong compact closed reversals

We will also begin to see a primitive graph-theoretic geometry of points, lines
and paths begin to emerge as we progress through the levels of structure. There
is in fact more substantial geometry lurking here than might be apparent: the
elaboration of these connections must be left to future work.

Finally, we mention a recurring theme. To form a ‘pure’ picture of each
construction, it is useful to consider the case FS(1) explicitly, where 1 is the
category with (one object and) one morphism (i.e. one generator, no relations).

4.1 Monoidal Categories

We begin with the simple case of monoidal categories. The objects of FM(C),
the free monoidal category generated by the category C, are lists of objects of
C. The (strict) monoidal structure is given by concatenation; the tensor unit I
is the empty sequence.

12 S. Abramsky

Arrows:
A1 A2 An• • · · · •

•

f1
�

•

f2
�

· · · •

fn

�

B1 B2 Bn

fi : Ai → Bi

An arrow from one list of objects to another is simply a list of arrows of C of
the appropriate types. Note that there can only be an arrow between lists of the
same length. Composition is performed pointwise in the obvious fashion.

Formally, we set [n] := {1, . . . , n}, and define an object of FM(C) to be a pair
(n, A), where n ∈ N, and A : [n] → Ob C. Tensor product of objects is defined
by (n, A)⊗ (m, B) = (n + m, [A, B]). The tensor unit is I = (0, !), where ! is the
unique function from the empty set.

A morphism λ : (n, A) → (m, B) can only exist if n = m, and is specified by
a map λ : [n]→ Mor C, satisfying

λi : Ai −→ Bi.

Arrows in FM(C) are thus simply those expressible in the form

f1 ⊗ · · · ⊗ fk : A1 ⊗ · · · ⊗Ak −→ B1 ⊗ · · · ⊗Bk.

Unicity of the monoidal functor to a monoidal category M extending a given
functor F : C → UMM is then immediate.

Note that

FM(1) = (N, =, +, 0).

4.2 Symmetric Monoidal Categories

The objects of FSM(C) are the same as in the monoidal case.
An arrow (n, A) −→ (n, B) is given by (π, λ), where π ∈ S(n) is a permuta-

tion, and λi : Ai → Bπ(i), 1 ≤ i ≤ n.

A1 A2 A3 A4• • • •

•� •

�

•� •
�

B1 B2 B3 B4

Composition in FSM(C) is described as follows. Form paths of length 2, and
compose the arrows from C labelling these paths.

Abstract Scalars, Loops, and Strongly Compact Closed Categories 13

• • •

•�
f 2

•

...........................�

•�

.....................

•�.
....

....
....

....
....

....
....

..
•�

..................... •

g
1

�

=

• • •

•�.
....

....
....

....
....

....
....

..

•

...........................�

•
g
1 ◦

f
2

�

Note that FSM(1) =
∐

n S(n) (coproduct of categories). Thus the free
monoidal category on the trivial generating category comprises (the disjoint
union of) all the finite symmetric groups.4

Let M be a symmetric monoidal category, and consider a tensor product
A1 ⊗ · · · ⊗An. Each element π ∈ S(n) of the symmetric group S(n) induces an
isomorphism, which by abuse of notation we also write as π:

π : A1 ⊗ · · · ⊗An

∼=→ Aπ(1) ⊗ · · · ⊗Aπ(n).

Now note that under the above concrete description of FSM(C), arrows

(π, λ) : (n, A) −→ (n, B)

can be written as

π−1 ◦
n⊗

i=1

fi :
n⊗

i=1

Ai −→
n⊗

i=1

Bi. (7)

Again, the freeness property follows directly. The main observation to be made
is that such arrows are closed under composition:

(σ−1 ◦
n⊗

i=1

gi) ◦ (π−1 ◦
n⊗

i=1

fi) = (σ ◦ π)−1 ◦
n⊗

i=1

(gπ(i) ◦ fi) (8)

and tensor product:

(π−1 ◦
⊗

i

fi)⊗ (σ−1 ◦
⊗

i

gi) = (π ⊗ σ)−1 ◦
(⊗

i

fi ⊗
⊗

i

gi

)
, (9)

where if π ∈ S(n), σ ∈ S(m), π ⊗ σ ∈ S(n + m) is the evident concatenation of
the two permutations, as defined in the Introduction.

The above closed form expression for composition requires the ‘naturality
square’:
4 At this point, a possible step towards geometry presents itself. If we considered free

braided monoidal categories, we would find a similar connection to the braid groups
[15]. However, we shall not pursue that here.

14 S. Abramsky

⊗
i

Bπ(i)
π−1

�
⊗

i

Bi

⊗
i

Cσ◦π(i)

⊗
i gπ(i)

�

σ ◦ (σ ◦ π)−1
�

⊗
i

Cσ(i)

⊗
i gi

�

4.3 Traced Symmetric Monoidal Categories

We now come to a key case, that of traced symmetric monoidal categories. Much
of the structure of strongly compact closed categories in fact appears already at
the traced level. This is revealed rather clearly by our incremental development
of the free constructions.

We begin by recalling the basic notions. let (C,⊗, I, τ) be a symmetric
monoidal category. Here τA,B : A ⊗ B

∼=→ B ⊗ A is the symmetry or twist
natural isomorphism. A trace on C is a family of functions

TrUA,B : C(A⊗ U, B ⊗ U) −→ C(A, B)

for objects A, B, U of C, satisfying the following axioms:

– Input Naturality:

TrUA,B(f) ◦ g = TrUA′,B(f ◦ (g ⊗ 1U))

where f : A⊗ U → B ⊗ U , g : A′ → A,
– Output Naturality:

g ◦ TrUA,B(f) = TrUA,B′((g ⊗ 1U) ◦ f)

where f : A⊗ U → B ⊗ U , g : B → B′,
– Feedback Dinaturality:

TrUA,B((1B ⊗ g) ◦ f) = TrU
′

A,B(f ◦ (1A ⊗ g))

where f : A⊗ U → B ⊗ U ′, g : U ′ → U ,
– Vanishing (I,II):

TrIA,B(f) = f and TrU⊗V
A,B (g) = TrUA,B(TrVA⊗U,B⊗U (g))

where f : A⊗ I → B ⊗ I and g : A⊗ U ⊗ V → B ⊗ U ⊗ V .
– Superposing:

g ⊗ TrUA,B(f) = TrUW⊗A,Z⊗B(g ⊗ f)

where f : A⊗ U → B ⊗ U and g : W → Z .
– Yanking: TrUU,U (τU,U) = 1U .

Abstract Scalars, Loops, and Strongly Compact Closed Categories 15

Diagrammatically, we depict the trace as feedback:

A⊗ U
f � B ⊗ U

A
TrUA,B(f)

� B

· · · · · ·
A U

· · · · · ·
B U

· · ·

It corresponds to contracting indices in traditional tensor calculus.
We now consider the free symmetric monoidal category generated by C,

FSM(C), as described in the previous section. Recall that morphisms in FSM(C)
can be written as

π−1 ◦
n⊗

i=1

fi :
n⊗

i=1

Ai −→
n⊗

i=1

Bi.

Our first observation is that this category is already canonically traced. Under-
standing why this is so, and why FSM(C) is not the free traced category, will lay
bare the essential features of the free construction we are seeking.

Note firstly that, if there is an arrow f : (n, A)⊗ (p, U)→ (m, B)⊗ (p, U) in
FSM(C), then we must have n+p = m+p, and hence n = m. Thus we can indeed
hope to form an arrow A → B in FSM(C). Now we consider the ‘geometry’ arising
from the permutation π, together with the diagrammatic feedback interpretation
of the trace. We illustrate this with the following example.

Example. Consider the arrow f = π−1 ◦
⊗4

i=1 fi, where π = (2, 4, 3, 1), and fi :
Ai → Bπ(i). Suppose that Ai = Ui = Bi, 2 ≤ i ≤ 4, and write U =

⊗4
i=2 Ui. We

wish to compute TrUA1,B1
(f). The geometry is made clear by the following figure.

1 2 3 4

1 2 3 4

16 S. Abramsky

We simply follow the path leading from A1 to B1:

1 → 2→ 4 → 1

composing the arrows which label the arcs in the path: thus

TrUA1,B1
(f) = f4 ◦ f2 ◦ f1

in this case. A similar procedure can always be followed for arrows in the form (7),
which as we have seen is general for FSM(C). (It is perhaps not immediately
obvious that a path from an input will always emerge from the feedback zone
into an output. See the following Proposition 1). Moreover, this assignment does
lead to a well-defined trace on FSM(C). However, this is not the free traced
structure generated by C.

To see why this construction does not give rise to the free interpretation of
the trace, note that in our example, the node U3 is involved in a cycle U3 → U3,
which does not appear in our expression for the trace of f . In fact, note that if we
trace an endomorphism f : A→ A out completely, i.e. writing f : I⊗A→ I⊗A
we form TrAI,I(f) : I→ I, then we get a scalar. Indeed, the importance of scalars
in our context is exactly that they give the values of loops. Now in FSM(C), the
tensor unit is the empty list, and there is only one scalar — the identity. It is
exactly this collapsed interpretation of the scalars which prevents the trace we
have just (implicitly) defined on FSM(C) from giving the free traced category
on C.

We now turn to a more formal account, culminating in the construction of
FTr(C).

Geometry of Permutations. We begin with a more detailed analysis of per-
mutations π ∈ S(n+m), with the decomposition n+m reflecting our distinction
between the visible (input-output) part of the type, and the hidden (feedback)
part, arising from the application of the trace.

We define an n-path (or if n is understood, an input-output path) of π to be
a sequence

i, π(i), π2(i), . . . , πk+1(i) = j

where 1 ≤ i, j ≤ n, and for all 0 < p < k, πp(i) > n. We write Pπ(i) for the
n-path starting from i, which is clearly unique if it exists, and also pπ(i) = j.
We write P 0

π (i) for the set of elements of {n + 1, . . . , n + m} appearing in the
sequence. A loop of π is defined to be a cycle

j, π(j), . . . , πk+1(j) = j

where n < j ≤ n + m. We write L(π) for the set of all loops of π.

Proposition 1. The following holds for any permutation π ∈ S(n + m):

1. For each i, 1 ≤ i ≤ n, Pπ(i) is well-defined.
2. pπ ∈ S(n).

Abstract Scalars, Loops, and Strongly Compact Closed Categories 17

3. The family of sets
{P 0

π(i) | 1 ≤ i ≤ n} ∪ L(π)

form a partition of {n + 1, . . . , n + m}.

Proof.

1. Consider the sequence
i, π(i), π2(i), . . .

Either we reach πk+1 = j ≤ n, or there must be a least l such that

πk+1(i) = πl+1(i) > n, 0 ≤ k < l.

(Note that the fact that i ≤ n allows us to write the left hand term as
πk+1(i)). But then, applying π−1, we conclude that πk(i) = πl(i), a contra-
diction.

2. If pπ(i) = pπ(j), then πk+1(i) = πl+1(j), where say k ≤ l. Applying
(π−1)k+1, we obtain i = πl−k(j) ≤ n, whence l = k and i = j.

3. It is standard that distinct cycles are disjoint. We can reason similarly to
part (2) to show that if P 0

π (i) meets P 0
π (j), then i = j. Similar reasoning to

(1) shows that P 0
π (i) ∩ L = ∅, for L ∈ L(π). Finally, iterating π−1 on j > n

either forms a cycle, or reaches i ≤ n; in the latter case, j ∈ P 0
π (i).

�

We now give a more algebraic description of the permutation pπ. Firstly,
we extend our notation by defining [n:m] := {n + 1, . . . , m}. Now we can write
[n+m] = [n]�[n:n+m], where � is disjoint union. We can use this decomposition
to express π ∈ S(n+m) as the disjoint union of the following four maps:

π1,1 : [n] −→ [n] π1,2 : [n] −→ [n:n+m]

π2,1 : [n:n+m] −→ [n] π2,2 : [n:n+m] −→ [n:n+m]

We can view these maps as binary relations on [n+m] (they are in fact injective
partial functions), and use relational algebra (union R∪S, relational composition
R; S and reflexive transitive closure R∗) to express pπ in terms of the πij :

pπ = π1,1 ∪ π1,2; π∗
2,2; π2,1.

We can also characterize the elements of L(π):

j ∈
⋃
L(π) ⇐⇒ 〈j, j〉 ∈ π∗

2,2 ∩ id[n:n+m].

Loops. We follow Kelly and Laplaza [19] in making the following basic defi-
nitions. The loops of a category C, written L[C], are the endomorphisms of C
quotiented by the following equivalence relation: a composition

A1
f1 � A2

f2 � · · · Ak
fk � A1

18 S. Abramsky

is equated with all its cyclic permutations. A trace function on C is a map on
the endomorphisms of C which respects this equivalence. We note in particular
the following standard result [14]:

Proposition 2. If C is traced, then the trace applied to endomorphisms:

g : A→ A −→ TrIA,A(f) : I→ I

is a (scalar-valued) trace function.

Traces of Decomposable Morphisms. We now turn to a general proposition
about traced categories, from which the structure of the free category will be
readily apparent. It shows that whenever a morphism is decomposable into a
tensor product followed by a permutation (as all morphisms in FSM(C) are),
then the trace can be calculated explictly by composing over paths.

Proposition 3. Let C be a traced symmetric monoidal category, and consider
a morphism of the form

f = π−1 ◦
n+m⊗
i=1

fi : C −→ D

where C =
⊗n

i=1 Ai ⊗
⊗n+m

j=n+1 Uj, D =
⊗n

i=1 Bi ⊗
⊗n+m

j=n+1 Uj, π ∈ S(n + m),
and fi : Ci → Dπ(i). Then

TrUC,D(f) =

⎛⎝ ∏
l∈L(π)

sl

⎞⎠ • (p−1
π ◦

n⊗
i=1

gn)

where for each 1 ≤ i ≤ n, with n-path

Pπ(i) = i, p1, . . . , pk, j

gi is the composition

Ai
fi � Up1

fp1� · · · · · · Upk

fpk � Bj

and for l = p1, · · · , pk, p1 ∈ L(π), sl = TrUp1
I,I (fpk

◦ · · · ◦ fp1). The product
∏

l sl

refers to multiplication in the monoid of scalars, which we know by Proposition 1
to be commutative.

Taken together with the following instance of Superposing:

TrUA,B(s • f) = s • TrUA,B(f) (10)

this Proposition yields a closed form description of the trace on expressions of
the form:

s • (π−1 ◦
⊗

j

fj) :
⊗

j

Aj −→
⊗

j

Bj . (11)

We approach the proof of this Proposition via a number of lemmas.

Abstract Scalars, Loops, and Strongly Compact Closed Categories 19

Firstly, a simple consequence of Feedback Dinaturality:

Lemma 2. Let U =
⊗n

i=1 Ui, and σ ∈ S(n). Let σU =
⊗n

i=1 Uσ(i). Then

TrUA,B(f) = Trσ(U)
A,B ((1A ⊗ σ) ◦ f ◦ (1B ⊗ σ−1)).

Lemma 3.

TrUA,B(f)⊗ TrVC,D(g) = TrV ⊗U
A⊗C,B⊗D((1A ⊗ τU,D⊗V) ◦ (f ⊗ g) ◦ (1A ⊗ τC⊗V,U)).

The proof is in the Appendix.
We now show how the trace is evaluated along cyclic paths of any length.

We write σk+1 =

⎛⎝1 2 · · · k k + 1

2 3 · · · k + 1 1

⎞⎠, the cyclic permutation of length k + 1.

Note the useful recursion formula:

σk+1 = (τ ⊗ 1) ◦ (1⊗ σk). (12)

Suppose we have morphisms fi : Ai → Ai+1, 1 ≤ i ≤ k + 1. We write U =⊗k+1
i=2 Ai, and V =

⊗k+1
i=3 Ai. (By convention, a tensor product over an empty

range of indices is taken to be the tensor unit I).

Lemma 4. For all k ≥ 0:

TrUA1,Ak+2
(σk+1 ◦

k+1⊗
i=1

fi) = fk+1 ◦ fk ◦ · · · ◦ f1.

The proof is relegated to the Appendix. This lemma simultaneously generalizes
Vanishing I (k = 0) and Yanking (k = 1, A1 = A2 = A3, f1 = f2 = 1A1), and
also the Generalized Yanking of [3]. The geometry of the situation is made clear
by the following diagram.

1 2 k k+1

k+2 2 3 k+1

· · ·

· · ·

· · ·

=

1

k+1

k+2

...

20 S. Abramsky

Proof of Proposition 3. Note that for k = 0, this is just Vanishing I. Up to
conjugation by some permutation σ, we can express π as the tensor product of
its n-paths and loops:

π = σ ◦

⎛⎝ n⊗
i=1

Pπ(i)⊗
⊗

L∈L[π]

L

⎞⎠ ◦ σ−1.

Using Lemmas 3 and 2, we can express the trace of f in terms of the traces of
the morphisms corresponding to the n-paths and loops of π. The trace of each
n-path is given by Lemma 4. ��

Description of FTr(C) The objects are as for FSM(C). A morphism now has
the form (S, π, λ), where (π, λ) are as in FSM(C), and S is a multiset of loops
in L[C], i.e. an element of M(L[C]), the free commutative monoid generated by
L[C].

Note that such a morphism

(S, π, λ) : (n, A) −→ (n, B)

can be written as⎛⎝ ∏
[si:A→A]∼∈S

TrAI,I(si)

⎞⎠ • (π−1 ◦
n⊗

i=1

λi) :
⊗

i

Ai −→
⊗

i

Bi (13)

in the language of traced symmetric monoidal categories. This will be our closed-
form description of morphisms in the free traced category. It follows from Propo-
sition 3, together with equations (1)–(4), (8), (9), (10), that this is indeed closed
under the traced monoidal operations.

We define the main operations on morphisms.

Composition

(T, σ, μ) ◦ (S, π, λ) = (S � T, σ ◦ π, i → μπ(i) ◦ λi)

Tensor Product

(S, π, λ) ⊗ (T, σ, μ) = (S � T, π ⊗ σ, [λ, μ])

Trace
Trmn,n(S, π, λ) = (S � T, pπ, μ)

where
T = {|[λπl(j) ◦ · · · ◦ λj]∼ | πl+1(j) = j ∈ L(π)|},
μ : i → λpπ(i) ◦ λπk(i) ◦ · · · ◦ λi.

Abstract Scalars, Loops, and Strongly Compact Closed Categories 21

Note that FTr(C)(I, I) = M(L[C]). Also,

FTr(1) = (
∐
n∈N

S(n))× (N, +, 0).

That is, the objects in this free category are the natural numbers; a morphism
is a pair (π, n), where π is a permutation, and n is a natural number counting
the number of loops.

4.4 Compact Closed Categories

The free construction for compact closed categories was characterized in the
pioneering paper by Kelly and Laplaza [19]. Their construction is rather com-
plex. Even when simplified to the strict monoidal case, several aspects of the
construction are bundled in together, and it can be hard to spot what is going
one. (For example, the path construction we gave for the trace in the previous
section is implicit in their paper — but not easy to spot!). We are now in a good
position to disentangle and clarify their construction. Indeed, we have already
explictly constructed FTr(C), and there is the G or Int construction of Joyal,
Street and Verity [14]5, which is developed in the symmetric monoidal context
with connections to Computer Science issues and the Geometry of Interaction
in [2]. This construction gives the free compact closed category generated by a
traced monoidal category. Thus we can recover the Kelly-Laplaza construction
as the composition of these two adjunctions:

Cat
FTr �
⊥�

UTr

Tr−Cat
G �
⊥�
U

CC−Cat

Adjoints compose, so FCC(C) = G ◦FTr(C). This factorization allows us to ‘ratio-
nally reconstruct’ the Kelly-Laplaza construction.

The main notion which has to be added to those already present in FTr(C)
is that of polarity. The ability to distincguish between positive and negative
occurrences of a variable will allow us to transpose variables from inputs to
outputs, or vice versa. This possibility of transposing variables means that we
no longer have the simple situation that morphisms must be between lists of
generating objects of the same length. However, note that in a compact closed
category, (A⊗B)∗ 	 A∗⊗B∗, so any object constructed from generating objects
by tensor product and duality will be isomorphic to one of the form⊗

i

Ai ⊗
⊗

j

B∗
j .

Moreover, any morphism

f :
⊗

i

Ai ⊗
⊗

j

B∗
j −→

⊗
k

Ck ⊗
⊗

l

D∗
l (14)

5 Prefigured in [1], and also in some unpublished lectures of Martin Hyland [13].

22 S. Abramsky

will, after transposing the negative objects, be in biunique correspondence with
one of the form ⊗

i

Ai ⊗
⊗

l

Dl −→
⊗

k

Ck ⊗
⊗

j

Bj. (15)

A key observation is that in the free category, this transposed map (15) will
again be of the closed form (13) which characterizes morphisms in FTr(C), as we
saw in the previous section. From this, the construction of FCC(C) will follow
directly.

Objects. The objects in FCC(C) are, following the G construction applied to
FTr(C), pairs of objects of FTr(C), hence of the form (n, m, A+, A−), where

A+ : [n] −→ Ob C A− : [m] −→ Ob C.

Such an object can be read as the tensor product

n⊗
i=1

A+
i ⊗

m⊗
j=1

(A−
j)∗.

This is equivalent to the Kelly-Laplaza notion of signed set, under which objects
have the form (n, A, sgn), where sgn : [n]→ {+,−}.

Operations on Objects. The tensor product is defined componentwise on the
positive and negative components. Formally:

(n, m, A+, A−)⊗ (p, q, B+, B−) = (n + p, m + q, [A+, B+], [A−, B−]).

The duality simply interchanges positive and negative components:

(n, m, A+, A−)∗ = (m, n, A−, A+).

Note that the duality is involutive, and distributes through tensor:

A∗∗ = A, (A⊗B)∗ = A∗ ⊗B∗.

Morphisms. A morphism has the form

(S, π, λ) : (n, m, A+, A−) −→ (p, q, B+, B−)

where we require n + q = k = m + p, π ∈ S(k), and λ : [k]→ Mor C, such that

λi : [A+, B−]i −→ [B+, A−]π(i).

S is a multiset of loops, just as in FTr(C). Note that (S, λ, π) can indeed be seen
as a morphism in FTr(C) in the transposed form (15), as discussed previously.

We now describe the compact closed operations on morphisms.

Abstract Scalars, Loops, and Strongly Compact Closed Categories 23

Composition. Composition of a morphism f : A → B with a morphism g :
B → B is given by feeding ‘outputs’ by f from the positive component of B as
inputs to g (since for g, B occurs negatively, and hence the positive and negative
components are interchanged); and symmetrically, feeding the g outputs from
the negative components of B as inputs to f . This symmetry allows the strong
form of duality present in compact closed categories to be interpreted in a very
direct and natural fashion.

This general prescription is elegantly captured algebraically in terms of the
trace, which co-operates with the duality to allow symmetric interaction between
the two morphisms which are being composed. This is illustrated by the following
diagram, which first appeared in [1]:

f g

A+

A−

C−

C+

B−

B+

B+

B−

A concrete account for FCC(C) follows directly from our description of the trace
in FTr(C): chase paths, and compose (in C) the morphisms labelling the paths
to get the labels. In general, loops will be formed, and must be added to the
multiset. Formally, given arrows

f : A −→ B, g : B −→ C

where
f = (S, π, λ) : (n, m, A+, A−) −→ (p, q, B+, B−)

g = (T, σ, μ) : (p, q, B+, B−) −→ (r, s, C+, C−)

we form the composition

(S � T � U, EX(π, σ), ρ) : (n, m, A+, A−) −→ (r, s, C+, C−).

There is an algebraic description of the permutation component EX(π, σ), which
can be derived from our algebraic description of pπ in the previous section. In
the same manner as we did there, we can decompose each of π and σ into four
components, which we write as matrices:

π =

⎛⎝πA+A− πA+B+

πB−A− πB−B+

⎞⎠ σ =

⎛⎝σA+A− σA+B+

σB−A− σB−B+

⎞⎠

24 S. Abramsky

Now if we write

EX(π, σ) = θ =

⎛⎝θA+A− θA+C+

θC−A− θC−C+

⎞⎠
then we can define

θA+A− = πA+A− ∪ πA+B+ ; σB+B− ; (πB−B+ ; σB+B−)∗; πB−A−

θA+C+ = πA+B+ ; (σB+B− ; πB−B+)∗; σB+C+

θC−A− = σC−B− ; (πB−B+ ; σB+B−)∗; πB−A−

θC−C+ = σC−C+ ∪ σC−B− ; πB−B+ ; (σB+B− ; πB−B+)∗; σB+C+ .

This is essentially the ‘Execution formula’ [12] — see also [14] and [2]; it appears
implicitly in [19] as a coequaliser.

Similarly, we can characterize the loops formed by composing π and σ,
L(π, σ), by

j ∈
⋃
L(π, σ) ⇐⇒

〈j, j〉 ∈ ((πB−B+ ; σB+B−)∗ ∩ idB−) ∪ ((σB+B− ; πB−B+)∗ ∩ idB+).

The labelling function ρ simply labels EX(π, σ) : i → j with the arrow
in C formed by composing the arrows labelling the arcs in the path from i to
j described by the above ‘flow matrix’. Similarly, U is the multiset of loops
labelling the cycles in L(π, σ).

One can give algebraic descriptions of ρ and U by reformulating λ and μ as
graph homomorphisms into (the underlying graph of) C. One can then form a
homomorphism ν : G → UGraphC from a combined graph G, which gives an
‘intensional description’ of the composition. This combined graph will comprise
the disjoint union of the graphs corresponding to the two arrows being composed,
together with explicit feedback arcs, labelled by ν with identity arrows in C. One
then considers the path category G∗ freely generated from this graph [20, 2.VII];
the above flow expressions for EX(π, σ) yield a description of the paths in this
category when relational composition is reinterpreted as concatenation of paths.
We can then read off ρ and U from the unique functorial extension of ν to this
path category.

Tensor Product. This is defined componentwise as in FTr(C), with appropri-
ate permutation of indices in order to align positive and negative components
correctly.

Units and Counits. Firstly, we describe the identity morphisms explicitly:

id = (∅, id[n+m], i → 1[A,B]i) : (n, m, A+, A−) −→ (n, m, A+, A−).

We join each dot in the input to the corresponding one in the output, and label
it with the appropriate identity arrow.

Abstract Scalars, Loops, and Strongly Compact Closed Categories 25

Now consider the unit ηA : I→ A∗⊗A. Once we have unpacked the definition
of what comprises an arrow of this type, we see that we can make exactly the
same definition as for the identity! The unit is just the right transpose of the
identity. Similarly, the counit is the left transpose of the identity.

Thus identities, units and counits are essentially all the same, except that
the polarities allow variables to be transposed freely between the domain and
codomain.

Identity: •+
1 �
� •+

Unit: � •− 1 � •+

Counit: •+ 1 � •− �

4.5 Strongly Compact Closed Categories

We now wish to analyze the new notion of strongly compact closed category
in the same style as the previous constructions. Fortunately, there is a simple
observation which makes this quite transparent. Provided that the category we
begin with is already equipped with an involution (but no other structure), then
this involution ‘lifts’ through all our constructions, yielding the free ‘dagger
version’ (in the sense of [25]) of each of our constructions. In particular, our
construction of FCC(C) in the previous section in fact gives rise to the free strongly
compact closed category.

More precisely, we shall describe an adjunction

InvCat
FSCC �
⊥�

USCC

SCC−Cat

where InvCat is the category of categories with a specified involution, i.e. an
identity on objects, contravariant, involutive functor; and functors preserving
the involution.

Our previous construction of FCC(C) lifts directly to this setting. The main
point is that we can define an involution ()† on FCC(C), under the assumption
that we are given a primitive ()† on the generating category C. The dagger on
FCC(C) will endow it with the structure of a strongly compact closed category
(for which the compact closed part will coincide with that already described for
FCC(C)).

Given
(S, π, λ) : (n, m, A+, A−) −→ (p, q, B+, B−),

we can define

(S, π, λ)† = ({|[s†]∼ | [s]∼ ∈ S|}, π−1, j → λ†
π−1(j)).

In short, we reverse direction on the arrows connecting the dots (including re-
versing the direction of loops), and label the reversed arrows with the reversals of

26 S. Abramsky

the original labels. This contrasts with the dual f∗, which by the way types are
interpreted in this free situation, is essentially the same combinatorial object as
f , but with a different ‘marking’ by polarities — there are no reversals involved.
Thus, if we had a labelling morphism

λi = [A+, B−]i
fi� [B+, A−]π(i)=j

then we will get

(λ†)j = [B+, A−]j
f †

i� [A+, B−]π−1(j)=i.

It is easy to see that ηA = ε†A, so this is compatible with our previous construction
of FCC(C).

4.6 Parameterizing on the Monoid

So far, the scalars have arisen intrinsically from the loops in the generating
category C. However, we may wish for various reasons to be able to ‘glue in’
a preferred multiplicative monoid of scalars into our traced, compact closed,or
strongly compact closed category, For example, we may wish to consider only a
few generating morphisms, but to take the complex numbers C as scalars. We
will present a construction which accomodates this, as a simple refinement of
the previous ones. There are versions of this construction for each of the traced,
compact closed, and strongly compact closed cases: we shall only discuss the last
of these.

Firstly, we note that there is a functor

L : InvCat −→ InvSet

which sends a category to its sets of loops. The dagger defines an involution
on the set of loops. Involution-preserving functors induce involution-preserving
functions on the loops.

Now let InvCMon be the category of commutative monoids with involution,
and involution-preserving homomorphisms. There is an evident forgetful functor
UInvCMon −→ InvSet. We can form the comma category (L ↓ UInvCMon),
whose objects are of the form (C, ϕ, M), where ϕ is an involution-preserving
map from L[C] to the underlying set of M . Here we can think of M as the
prescribed monoid of scalars, and ϕ as specifying how to evaluate loops from C
in this monoid.

There is a forgetful functor UV : SCC−Cat −→ V

UV : C −→ (USCC(C), f : A→ A −→ TrAI,I(f), C(I, I)).

Our task is to construct an adjunction

V
FV �
⊥�
UV

SCC−Cat

Abstract Scalars, Loops, and Strongly Compact Closed Categories 27

which builds the free SCC on a category with prescribed scalars. This is a simple
variation on our previous construction of FSCC(C), which essentially acts by com-
position with the loop evaluation function ϕ on FSCC(C). We use the prescribed
monoid M in place of M(L[C]). Thus a morphism in FV (C) will have the form
(m, π, λ), where m ∈ M . Multiset union is replaced by the monoid operation of
M . The action of the dagger functor on elements of M is by the given involution
on M . When loops in C arise in forming compositions in the free category, they
are evaluated in M using the function ϕ.

The monoid of scalars in this free category will of course be M .

References

1. S. Abramsky, R. Jagadeesan, New Foundations for the Geometry of Interaction,
Information and Computation, 111(1):53-119, 1994. Conference version appeared
in LiCS ‘92.

2. S. Abramsky. Retracing some paths in process algebra. CONCUR 96: Proceedings
of the Seventh International Conference on Concurrency Theory, LNCS 1119, 1–
17, 1996.

3. S. Abramsky and E. Haghverdi and P. J. Scott. Geometry of Interaction and Linear
Combinatory Algebras. Mathematical Structures in Computer Science 12:625–665,
2002.

4. S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science
(LiCS‘04), IEEE Computer Science Press, 415–425, 2004. (extended version at
arXiv: quant-ph/0402130)

5. S. Abramsky and B. Coecke. Abstract Physical Traces. Theory and Applications
of Categories, 14:111–124, 2005.

6. S. Abramsky and R. W. Duncan. Categorical Quantum Logic. In the Proceedings of
the Second International Workshop on Quantum Programming Languages, 2004.

7. M. Barr. ∗-autonomous Categories. Springer-Verlag 1979.
8. G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Annals of

Mathematics 37, 823–843, 1937.
9. B. Coecke. Delinearizing Linearity. Draft paper, 2005.

10. P. Deligne. Catégories Tannakiennes. In The Grothendiek Festschrift, Vol. II, 111–
195. Birkhauser 1990.

11. J.-Y. Girard, Linear Logic. Theoretical Computer Science 50(1):1-102, 1987.
12. J.-Y. Girard, Geometry of Interaction I: Interpretation of System F, in: Logic

Colloquium ’88, ed. R. Ferro, et al. North-Holland, pp. 221-260, 1989.
13. Martin Hyland. Personal communication, July 2004.
14. A. Joyal, R. Street and D. Verity, Traced monoidal categories. Math. Proc. Camb.

Phil. Soc. 119, 447–468, 1996.
15. C. Kassel. Quantum Groups. Springer-Verlag 1995.
16. P. Katis, N. Sabadini and R. F. C. Walters. Feedback, trace and fixed point se-

mantics. Proceedings of FICS01: Workshop on Fixed Points in Computer Science,
2001. Available at http://www.unico.it/ walters/papers/index.html

17. G. M. Kelly. Many-variable functorial calculus I. Springer Lecture Notes in Math-
ematics 281, 66–105, 1972.

18. G. M. Kelly. An abstract approach to coherence. Springer Lecture Notes in Math-
ematics 281, 106–147, 1972.

28 S. Abramsky

19. G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories. Journal
of Pure and Applied Algebra 19, 193–213, 1980.

20. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag 1971.
21. Dusko Pavlovic. A semantical approach to equilibria, adaptation and evolution.

Unpublished manuscript, November 2004.
22. R. Penrose. Applications of negative-dimensional tensors. In Combinatorial Math-

ematics and Its Applications, ed. D. J. Welsh, 221-244, Academic Press 1971.
23. N. S. Rivano. Catégories Tannakiennes. Springer-Verlag 1972.
24. P. Selinger. Towards a quantum programming language. Mathematical Structures

in Computer Science 14(4), 527–586, 2004.
25. P. Selinger. Dagger compact closed categories and completely positive maps. To ap-

pear in Proceedings of the 3rd International Workshop on Quantum Programming
Languages, 2005.

Appendix

The following equational proofs involve some long typed formulas. To aid in
readability, we have annotated each equational step (reading down the page) by
underlining each redex, and overlining the corresponding contractum.

Proof of Lemma 3

Proof.

TrUA,B(f)⊗ TrVC,D(g)

= {Superposing}

TrVA⊗C,B⊗D(TrUA,B(f)⊗ g)

= {Naturality of τ}
TrVA⊗C,B⊗D(τD⊗V,B ◦ (g ⊗ TrUA,B(f)) ◦ τA,C⊗V)

= {Superposing}

TrVA⊗C,B⊗D(τD⊗V,B ◦ TrUC⊗V ⊗A,D⊗V ⊗B(g ⊗ f) ◦ τA,C⊗V)

= {Input/Output Naturality}
TrVA⊗C,B⊗D(TrUA⊗C⊗V,B⊗D⊗V ((τD⊗V,B ⊗ 1U) ◦ (g ⊗ f) ◦ (τA,C⊗V ⊗ 1U)))

= {SM Coherence}
TrVA⊗C,B⊗D(TrUA⊗C⊗V,B⊗D⊗V ((1A ⊗ τU,D⊗V) ◦ (f ⊗ g) ◦ (1A ⊗ τC⊗V,U)))

= {Vanishing II}

TrV ⊗U
A⊗C,B⊗D((1A ⊗ τU,D⊗V) ◦ (f ⊗ g) ◦ (1A ⊗ τC⊗V,U)).

�

Abstract Scalars, Loops, and Strongly Compact Closed Categories 29

Proof of Lemma 4

Proof. Note that for k = 0, this is just Vanishing I. We now reason inductively
when k > 0.

TrUA1,Ak+2
(σk+1 ◦

⊗k+1
i=1 fi)

= {Vanishing II}

TrA2
A1,Ak+2

(TrVA1⊗A2,Ak+2⊗A2
(σk+1 ◦

⊗k+1
i=1 fi))

= {(12)}

TrA2
A1,Ak+2

(TrVA1⊗A2,Ak+2⊗A2
((τ ⊗ 1) ◦ (1 ⊗ σk) ◦

⊗k+1
i=1 fi))

= {Naturality in Ak+2 ⊗A2}

TrA2
A1,Ak+2

(τ ◦ TrVA1⊗A2,A2⊗Ak+2
((1 ⊗ σk) ◦

⊗k+1
i=1 fi))

= {Bifunctoriality of ⊗}

TrA2
A1,Ak+2

(τ ◦ TrVA1⊗A2,A2⊗Ak+2
((1 ⊗ σk) ◦ (1⊗

⊗k+1
i=2 fi) ◦ (f1 ⊗ 1U)))

= {Naturality in A1 ⊗A2}
TrA2

A1,Ak+2
(τ ◦ TrVA2⊗A2,A2⊗Ak+2

((1 ⊗ σk) ◦ (1⊗
⊗k+1

i=2 fi)) ◦ (f1 ⊗ 1A2))

= {Naturality in A1}
TrA2

A2,Ak+2
(τ ◦ TrVA2⊗A2,A2⊗Ak+2

((1 ⊗ σk) ◦ (1⊗
⊗k+1

i=2 fi))) ◦ f1

= {Bifunctoriality of ⊗}
TrA2

A2,Ak+2
(τ ◦ TrVA2⊗A2,A2⊗Ak+2

(1 ⊗ (σk ◦
⊗k+1

i=2 fi))) ◦ f1

= {Superposing}
TrA2

A2,Ak+2
(τ ◦ (1⊗ TrVA2,Ak+2

(σk ◦
⊗k+1

i=2 fi))) ◦ f1

= {Induction hypothesis}
TrA2

A2,Ak+2
(τ ◦ (1⊗ (fk+1 ◦ · · · ◦ f2))) ◦ f1

= {Naturality of τ}

TrA2
A2,Ak+2

(((fk+1 ◦ · · · ◦ f2)⊗ 1) ◦ τ) ◦ f1

= {Naturality in Ak+2}

(fk+1 ◦ · · · ◦ f2) ◦ TrA2
A2,A2

(τ) ◦ f1

= {Yanking}

(fk+1 ◦ · · · ◦ f2) ◦ 1A2 ◦ f1

= fk+1 ◦ · · · ◦ f2 ◦ f1.

�

Labels from Reductions: Towards a General Theory

Bartek Klin, Vladimiro Sassone, and Paweł Sobociński

Warsaw University, University of Sussex, and PPS – Université Paris VII

Abstract. We consider open terms and parametric rules in the context of the
systematic derivation of labelled transitions from reduction systems.

1 Introduction

Since the seminal ideas of logicians of the early 20th century, it has become custom-
ary to encapsulate the dynamics of computation in terse and elegant rewrite calculi.
For instance, the essence of conventional computation is condensed in Church’s beta-
reduction rule (λx.M)N → M{x := N}, while the mechanics of π-calculus interaction is
captured by the rule

a〈n〉.P | a(x).Q −→ P | Q{x := n} .
The beauty and power of such formalisms can hardly be overestimated: they centre our
models on the essential, and help us focus our reasoning on fundamental principles.
However, models are normally used not only to describe, but also to design, specify,
analyse, and – most importantly – as the foundations for advanced, ground-breaking
techniques. A well consolidated, relevant example is ‘model checking,’ where simple
tools used at a suitable abstraction level and driven by powerful ideas have afforded
spectacular results. Similarly, notions revolving around semantic equivalences and coin-
duction have had a strong, lasting impact.

Several such ideas rely on relatively lower-level models based on transition systems.
Intuitively, these describe individual steps of computing entities, rather than providing
an overall picture of the computational primitives of the model as such. For instance, in

the case of π-calculus terms a transition a〈n〉.P an � P would express that the system
is ready to evolve to P by engaging in action a and offering it to (potential partners in)

the environment. There would then be a dual rule a(x).Q a(n) � Q{x := n} for message
receivers, and finally an inference rule would dictate how dual actions can meet in the
environment and complete each other to yield finished interactions.

A an � A′ B a(n) � B′

A | B � A′ | B′
Although the resulting term-transformation systems are equivalent, the differences

between these approaches are significant, and are better not dismissed hastily by a sim-
ple ‘matter-of-taste’ argument. The fundamental point of a ‘labelled-transition’ seman-
tics is that it is compositional: it explains the behaviour of complex systems by ex-
trapolating it from the behaviour of their components. This is in sharp contrast with a
‘reduction’ semantics, where a〈n〉.P and a(x).Q are completely inert, have no meaning
of their own. This distinction is of paramount importance for applications like model

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 30–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Labels from Reductions: Towards a General Theory 31

checking and bisimulation, that rely on the information afforded by labels and transi-
tions to analyse system components in isolation.

Influenced by Plotkin’s successful ‘structural operational semantics’ [10], many for-
malisms in the seventies and eighties had been originally equipped exclusively with a
labelled-transition semantics, including CCS and the π-calculus. In recent years how-
ever it has become increasingly important for complex computational models to have
both a reduction semantics, to explain their mechanics in intuitive, self-justifying terms,
and a labelled-transition semantics, to serve as basis for semantic analysis. In particu-
lar, several papers have been devoted to identify characterisations of reduction-based
equivalences in terms of labels and bisimulations. This is the context of the present
work: is it possible, and how, to derive labelled transition systems from reductions so
as to equip calculi with rich and treatable semantics theories? And to what extent can
this be done parametrically, i.e., independently on the specific calculus at hand? Ques-
tions like these gained momentum as work on ‘universal’ models emerged from the
field of concurrency, as e.g. action calculi [7], tile systems [2], and, more recently, bi-
graphs [8,3]. Such models are meant to provide general frameworks independent of
specific models, such that several calculi can be recast and understood as fragments
therein. In ambitious terms, one could think of these frameworks as semantic universes
which individual models can be instantiated from. The question therefore arose as to
how to associate meaning and reasoning techniques to such ‘universal’ meta-models.

Much progress has been made since, mainly by Robin Milner and his collaborators.
The rest of this introduction will revisit the main ideas underlying the approach, whilst
the main body of paper will present the technical details in a slightly novel fashion, and
try to accommodate in the theory the idea of parametric rules and open terms.

The central technical challenge is thus how to associate labelled transitions to terms
from reduction systems. Peter Sewell[16] exploited the intuition that labels in labelled
transition systems express the compositional properties of terms, i.e., the extend to
which a term is amenable to engage in interactions with the environment, and how.
Thus, if term a when inserted in a context c[−] can perform a reduction, say c[a]→ a′,
then c[−] is a strong candidate as a label for a transition a c � a′. (This spells out as:
‘a is ready to interact with context c[−], and a′ would be the result of such potential
interaction.’) This intuition is very suggestive indeed; the devil however is as usual the
details: in order for this idea to give a sensible bisimulation, it is fundamental to select
carefully which contexts to consider: certainly not all, but only those c which are the
‘smallest’ to trigger a given reduction. Failing to do so would give rise to a ‘garbled’
semantics, as the excess transitions would convey misleading information as to what
term a is ready to engage with and what the environment is expected to contribute.

The need to formalise the notion of ‘smallest’ leads to category theory, where it is
possible to express such universal properties in term of uniqueness of certain ‘arrow’
factorisation. For instance, in categorical terms the fact that C is the disjoint union
(the so-called coproduct) of sets A and B is expressed by saying that all pairs of maps
(arrows) f : A → X and g : B → X factor uniquely via injections into C and a map
[f , g] : C → X. In complete analogy, a context c[−] is the ‘smallest’ to create redex l in
a, if all contexts c′[−] that create l factor as c′[−] = e[c[−]] for a unique context e[−].
For instance, in the λ-calculus

32 B. Klin, V. Sassone, and P. Sobociński

λx.x (−)y � y, but not λx.x (−)yz � yz,

as (−)yz arises uniquely as the composition of (−)z and (−)y.
The first step to rephrase our notion of ‘smallness’ as a problem of unique arrow

factorisation is to recast terms as arrows in categories. This can be done following Law-
vere’s seminal approach to algebraic theories, that here we instantiate using MacLane’s
notion of ‘product and permutation’ category (PROP) – roughly speaking, ‘linear’ Law-
vere theories – that we recall in §2. An arrow f : n→ m in a PROP represents a m-tuple
of contexts containing altogether n ‘holes;’ i.e., when f is fed with n terms to plug its
holes, it yields a tuple of m terms. The question as to whether or not term a in context
c manifests a redex l becomes now whether there exists a suitable context d such that
ca = dl. This allows us to express the minimality of c by ranging over all equations of
the kind c′a = d′l, seeking for unique ways to factor c′ through c. In §3 we recall how
such universal property is elegantly expressed by the notion of idem-relative-pushout,
a breakthrough due Leifer and Milner [4]. Remarkably, such formalisation supports the
central ‘congruence theorem’ that bisimulation on the labelled transition systems de-
rived following the theory is a congruence, i.e., it is closed under all contexts. Due to
the generality of the framework, such a result has already been applied to a variety of
different models [3,13,9,12,1,14].

This paper’s original contribution concerns our initial ideas on the treatment of open
terms and parametric rules in the above framework.

For the sake of illustration, let us consider on the CCS rule for interaction. To ex-
press such a rule as a collection of ground rules aP | aQ −→ P | Q is not entirely
satisfactory in this setting: even in the simplest cases, we have infinitely many rewrite
rules to deal with, and these give rise to infinitely many higher-order labels, e.g., of

the kind aP −|aQ � P | Q. This appears to make a poor use of the generality, elegance
and succinctness of theory of relative pushouts. Ideally, the rule should be expressed
parametrically, as in1

a.1 | a.2 −→ 1 | 2
and the labels should be derivable for open terms with universal property imposed both
on the contexts and the parameters. A label should thus consist both of a smallest con-
text and the most general parameter which makes a reduction possible; for example

〈a.P, 1〉 1|a.2� P | 1 and a.P | 1
a.1
� P | 1,

where the label above the transition denotes a context with two holes (to insert the left-
hand pair in), and the label below a transition denotes a parameter (to fill the left-hand
side open term with).

As it turns out, the framework is robust enough to adapt easily to the new question.
Rather than investigating (‘square’) equations such as ca = dl, we now face ‘hexagonal’
equations cap = dlq in order to establish the universal property that, at the same time,
identifies the smallest context c as well as the largest parameter p that unearth redex l
in term a. The main technical device we introduce to that purpose is to pair the notion

1 In the paper we use natural numbers to denote context parameters (‘holes’).

Labels from Reductions: Towards a General Theory 33

of slice pushout (a rephrasing of relative pushouts) with a dual notion of coslice pull-
back: the role of the pushout is to determine c as before, while the pullback of course
ascertains p. Such coupling of universal properties gives rise to the new notion of ‘lux’
(locally universal hexagon), introduced in §4. These have been considered previously
by Peter Sewell, who referred to them as hex-RPOs. In fact, much of our technical
development has been foreshadowed in his unpublished notes [15].

Our main technical results are a characterisation of categories with luxes in terms of
slice pushouts and coslice pullbacks (Theorem 1) and, of course, the fundamental con-
gruence theorem for the labelled transition systems derived using our theory of luxes
(Theorem 3). Most of the ideas presented here are work in progress, and in the conclud-
ing section we discuss merits and shortcomings of our proposal, as well as identifying
some of the main avenues of future work on luxes.

Structure of the Paper. In §2 we recall the notion of PROP and the construction of
categories of terms. §3 illustrates the existing theory based on slice pushouts, and its
extension to a bicategorical setting. §4-6 contain the main body of the paper, with our
definition of luxes, their properties, and the congruence theorem. Finally, §7 discusses
the shortcomings of the current theory and points forward to open issues and future
research.

We assume the reader to have a basic knowledge of category theory, as can be
acquired from any graduate textbook. Throughout the paper we use standard categorical
notations, where ◦ denotes (right-to-left) composition and is most often omitted.

2 PROPs as Categories of Terms

A ‘product and permutation’ category [5], PROP, can be described, roughly, as a linear
Lawvere theory; more accurately, PROPs are one-sorted symmetric monoidal theories
whereas Lawvere theories are one-sorted finite product theories. We recall a straight-
forward definition below.

Definition 1 (PROP). A PROP is a category C where:

– objects are the natural numbers (here denoted 0, 1, 2, . . .);
– for each n, the group of permutations of n elements, S (n), is a subgroup of all the

invertible elements of the homset [n, n]. The identity permutation corresponds to
the identity 1n : n→ n;

– there is a functor ⊗ : C × C → C which acts as addition on the objects, i.e.,
m ⊗ n = m + n, and additionally:

• is associative: (f ⊗ f ′) ⊗ f ′′ = f ⊗ (f ′ ⊗ f ′′);
• given σ ∈ S (n) and σ′ ∈ S (n′), we have σ ⊗ σ′ = σ × σ′ : n + n′ → n + n′,

where × denotes the product of permutations;
• for any two natural numbers n, n′, let γn,n′ : n + n′ → n + n′ be the permutation

which swaps the two blocks of n and n′. Then for any maps f : m → n and
f ′ : m′ → n′ we have γn,n′(f ⊗ f ′) = (f ′ ⊗ f)γm,m′ .

34 B. Klin, V. Sassone, and P. Sobociński

Example 1. For any algebraic signature (i.e., set of operator names with finite arities) Σ,
the free PROP PΣ over Σ has n-tuples of terms over Σ that altogether contain m distinct
holes, as arrows t : m → n. Permutations in [n, n] are tuples built solely of holes, ⊗ acts
on arrows as tuple juxtaposition, and arrow composition is the standard composition of
terms.

Example 2. PROPs can also be induced from signatures modulo term equations. Con-
sider the signature Σ = {nil : 0, a. : 1, a. : 1, | : 2} corresponding to the grammar:

P ::= nil | aP | aP | P | P ,
where a ranges over some fixed set A of actions, and the associativity equation:

P | (Q | R) = (P | Q) | R .
The PROP PAP (Prefix and Associative Parallel composition) is built of terms over Σ
quotiented by the associativity equation, with permutations, ⊗ and composition defined
as in Example 1. Additionally, one can quotient terms by the commutativity equation

P | Q = Q | P ;

the resulting PROP will be called PACP (Prefix and Associative, Commutative Parallel
Composition).

3 Labelled Transitions for Ground Reductions

This section introduces the background material we need in later sections. First, we
briefly recall Leifer and Milner’s notion of idem-relative-pushout (IPO) as well as its
dual, the idem-relative-pullback (IPB). Following a brief informal and discussion on
how IPOs have been used in order to generate labelled transition systems (LTS) for
calculi with ground reduction rules, we shall demonstrate that IPOs and IPBs can be
conveniently studied in a category of factorisations, where they are easily seen to be co-
products and products, respectively. We conclude with a short note on how to generalise
the theory to G-categories [11,13].

3.1 Pushouts in Slices

Let C be a category and V , W objects of C. The slice category C/W has as objects pairs
〈X, a〉, where a : X → W is an arrow of C, while its arrows f : 〈X, a〉 → 〈X′, a′〉 are
arrows f : X → X′ in C such that a′ f = a. The dual notion of a coslice category V/C
consists of the pairs 〈b, X〉, where b : V → X and of maps f : 〈b, X〉 → 〈b′, X′〉 for
f : X → X′ such that f b = b′.

Let r : V → W be an arrow of C. A pushout of f : 〈V, r〉 → 〈C, c〉 and g : 〈V, r〉 →
〈D, d〉 in the slice category C/W is, equivalently, a coproduct in 〈V, r〉 /(C/W). Spelling
this definition out, the span of f and g identifies a commutative square c f = r = dg in
C, while the pushout diagram h : 〈C, c〉 → 〈E, e〉 and k : 〈D, d〉 → 〈E, e〉 determines a
universal set of arrows such that h f = kg, eh = c and ek = d, as in the diagram below.
We shall say that a category has slice pushouts when it has pushouts in all slices.2

2 Leifer and Milner [4] use the term relative pushouts, or RPOs, to refer to pushouts in slices.

Labels from Reductions: Towards a General Theory 35

W

E
e

��

C

c

���������� h

�������
D

k

�������

d

����������

V
f

������� g

�������

Lemma 1. Free PROPs have slice pushouts.

Proof (sketch). A diagram

〈
k, c
〉 〈

m, t
〉a�� b 		

〈
l, d
〉

in PΣ/n is an arrow t : m→ n in PΣ with its two decompositions:

ca = t = db

As usual, a position ρ in a given term t is a finite sequence of numbers which encodes a
path downward from a root node of t. The set of positions in t, with the standard prefix
ordering, is denoted S t.

It is straightforward to check that decompositions of a given arrow t into p arrows
are in 1-1 correspondence to monotonic functions from S t to the set {1, . . . , p} with
the natural ordering. Consider such functions Λca and Λdb corresponding to the two
decompositions above, and define

Λ1(ρ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if Λca(ρ) = 1 and Λdb(ρ) = 1

2 if Λca(ρ) = 1 and Λdb(ρ) = 2

3 if Λca(ρ) = 2

Λ2(ρ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if Λca(ρ) = 1 and Λdb(ρ) = 1

2 if Λca(ρ) = 2 and Λdb(ρ) = 1

3 if Λdb(ρ) = 2

Λ1 and Λ2 are monotonic, hence they correspond to two decompositions of t:

x1y1z1 = t = x2y2z2

Moreover, x1 = x2, z1 = a and z2 = b. Let the domain of x = x1 = x2 be q. The square

〈
l, d
〉
y2

����

〈
q, x
〉

〈
m, t
〉 a

����b

������

〈
k, c
〉

y1������

is a pushout in PΣ/n.

36 B. Klin, V. Sassone, and P. Sobociński

Lemma 2. PAP has slice pushouts.

Proof (sketch). Arrows in PAP can be represented as tuples of finite, ordered trees
with nodes of any degree, where an immediate child of a node of degree higher than 1
must have degree at most 1. Additionally, nodes of degree 1 are labelled with elements
of A. Leaves of such trees correspond to occurrences of the constant nil, nodes of
degree 1 to applications of prefix composition operators, and nodes of higher degree
to term fragments built solely of the associative parallel composition operator. On this
representation of arrows, a pushout construction very similar to that of Lemma 1 can be
made.

Interestingly, PACP does not have slice pushouts. Indeed, there is no unique medi-
ation between the squares in the slice of 1:

〈
0, nil | nil

〉nil

�������
nil

�����

〈
1, nil | 1〉

id

����� 〈

1, nil | 1〉
id

��������

〈
1, nil | 1〉

〈
0, nil | nil

〉nil

�����nil

�������

〈
1, nil | 1〉
〈1,nil〉

����� 〈

1, nil | 1〉
〈nil,1〉��������

〈
2, 1 | 2〉

By an idem-relative-pushout [4] we mean the (square) diagram in C obtained by
applying the forgetful functor UW : C/W → C (which projects 〈V, r〉 to V) to a pushout
diagram in C/W. Let I denote the class of IPOs in C.

In categories with slice pushouts, it makes sense to talk about IPOs without worry-
ing about particular slices, as the conclusion of the following lemma implies:

Lemma 3. If C has slice pushouts and a diagram D in C/X maps via the forgetful
functor UX to an IPO (i.e., UX D ∈ I) then D is a pushout diagram in C/X.

Moreover, in categories with slice pushouts, IPOs behave somewhat like ordinary
pushouts, as demonstrated by the following lemma.

Lemma 4. Suppose that C has slice pushouts and the left square is an IPO. Then the
entire diagram is an IPO iff the right square is an IPO.

A

��

		 B

��

		 C

��

D 		 E 		 F

3.2 Pullbacks in Coslices

Dually, a pullback of f : 〈a, A〉 → 〈r,W〉 and g : 〈b, B〉 → 〈r,W〉 in the coslice category
V/C is, equivalently, a product in (V/C)/ 〈r,W〉. We say that a category has coslice
pullbacks when it has pullbacks in all of its coslices.

Lemma 5. Free PROPs have coslice pullbacks. PAP has coslice pullbacks.

Labels from Reductions: Towards a General Theory 37

W

A

f ����
B

d��				

0
a

��				
l

����

Fig. 1. An IPO corresponding to a label

Proof. Proceed exactly as in Lemmas 1 and 2.

By an idem-relative-pullback (IPB), we mean the (square) diagram obtained from
a pullback diagram in a coslice category under the image of the forgetful functor to C.
We immediately obtain dual versions of Lemmas 3 and 4, the latter of which we state
below.

Lemma 6. Suppose that C has coslice pullbacks and the right square is an IPB. Then
the entire diagram is an IPB iff the left square is an IPB.

A

��

		 B

��

		 C

��

D 		 E 		 F

3.3 Labels

As we mentioned in the Introduction, IPOs have been used by Leifer and Milner to de-
rive labelled transition systems for calculi equipped with a reduction semantics derived
from a set of ground rules. Here we give a brief overview of the technique.

Leifer and Milner’s framework of choice is their notion of ‘reactive system,’ which
consists of a category of contexts with a chosen object 0, a subcategory of evaluation
contexts which satisfies certain additional axioms and a set of reduction rulesR. The ar-
rows with domain 0 are thought of as closed terms. We shall not give a formal definition
here; instead we refer the reader ahead to Definition 3, which deals with a more general
situation where reduction rules may be open – to obtain a (closed) reactive system from
that definition one needs to assume additionally that the domains of l and r in every rule
〈l, r〉 ∈ R are 0.

Sewell’s central idea [16] which guides the definition of the derived LTS is that la-

bels should be certain contexts – more accurately, a f � a′ when f a (a in the context
of f) can perform a single reduction and result in a′. Moreover, as explained in the In-
troduction, f must be the ‘smallest’ such context. The notion of IPO gives us a precise
way to measure when a context is the smallest. Indeed, consider Fig. 1, where a is an
arbitrary term, l is the left hand side of a reduction rule 〈l, r〉 ∈ R and d is an evalu-
tation context. The fact that the diagram is commutative implies that f a can perform
a reduction resulting in dr, where the redex l has been replaced by r, the right-hand
side of the rule. Requiring the diagram to be an IPO results in an elegant formalisation
of the fact that f does not contain redundant material, not necessary for the reduction.
The LTS determined in this way can be shown to be well-behaved. In particular, if the

38 B. Klin, V. Sassone, and P. Sobociński

underlying category has slice pushouts then bisimilarity is a congruence, in the sense
that a ∼ b implies that ca ∼ cb for al c in C.

3.4 Category of Factorisations

The category of factorisations of an arrow provides a convenient setting for studying
slice pushouts and coslice pullbacks which we shall use in the rest of the paper.

Definition 2 (Factorisations). The category Fact(C, r) of factorisations of an arrow
r : V → W in C is consists of objects and arrows as defined below.

– objects: commutative diagrams in C of the form

W

P

p′ ��

V

r

��

p

��������

– arrows: an arrow from 〈P, p, p′〉 to 〈Q, q, q′〉 is a commutative diagram in C of the
form

W

P

p′ ��������
h 		 Q

q′��

V
p

�� q

���������

r

��

– Composition and identities are obvious.

The following fact is immediate.

Proposition 1. (V/C)/ 〈r,W〉 � Fact(C, r) � 〈V, r〉 /(C/W).

Such categories of factorisations form a convenient universe to speak about slice
pushouts from 〈V, r〉 and coslice pullbacks from 〈r,W〉 in C, since the former are pre-
cisely the coproducts and the latter are the products in Fact(C, r).

3.5 Generalisation to G-Categories

In [11,13] the second and third author generalised Leifer and Milner’s theory to a 2-
categorical setting, where structural congruence axioms (usually involving the commu-
tativity of parallel composition) are replaced by invertible 2-cells. The extra structure
is necessary, because simply quotienting terms results in structures where IPOs do not
exist, as in the case of PACP defined in Example 2 (cf. also [11]).

The problem is alleviated by working with G-categories – 2-categories with in-
vertible 2-cells – and considering GIPOs. The latter are the natural bicategorical gen-
eralisation of IPOs: namely, rather than pushouts in slice categories, one considers bi-
pushouts in pseudo-slice categories. One can, equivalently, define a category of pseudo-
factorisations and consider bicoproducts (obtaining GIPOs) and biproducts (obtaining
GIPBs).

Labels from Reductions: Towards a General Theory 39

Example 3. A G-PROP is a PROP with the underlying category carrying the structure
of a G-category, i.e., a 2-category with all 2-cells invertible. As an example, consider the
PROP PAP from Example 2 (see the proof of Lemma 2 for an explicit representation of
the arrows of PAP). Additionally, a 2-cell from a term t to a term t′ is a family, indexed
by the nodes of t, of permutations on the sets of their immediate children, such that
the application of all these permutations to t yields t′. Note how such 2-cells induce
bijections between the sets S t and S ′t of positions respectively in t and t′. Clearly, all
such 2-cells are invertible, hence the theory of GIPOs described in [11,13] applies. In
particular, the lack of slice pushouts in the PROP PACP is avoided here: pseudo-slice
bipushouts exist in the above G-PROP, which in the following will be denoted PA2CP.

4 Hexagons and Universality

In this section we set out on a path to extend the technique of LTS derivation to systems
where reduction rules are open in the sense that they can be instantiated with arbitrary
parameters. In such a setting, we would also like generate labels for possibly open
terms. The basic idea is that instead of considering simply the smallest context which
allows a reduction, we would like to calculate both a smallest context and the most
general parameter at the same time. We discuss a reasonable universal property, the
locally universal hexagon, or lux, referred to by Sewell [15] as hex-RPO. These can be
used to generate a labelled transition system with information about both contexts and
parameters, reminiscent of work on tile systems [2].

In order to understand this universal property, we consider its relationship with slice
pushouts and coslice pullbacks in the underlying category. It is convenient to work in
slices of the so-called twisted arrow category. We show in Theorem 1 that a category has
luxes if and only if it has slice pushouts, coslice pullbacks and these ‘commute.’ This
result allows us isolate sufficient conditions for luxes to exist. Assuming that the under-
lying category has mono arrows, we show that bisimilarity is a congruence. Finally, we
examine how the theory generalises to G-categories.

Definition 3 (Open reactive system). An open reactive system C is a triple 〈C,D,R〉
consisting of:

– a category C with a distinguished object 0 – we shall usually refer to its arrows as
contexts and, specifically, to the arrows with domain 0 as terms;

– a composition reflecting subcategory D of C – the arrows of D are termed evalua-
tion contexts;

– a set R of pairs of arrows of C, so that if 〈l, r〉 ∈ R, then the domains and codomains
of l and r are equal – we shall refer to R as the set of reduction rules.

Given an open reactive system C, one can define a reduction relation on the terms
of C as follows: a � a′ if a = dlx and a′ = drx for some d ∈ D, x ∈ C, and 〈l, r〉 ∈ R.

We shall refer to commutative diagrams such as the one illustrated if Figure 2 as
commutative hexagons, or simply hexagons. The following universal property defines
locally universal hexagons, or luxes.

40 B. Klin, V. Sassone, and P. Sobociński

W

C

c
��������

D

d
��������

A

p
��

B

q

��

V
a

�������� b

��������

Fig. 2. A hexagon

Definition 4 (Luxes). A locally universal hexagon (lux) for the hexagon of Fig. 2 is a
hexagon that factors through it (cf. diagram i), and that additionally satisfies a universal
property:

for any other such hexagon (cf. diagram ii), there exist unique h′′ : Y → Y′ and
z′′ : X′ → X such that diagram (iii) is commutative, h = h′h′′ and z = z′′z′.

W

C

c
��������

f
		 Y

h

��

Dg
��

d
��������

A

p
��

X
x��

y
		 B

q
��

V

z
��

a

�������� b

��������

(i)

W

C

c
��������

f ′
		 Y′

h′
��

D
g′

��

d
��������

A

p
��

X′
x′��

y′
		 B

q
��

V

z′
��

a

�������� b

��������

(ii)

Y′

C

f ′ ��������
f

		 Y

h′′
��

Dg
��

g′��������

A

p
��

X
x��

y
		 B

q
��

X′
z′′
��

x′

�������� y′

��������

(iii)

We denote the lux of diagram (i) above as (p) f
x

g
y(q).

We shall say that a category C has luxes if every hexagon has a lux. As was the case
for IPOs, in categories with luxes one does not need to know which hexagon is a lux
for: if a hexagon is a lux, then it is such for all hexagons through which it factors. This
property, analogous to Lemma 3, will be proved formally as Lemma 7 below.

In order obtain first intuitions about luxes, let us consider a very simple example.
Below we denote string concatenation by; noted in diagrammatic order (i.e., left-to-
right).

Example 4. Consider a free monoid over an alphabet Σ viewed as a category S with one
object. Then luxes exist in S. Consider a hexagon as in Fig. 2, where a; p; c = b; q; d.
Let h be the largest suffix common to c and d, then there exist words f and g so that
c = f ; h and d = g; h. Similarly, let z be the largest prefix common to a and b, then
there exist words x and y so that z; x = a and z; y = b. Clearly x; p; f = t; q; g and it is
straightforward to check that the universal property holds. We now fix Σ = {a, b} and
illustrate several examples of luxes in S in Fig. 3.

Labels from Reductions: Towards a General Theory 41

���
�����

a
��

a
��

�����

���

b

���
�����

a
��

ab
��

�����

���

���
�����

ab
��

b
��

�����
a

���

���
a�����

�� ��

a

�����

���

Fig. 3. Luxes in a free monoid

Armed with the notion of lux, we are ready to define a labelled transition system on
possibly open terms.

Definition 5 (LTS). Given an open reactive system C, an LTS can be derived as fol-
lows:

– nodes are arbitrary arrows a : A → C – i.e., domain does not need to be 0: terms
are possibly open;

– there is a transition a f
x � b whenever there exist 〈l, r〉 ∈ R and a lux

f

���
g�����

a
��

l
��

x

�����
y

���

such that b = gry – thanks to Lemma 7 below, this is well given.

5 Properties of Locally Universal Hexagons

In order to study the properties of luxes, it is convenient to work in twisted arrow cat-
egories, that we introduce below. Here we give their definition from [6], and examine
some of its basic properties. We mention that the category can be concisely described
as the category of elements for the homfunctor C(−,−) : Cop × C→ Set.

Definition 6 (Twisted Arrow Categories). Given a category C, the twisted arrow cat-
egory Tw(C) has

– objects: the arrows of C;
– arrows: an arrow from f : A → B to f ′ : A′ → B′ consists of arrows p : B → B′

and q : A′ → A such that p f q = f ′; in other words, an arrow from f to f ′ is a
factorisation of f ′ through f , as in the diagram below.

B
c 		 B′

A

f
��

A′a
��

f ′
��

In symbols, we shall use f
c
↽⇀

a
f ′ to denote such an arrow of Tw(C).

42 B. Klin, V. Sassone, and P. Sobociński

As promised, the twisted arrow category gives us a simplified setting in which we
may consider the universal property of luxes. Indeed, our first observation is that hexes
are in 1-1 correspondence with cospans

p
c
↽⇀

a
r

d
↽⇀

b
q

in Tw(C), where cpa = r = dqb. Secondly, it is easily verified that luxes are precisely
the coproduct diagrams in slices of Tw(C).

Proposition 2. A lux is a hexagon in C that results from a coproduct diagram in the
slice category Tw(C)/r.

Notice that we explicitly talk about the coproduct diagram (as opposed to object),
which includes the cospan formed by the coproduct coprojections.

The following lemma justify us referring to locally universal hexagons (without
mentioning which hexagon it is universal with respect to). Thus, when talking about
categories with luxes, we shall often abuse notation – in contrast with §3 where we
distinguished between slice pushouts and IPOs and coslice pullbacks and IPBs.

Lemma 7. In a category with luxes, if a hexagon factors through a lux (possibly for
another hexagon) then it is a lux for that hexagon.

Proof. We know that a category has luxes iff every slice Tw(C)/r has coproducts. It
is straightforward to verify that, given an arbitrary category C, when every slice has

coproducts, if 〈A, a〉 f
		 〈C, c〉 〈D, d〉g

�� is a coproduct diagram in C/X, then for any
X′ ∈ C with a′ : A → X′, b′ : B → X′ and c′ : C → X′ such that a′ = c′ f and b′ = c′g

〈A, a′〉 f
		 〈C, c′〉 〈D, d′〉g

�� is a coproduct diagram in C/X′.

In order to obtain further insights into luxes, we shall explore the relationship be-
tween slices of Tw(C) and the category of factorisations of Definition 2.

First we notice that there is a faithful functor I : V/C → Tw(C) which is the first

projection on objects and takes an arrow h : 〈p, P〉 → 〈q,Q〉 to p
h
↽⇀

id
q. Similarly, there

is a functorJ : (C/W)op → Tw(C) which takes h : 〈P, p′〉 → 〈Q, q′〉 to q′
id
↽⇀

h
p′.

Both Fact(C, r) and Fact(C, r)op can be seen as full subcategories of Tw(C) via the
functors I/r : Fact(C, r)→ Tw(C)/r and J/r : Fact(C, r)op → Tw(C)/r. Observe that
the second functor is well defined, since (C/W)op/ 〈V, r〉 � (〈V, r〉 /(C/W))op, for all
categories C and arrows r : V → W in it. We illustrate the actions of I/r and J/r in
Fig. 4.

Lemma 8. I/r andJ/r have left adjoints, respectivelyΦ : Tw(C)/r→ Fact(C, r) and
Ψ : Tw(C)/r→ Fact(C, r)op.

It is useful for us to examine the functors Φ and Ψ in more detail. The action of Φ on
objects and arrows of Tw(C)/r is shown in Fig. 5. Note that Φ ◦ I/r = idFact(C,r) and
Ψ ◦ J/r = idFact(C,r)op . In fact, Lemma 8 states that both Fact(C, r) and its opposite are
full reflective subcategories of Tw(C)/r.

Labels from Reductions: Towards a General Theory 43

I/r : Fact(C, r)→ Tw(C)/r

V
a
��

r

��
		

		
	

A
f
		 W

→
V

a 		 A
f
��

V

id

��

r
		 W

V
a

����
�� b

��
��

��

r

��

A

f ��
��

��
h 		 B

g����
��

W

→
V

a

��

V
id��

b

��

V
id

�����
id

�����

r
��

A

f ��
��

�
h 		 B

g����
�

W

J/r : Fact(C, r)op → Tw(C)/r

V
a
��

r

��	
		

		

A
f
		 W

→
A

f
		 W

id
��

V

a

��

r
		 W

V
a

����
�� b

��
��

��

r

��

A

f ��
��

��
h 		 B

g����
��

W

→
B

g

��

A
h��

f

��

V
b

�����
a

�����

r
��

W

id ��
��

�
id 		 W

id����
�

W

Fig. 4. I/r and J/r on objects and arrows

Φ : Tw(C)/r → Fact(C, r)

A
f
		 B

p
��

V

q
��

r
		 W

→
V

f q
��

r

��
		

		
	

B p
		 W

A

f

��

A′
y

��

f ′

��

V
q

�����
q′
�����

r
��

B

p ��
��

�
x 		 B′

p′����
�

W

→
V

f q

����
�� f ′q′

��
��

��

r

��

B

p ��
��

��
x 		 B′

p′����
��

W

Ψ : Tw(C)/r → Fact(C, r)op

A
f
		 B

p
��

V

q
��

r
		 W

→
V

q
��

r

��
		

		
	

A
p f
		 W

A

f

��

A′
y

��

f ′

��

V
q

�����
q′
�����

r
��

B

p ��
��

�
x 		 B′

p′����
�

W

→
V

q′

����
�� q

��
��

��

r

��

A′

p′ f ′ ��
��

��
y
		 A

p f����
��

W

Fig. 5. Φ and Ψ on objects and arrows

W

Y
h
��

P

c

��

f ��������
Q

g��������

d

��

X
x

�������� y

��������

V

z
��a

��

b

Fig. 6. Commutativity of slice pushouts and coslice pullbacks

Corollary 1. Coproducts in Tw(C)/r map via Φ to coproducts in Fact(C, r), and thus
to coproducts in 〈V, r〉 /(C/W), which are pushouts in C/W.

44 B. Klin, V. Sassone, and P. Sobociński

Corollary 2. Coproducts in Tw(catC)/r map via Ψ to products in Fact(C, r), and thus
to products in (V/C)/ 〈r,W〉 which are pullbacks in V/C.

Lemma 9. A diagram (i) is a coproduct diagram of p
c
↽⇀

a
r and q

d
↽⇀

b
r in Tw(C)/r

iff (1) diagram (ii) is a pushout in C/W, and (2) diagram (iii) is a pullback in V/C.

W

C

c
�����

f
		 Y

h

��

D

d
�������

g
��

A

p
��

X
x��

y
		

s
��

B

q
��

V
a

������� z
��

b

�������

��

r

		

(i)

Y

C

f

�����
D

g��					

V
pa

������� qb

�����

(ii)

W

A

cp �����
B

dq��					

X
x

��					 y

�����

(iii)

Proof. The only if direction is given by Corollaries 1 and 2. The if direction is easily
verified.

Note that Lemma 9 explicitly assumes that the resulting hex is commutative. Con-
sider for instance the following diagram in Set:

1

1

!!������
0

		 2

��

1
1

��

""������

1

��

1�� 		 1

��

0

��""������

!!������

The lower hexagon results from calculating a local pushout of 0 → 1 with itself in
Set/1 � Set, while the upper one from a local pullback of 1 → 1 with itself in 0/Set �
Set. Notice that the resulting inner hexagon is not commutative.

We shall say that slice pushouts and coslice pullbacks commute when, given a com-
mutative square (the outside of Fig. 6), constructing a pushout of a and b in C/W and a
pullback of c and d in V/C results in an inner commutative diagram (f x = gy).

Theorem 1. A category C has luxes iff it has slice pushouts, coslice pullbacks and these
commute.

Proof. If C has slice pushouts, coslice pullbacks and these commute, then one can
explicitly construct a lux, using the conclusions of Lemma 9, since it is easy to show
that the commutativity property ensures the commutativity of the resulting hexagon.

Conversely, if C has luxes then it is easy to show that it has slice pushouts, i.e.,
coproducts in Fact(C, r) and coslice pullbacks, i.e., products in Fact(C, r). Indeed, it is
enough to calculate the lux of the hexagon below:

Labels from Reductions: Towards a General Theory 45

W

A

c
��������

B

d
��������

A

id
��

B

id
��

V
a

�������� b

��������

Using the fact that Φ and Ψ preserve coproducts, the resulting lux maps via Φ to the
slice pushout of a and b in C/W and via Ψ to the coslice pullback of c and d in V/C.
The commutativity property follows directly.

As an immediate consequence, it follows that Set does not have luxes, since the
commutativity property is not satisfied.

When working in categories with luxes, we can use the conclusions of Lemma 9 to
obtain a characterisation of luxes in terms of IPOs and IPBs.

Lemma 10. In a category with luxes, a commutative diagram (i) is a lux iff diagram (ii)
is an IPO and diagram (iii) is an IPB.

Y

C

f
��������

D

g
��������

A

p
��

B

q
��

X
x

�������� y

��������

(i)

Y

C

f
��������

D

g
��������

X

px

��

qy

��

(ii)

Y

A

f p

##

B

gq

$$

X
x

""������ y

!!������

(iii)

It is useful to consider properties of C that ensure that slice pushouts and coslice
pullbacks commute. One obvious such property is that either all arrows of C are mono,
another is that all arrows of C are epi.

Corollary 3. The following conditions are each sufficient for the existence of luxes in
category C.

1. C has slice pushouts, slice pullbacks and all arrows are mono;
2. C has slice pushouts, slice pullbacks and all arrows are epi.

Theorem 2. Free PROPs have luxes. PAP has luxes.

Proof. It is easy shown by induction that all arrows in free PROPs, and all arrows in
PAP, are mono. This means that no two different terms can be made equal by putting
them in the same context. Then use Lemmas 1, 2, and 5.

46 B. Klin, V. Sassone, and P. Sobociński

Theorem 3 (Congruence). Suppose that C is an open reactive system. Let ∼ denote
bisimilarity on the LTS introduced in Definition 5.

If C has luxes and all arrows of C are mono, then ∼ is a congruence, in the sense that
if p ∼ q, then cp ∼ cq for all contexts c in C.

Proof. It is enough to show that { 〈cp, cq〉 | p ∼ q, c ∈ C } is a bisimulation.

Indeed, suppose that p ∼ q and cp f
x � p′. Then we can find a lux, illustrated as

the outside of diagram (i) below, where 〈l, r〉 ∈ R and p′ = gry.

(α)

f ##
h

��

c

��

(β)

f ′

g

%%

g′

$$!!!!!!!

p

��

l

��

x$$!!!!!!!
y ##

(i)

(α)

f ##
h

��

c

��

(γ)

f ′

hg′′
%%

g′′

$$!!!!!!!

q

��

l′

��

x$$!!!!!!!
y′ ##

(ii)

We now calculate a slice pushout of px and ly in diagram (i), resulting in f ′, g′ and
h such that h f ′ = f c and hg′ = g. Then (β) is an IPB and an IPO in the sense of

Lemma 10, using the Lemma yields that (β) is a lux. We obtain p f ′

x � g′ry

Since p ∼ q, also q f ′

x � q′ where q′ ∼ g′ry. Let (γ) be a lux responsible for the
transition, so that 〈l′, r′〉 ∈ R and q′ = g′′r′y′. Pasting the IPO (α) results in a hexagon

which is an IPO. Using the fact that h is mono, it is also an IPB. Thus cq f
x � hq′. But

p′ = gry = hg′ry, and since q′ ∼ g′ry′, the proof is complete.

Dually, the following holds.

Proposition 3. If C has luxes and all arrows of C are epi, then px ∼ qx for all x in C.

As a consequence of Theorem 2 and the fact that the arrows of free PROPs are
mono, the LTS obtained from Definition 5 for any reactive system over a free PROP
yields a congruent bisimilarity.

6 Structural Congruence as Invertible 2-Cells

In §3.5 we gave a rough description of how to generalise the concepts of IPOs and IPBs
to G-categories. Here we give a brief description of how to generalise the theory of
luxes. The definition of G-lux is simple to state.

Definition 7 (G-lux). Given a G-category C, the definition of Tw(C) can easily be ex-
tended to a G-category. The arrows are now twisted squares with a 2-cell, and the 2-cells
are 2-cells between the top and bottom components such that everything commutes. A
G-lux is a bicoproduct in pseudo-slice category Tw(C)/r.

Labels from Reductions: Towards a General Theory 47

An open G-reactive system is simply an open reactive system on a G-category, the
only extra requirement is for the subcategory of evaluation contexts to be full on the
2-dimensional structure.

Given a G-reactive system, it is easy to extend Definition 5 to generate an LTS using
G-luxes. One obtains a transition system with possibly open terms as states. It is also
possible to consider an LTS where the states are terms quotiented by isomorphism (or,
in process calculus terminology, structural congruence) – the congruence theorem holds
in both instances; see [17, Ch. 2] for details.

It is fairly straightforward to rework the theory presented in the previous section in
this more general setting, but we omit the details here. Using the concepts discussed in
§3.5, one obtains generalised versions of Theorem 1, Lemma 10 and Theorem 3. In the
latter, the mono requirement is replaced by a 2-categorical version which states that for
any arrow f and 2-cells α and β, if fα = fβ then α = β.

Proposition 4. PA2CP (cf. Example 3) has G-luxes.

Proof (sketch). The proof follows the general structure of those of Theorem 2 and
Lemma 2. To show that PA2CP has pseudo-slice bipushouts, consider a 2-cell α : t ⇒ t′
with decompositions t = ca, t′ = db. These decompositions correspond to monotonic
functions Λca, Λdb as sketched in the proof of Lemma 1. The following function on S t:

Λ1(ρ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if Λca(ρ) = 1 and Λdb(α(ρ)) = 1

2 if Λca(ρ) = 1 and Λdb(α(ρ)) = 2

3 if Λca(ρ) = 2

(where α : S t → S t′ is the bijection, induced by α, between positions in terms) defines a
decomposition t = xyz, and moreover z = a. Analogously one obtains a decomposition
t′ = x′y′z′, with z′ = b and x′ = x. These decompositions form the 1-cell part of the
required pseudo-slice bipushout square; to find the required 2-cells, proceed as in the
case of free monoids and permutations in [17].

Example 5. We can construct an open (G-)reactive system on PA2CP by letting the set
of reduction rulesR be the singleton consisting of the single rule 〈a.1 | a.2, 1 | 2〉. In the
following, we shall use P, Q and X as meta variables which stand for any closed term
(arrow 0→ 1) of PA2CP.

The subcategory of evaluation contexts is taken to be the smallest composition re-
flecting 2-full 2-subcategory which includes arrows of the form 〈1 | P〉 : 1 → 1. In
more intuitive terms, the non-evaluation contexts are precisely the contexts which have
a hole under a prefix.

In Fig. 7, we illustrate several examples of G-luxes, which in turn lead to labels of

the induced LTS. Thus, the top left diagram gives a transition 〈a.P, 1〉 1|a.2 � P | 1, the
next diagram leads to a transition a.P | 1

a.1
� P | 1. The next transition induced is

a.P | a.Q � P | Q, which can be seen as internal reduction since no external context
or parameter is required. In the second row, the first lux from the left demonstrates the
function of the 2-cells in PA2CP: here γ is the unique permutation a.P | a.Q | a.1 →
a.P | a.1 | a.Q. The label generated is 〈a.P | a.Q, 1〉 1|a.2 � a.P | a.1 | a.Q.

48 B. Klin, V. Sassone, and P. Sobociński

1

2

1|a.2 &&""""
1

''####

1

��〈a.P,1〉
��

2
a.1|a.2
��

1

''#### 〈P,1〉
&&""""

1

1

&&""""
1

''####

1

��a.P |1
��

2
a.1|a.2
��

1
a.1

''#### 〈P,1〉
&&""""

1

1

&&""""
1

''####

0

��a.P |a.Q
��

2
a.1|a.2
��

0

''#### 〈P,Q〉
&&""""

1

2

1|a.2 &&""""
1

1|a.Q''####

1

γ ��〈a.P |a.Q,1〉
��

2
a.1|a.2
��

1

''#### 〈P,1〉
&&""""

1

1

1|a.Q &&""""
1

''####

0

��a.P
��

2
a.1|a.2
��

0

''#### 〈P,Q〉
&&""""

1

1

1|a.P |a.Q &&""""
1

a.X|1''####

1

��a.1
��

2
a.1|a.2
��

0
X

''#### 〈P,Q〉
&&""""

Fig. 7. G-luxes in PA2CP

The final two diagrams illustrate what we believe is the main problem with luxes –
indeed, the problem can be observed already in the much simpler Example 4. Roughly,
while the universal property of luxes ensures that there is no redundant information in
the contexts and in the parameters, there may still be some overlap between contexts
and parameters. Indeed, consider the middle diagram of the second row of Fig. 7. The

lux leads to the transition a.P 1|a.Q � P | Q. However, the information in Q is not
necessary for this reduction, since it appears both in the context on the left and in the
parameter on the right. Unfortunately, since Q is arbitrary, this means that the resulting
LTS is infinitely branching. The final diagram is even more redundant, since no part
of the term is actually necessary for the reduction; now we have X appearing both as
a parameter an the left and as part of the context on the right, and P and Q appearing
both as the parameters on the right and as part of the context on the left. This diagram

induces the transition a.1 1|a.P |a.Q
X
� a.X | P | Q.

7 Towards a General Theory

Let us consider the following simple property, in order to rule out some of the ‘redun-
dant’ luxes identified in Example 5.

Definition 8 (Irredundant hexagon). A hexagon is said to be irredundant when there
exist k : A → D and l : B → D so that all regions of Fig. 8 are commutative; that is
lb = pa, cl = dq, ka = qb and dk = cp.

A lux is said irredundant when it is irredundant as a hexagon. The property can
be extended to cover G-luxes in the obvious way, that is, instead of commutativity one
requires the presence of compatible 2-cells.

Labels from Reductions: Towards a General Theory 49

W

C

c
��������

D

d
��������

A
k

(($$$$$$$$$$$$
p
��

B

%%%%%%l

))%%%%%%
q

��

V
a

�������� b

��������

Fig. 8. An irredundant hexagon

Example 6. Consider the luxes illustrated in Fig. 3 and discussed in Example 4. It is
easy to show that the first three diagrams are irredundant as hexes, but the final one is
not. Now consider the G-luxes illustrated in Fig. 7 and discussed in Example 5. Again,
all of the luxes apart from the middle and the right lux of the second row are irredundant.

Thus, by considering irredundant luxes, we eliminate the problematic luxes identi-
fied in our case studies. The obvious next steps are to alter the LTS definition so that
only irredundant luxes are taken into account, and to study bisimilarity on the resulting
structures. Alas, the simple-minded modification to Definition 5 will not do: the tech-
nique we use to prove our congruence results (viz., Theorem 3 and Proposition 3) does
not stand for irredundant luxes alone, as a lux that is a factor of an irredundant lux need
not be irredundant itself. Indeed, bisimilarity in general is not a congruence. Recalling
e.g. the reactive system of Example 5, and consider the possible labels of transitions
with domains of the form a.P. If a reduction involves a.P, then it must occur in context
with an output a.Q, for some Q; this introduces redundancy, as Q must arise as a pa-
rameter that instantiates the reduction rule. Thus a.P has no irredundant labels, which
implies a.P ∼ b.P, for all a � b. But a.P can reduce in the presence of an output on a
while b.P cannot, and so congruence is broken. As future work, we plan to study ways
of deriving transition systems for open terms that at the same time carry no redundancy
in the labels, and are sufficient for coinductive reasoning.

In any case, we feel that the framework for deriving labelled transition systems from
reductions is still in its infancy, and requires further development. Our ultimate goal is
an abstract method that, when applied to the standard reduction system of a calculus
like, say, the π-calculus, yields a labelled transition system on which bisimilarity is a
congruence, and moreover: (1) gives rise to feasible coinductive techniques, and (2)
is fully abstract with respect to standard equivalences defined in terms of contextual
closures (such as barbed congruence). The final theory will necessarily involve a satis-
factory treatment of variables, parameters and parametric rules. We believe that luxes
and irredundancy, introduced in this paper, shall serve as important tools in our future
research on ‘labels from reductions.’

References

1. H. Ehrig and B. König. Deriving bisimulation congruences in the DPO approach to graph
re writing. In Proceedings of FoSSaCS’04, 7th International Conference on Foundations of
Software Science and Computation Structures, volume 2987 of LNCS, pages 151–166, 2004.

50 B. Klin, V. Sassone, and P. Sobociński

2. F. Gadducci and U. Montanari. The tile model. In G. Plotkin, C. Stirling, and M. Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin Milner, pages 133–
166. MIT Press, 2000.

3. O. H. Jensen and R. Milner. Bigraphs and mobile processes. Technical Report 570, Univer-
sity of Cambridge, 2003.

4. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. In Inter-
national Conference on Concurrency Theory, CONCUR’00, volume 1877 of LNCS, pages
243–258, 2000.

5. S. Mac Lane. Categorical algebra. Bulletin of the American Mathematical Society, 71:40–
106, 1965.

6. S. Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer Verlag, 2nd edition, 1992.

7. R. Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996.
8. R. Milner. Bigraphical reactive systems. In International Conference on Concurrency The-

ory, CONCUR’01, volume 2154 of LNCS, pages 16–35, 2001.
9. R. Milner. Bigraphs for Petri nets. In Lectures on Concurrency and Petri Nets 2003, volume

3098 of Lecture Notes in Computer Science, pages 686–701, 2004.
10. G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,

Aarhus University, Computer Science Department, 1981.
11. V. Sassone and P. Sobociński. Deriving bisimulation congruences using 2-categories. Nordic

Journal of Computing, 10(2):163–183, 2003.
12. V. Sassone and P. Sobociński. A congruence for Petri nets. In Workshop on Petri Nets and

Graph Transformation, volume 127 of ENTCS, pages 107–120, 2005.
13. V. Sassone and P. Sobociński. Locating reaction with 2-categories. Theoretical Computer

Science, 333(1-2):297–327, 2005.
14. V. Sassone and P. Sobociński. Reactive systems over cospans. Proceedings of Logics in

Computer Science, LICS 2005, IEEE Press 2005.
15. P. Sewell. Working notes PS15–PS19, 2000. Unpublished notes.
16. P. Sewell. From rewrite rules to bisimulation congruences. Theoretical Computer Science,

274(1–2):183–230, 2002.
17. P. Sobociński. Deriving process congruences from reaction rules. PhD thesis, BRICS, Uni-

versity of Aarhus, 2004.

Adequacy for Algebraic Effects with State

Gordon Plotkin�

Laboratory for the Foundations of Computer Science,
School of Informatics, University of Edinburgh,
King’s Buildings, Edinbursgh EH9 3JZ, Scotland

gdp@inf.ed.ac.uk

Abstract. In previous work we gave an operational semantics and ade-
quacy theorem for algebraic effects in programming languages. This cov-
ered finitary algebraic operations, thereby accommodating ordinary and
probabilistic nondeterminism, output, and exceptions (but without han-
dling), together with their combinations. With some extra effort, infini-
tary operations can also be covered, thereby also accommodating input
and state. However one does not thereby obtain the natural operational
semantics for state, which employs configurations of programs and states.
We propose instead to consider the natural coalgebra of states given by
the update and lookup operations; this coalgebra is the final comodel
of the Lawvere theory for state. We therefore give an account integrat-
ing coalgebras given by comodels of Lawvere theories into the algebraic
theory of effects. The coalgebras are used for the dynamics of the state
component of the configurations.

� This work was done with the support of EPSRC grants GR/M56333 and
GR/S86372/01.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, p. 51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bisimilarity Is Not Finitely Based
over BPA with Interrupt

Luca Aceto1,3, Wan Fokkink4, Anna Ingolfsdottir1,2, and Sumit Nain1

1 Brics (Basic Research in Computer Science),
Centre of the Danish National Research Foundation,

Department of Computer Science, Aalborg University,
Fr. Bajersvej 7B, 9220 Aalborg Ø, Denmark
{luca, annai, nain}@cs.aau.dk

2 Department of Computer Science, University of Iceland, 107 Reykjavı́k, Iceland
annaing@hi.is

3 School of Computer Science, Reykjavı́k University, Ofanleiti 2, 103 Reykjavı́k, Iceland
luca@ru.is

4 Vrije Universiteit Amsterdam, Department of Computer Science,
Section Theoretical Computer Science, De Boelelaan 1081a,

1081 HV Amsterdam, The Netherlands
wanf@cs.vu.nl

Abstract. This paper shows that bisimulation equivalence does not afford a finite
equational axiomatization over the language obtained by enriching Bergstra and
Klop’s Basic Process Algebra with the interrupt operator. Moreover, it is shown
that the collection of closed equations over this language is also not finitely based.
In sharp contrast to these results, the collection of closed equations over the lan-
guage BPA enriched with the disrupt operator is proven to be finitely based.

1 Introduction

Programming and specification languages often include constructs to specify mode
switches (see, e.g., [8,11,23,24,26]). Indeed, some form of mode transfer in compu-
tation appears in the time-honoured theory of operating systems in the guise of, e.g.,
interrupts, in programming languages as exceptions, and in the behaviour of control
programs and embedded systems as discrete “mode switches” triggered by changes in
the state of their environment.

In light of the ubiquitous nature of mode changes in computation, it is not sur-
prising that classic process description languages either include primitive operators to
describe mode changes—for example, LOTOS [15,23] offers the so-called disruption
operator—or have been extended with variations on mode transfer operators. For in-
stance, examples of such operators that may be added to CCS are discussed by Milner
in [25, pp. 192–193], and the reference [17] offers some discussion of the benefits of
adding one of those, viz. the checkpointing operator, to that language.

In the setting of Basic Process Algebra (BPA), as introduced by Bergstra and Klop
in [12], some of these extensions, and their relative expressiveness, have been discussed
in the early paper [11]. That preprint of Bergstra’s has later been revised and extended

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 52–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bisimilarity Is Not Finitely Based over BPA with Interrupt 53

in [7]. There, Baeten and Bergstra study the equational theory and expressiveness of
BPAδ (the extension of BPA with a constant δ to describe “deadlock”) enriched with
two mode transfer operators, viz. the disrupt and interrupt operators. In particular, they
offer an equational axiomatization of bisimulation equivalence [25,29] over the result-
ing extension of the language BPAδ . This axiomatization is finite, if so is the underlying
set of actions—a state of affairs that is most pleasing for process algebraists.

However, the axiomatization of bisimulation equivalence offered by Baeten and
Bergstra in [7] relies on the use of four auxiliary operators—two per mode transfer oper-
ator. Although the use of auxiliary operators in the axiomatization of behavioral equiva-
lences over process description languages has been well established since Bergstra and
Klop’s axiomatization of parallel composition using the left and communication merge
operators [13], to our mind, a result like the aforementioned one always begs the ques-
tion whether the use of auxiliary operators is necessary to obtain a finite axiomatization
of bisimulation equivalence.

For the case of parallel composition, Moller showed in [27,28] that strong bisimula-
tion equivalence is not finitely based over CCS [25] and PA [13] without the left merge
operator. (The process algebra PA [13] contains a parallel composition operator based
on pure interleaving without communication, and the left merge operator.) Thus aux-
iliary operators are necessary to obtain a finite axiomatization of parallel composition.
But, is the use of auxiliary operators necessary to give a finite axiomatization of bisim-
ulation equivalence over the language BPA enriched with the mode transfer operators
studied by Baeten and Bergstra in [7]?

We address the above natural question in this paper. In particular, we focus on BPA
enriched with the interrupt operator. Intuitively, “p interrupted by q” describes a process
that normally behaves like p. However, at each point of the computation before p ter-
minates, q can interrupt it, and begin its execution. If this happens, p resumes its com-
putation upon termination of q.

We show that, in the presence of two distinct actions, bisimulation equivalence is
not finitely based over BPA with the interrupt operator. Moreover, we prove that the
collection of closed equations over this language is also not finitely based. This re-
sult provides evidence that the use of auxiliary operators in the technical developments
presented in [7] is indeed necessary in order to obtain a finite axiomatization of bisim-
ulation equivalence.

Our main result adds the interrupt operator to the list of operators whose addition to
a process algebra spoils finite axiomatizability modulo bisimulation equivalence; see,
e.g., [4,3,14,16,20,30,31] for other examples of non-finite axiomatizability results over
process algebras, and some of their precursors in the setting of formal language theory.
Of special relevance for concurrency theory are the aforementioned results of Moller’s
to the effect that the process algebras CCS and PA without the auxiliary left merge
operator from [12] do not have a finite equational axiomatization modulo bisimulation
equivalence [27,28]. Recently, in collaboration with Luttik, the first three authors have
shown in [5] that the process algebra obtained by adding Hennessy’s merge operator
from [22] to CCS does not have a finite equational axiomatization modulo bisimulation
equivalence. This result is in sharp contrast with a theorem established by Fokkink and
Luttik in [18] to the effect that the process algebra PA [13] affords an ω-complete ax-

54 L. Aceto et al.

iomatization that is finite if so is the underlying set of actions. Aceto, Ésik and Ingolfs-
dottir proved in [2] that there is no finite equational axiomatization that is ω-complete
for the max-plus algebra of the natural numbers, a result whose process algebraic impli-
cations are discussed in [1]. Fokkink and Nain have shown in [19] that no congruence
over the language BCCSP, a basic formalism to express finite process behaviour, that is
included in possible worlds equivalence, and includes ready trace equivalence, affords
a finite ω-complete equational axiomatization.

The paper is organized as follows. We begin by presenting the language BPA with
the interrupt operator, its operational semantics and preliminaries on equational logic
in Section 2. There we also show that the interrupt operator is not definable in BPA
modulo bisimilarity. The general structure of the proof of our main result, to the effect
that bisimilarity is not finitely based over the language we consider in this paper, is
presented in Section 3. In that section, we also show how to reduce the proof of our main
result to that of a technical statement describing a key property of closed instantiations
of sound equations that is preserved under equational derivations (Proposition 3). We
conclude the paper by showing in Section 4 that, in sharp contrast to the main result
of the paper, the use of auxiliary operators is not necessary in order to obtain a finite
axiomatization of bisimulation equivalence over closed terms in the language obtained
by enriching BPA with the disrupt operator from [7].

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical de-
velopments to follow are based. The interested reader is referred to [7,12] for more
information.

2.1 The Language BPAint

We assume a non-empty alphabet A of atomic actions, with typical elements a, b. The
language for processes we shall consider in this paper, henceforth referred to as BPAint,
is obtained by adding the interrupt operator from [7] to Bergstra and Klop’s BPA [12].
This language is given by the following grammar:

t ::= x | a | t · t | t + t | t � t ,

where x is a variable drawn from a countably infinite set V and a is an action. In the
above grammar, we use the symbol � for the interrupt operator. We shall use the meta-
variables t, u, v, w to range over process terms, and write var(t) for the collection of
variables occurring in the term t. The size of a term is the number of operator symbols
in it. A process term is closed if it does not contain any variables. Closed terms will be
typically denoted by p, q, r, s. As usual, we shall often write tu in lieu of t · u, and we
assume that · binds stronger than +.

A (closed) substitution is a mapping from process variables to (closed) BPAint terms.
For every term t and substitution σ, the term obtained by replacing every occurrence of
a variable x in t with the term σ(x) will be written σ(t). Note that σ(t) is closed, if so is
σ. In what follows, we shall use the notation σ[x → p], where σ is a closed substitution

Bisimilarity Is Not Finitely Based over BPA with Interrupt 55

and p is a closed BPAint term, to stand for the substitution mapping x to p, and acting
like σ on all of the other variables in V .

In the remainder of this paper, we let a1 denote a, and am+1 denote a(am). Moreover,
we consider terms modulo associativity and commutativity of +. In other words, we do
not distinguish t+u and u+t, nor (t+u)+v and t+(u+v). This is justified because + is
associative and commutative with respect to the notion of equivalence we shall consider
over BPAint. (See axioms A1, A2 in Table 3.) In what follows, the symbol = will denote
equality modulo associativity and commutativity of +.

We say that a term t has + as head operator if t = t1 + t2 for some terms t1 and t2.
For example, a + b has + as head operator, but (a + b)a does not.

For k ≥ 1, we use a summation
∑

i∈{1,...,k} ti to denote t1 + · · ·+ tk. It is easy to
see that every BPAint term t has the form

∑
i∈I ti, for some finite, non-empty index set

I , and terms ti (i ∈ I) that do not have + as head operator. The terms ti (i ∈ I) will be
referred to as the (syntactic) summands of t. For example, the term (a + b)a has only
itself as (syntactic) summand.

The operational semantics for the language BPAint is given by the labelled transition
system (

BPAint,
{

a→| a ∈ A
}
,
{

a→� | a ∈ A
})

,

where the transition relations
a→ and the unary predicates

a→� are, respectively, the
least subsets of BPAint ×BPAint and BPAint satisfying the rules in Table 1. Intuitively, a
transition t

a→ u means that the system represented by the term t can perform the action
a, thereby evolving into u. The special symbol � stands for (successful) termination;
therefore the interpretation of the statement t

a→� is that the process term t can ter-
minate by performing a. Note that, for every closed term p, there is some action a for
which either p

a→ p′ holds for some p′, or p
a→� does.

For terms t, u, and action a, we say that u is an a-derivative of t if t
a→ u.

Table 1. Transition Rules for BPAint

a
a→�

t
a→�

t + u
a→�

u
a→�

t + u
a→�

t
a→ t′

t + u
a→ t′

u
a→ u′

t + u
a→ u′

t
a→�

t · u
a→ u

t
a→ t′

t · u
a→ t′ · u

t
a→�

t � u
a→�

t
a→ t′

t � u
a→ t′ � u

u
a→�

t � u
a→ t

u
a→ u′

t � u
a→ u′ · t

The transition relations
a→ naturally compose to determine the possible effects that

performing a sequence of actions may have on a BPAint term.

56 L. Aceto et al.

Definition 1. For a sequence of actions a1 · · · ak (k ≥ 0), and BPAint terms t, t′, we
write t

a1···ak−→ t′ iff there exists a sequence of transitions

t = t0
a1→ t1

a2→ · · · ak→ tk = t′ .

Similarly, we say that a1 · · ·ak (k ≥ 1) is a termination trace of a BPAint term t iff there
exists a term t′ such that

t
a1···ak−1−→ t′

ak→� .

If t
a1···ak−→ t′ holds for some BPAint term t′, or a1 · · · ak is a termination trace of t,

then a1 · · ·ak is a trace of t.
The depth of a term t, written depth(t), is the length of the longest trace it affords.
The norm of a term t, denoted by norm(t), is the length of its shortest termination

trace; this notion stems from [9].

The depth and the norm of closed terms can also be characterized inductively thus:

depth(a) = 1
depth(p + q) = max{depth(p), depth(q)}

depth(pq) = depth(p) + depth(q)
depth(p � q) = depth(p) + depth(q)

norm(a) = 1
norm(p + q) = min{norm(p),norm(q)}

norm(pq) = norm(p) + norm(q)
norm(p � q) = norm(p) .

Note that the depth and the norm of each closed BPAint term are positive.
In what follows, we shall sometimes need to consider the possible origins of a tran-

sition of the form σ(t) a→ p, for some action a, closed substitution σ, BPAint term t and
closed term p. Naturally enough, we expect that σ(t) affords that transition if t

a→ t′,
for some t′ such that p = σ(t′). However, the above transition may also derive from
the initial behaviour of some closed term σ(x), provided that the collection of initial
moves of σ(t) depends, in some formal sense, on that of the closed term substituted for
the variable x. Similarly, we shall sometimes need to consider the possible origins of
a transition of the form σ(t) a→�, for some action a, closed substitution σ and BPAint

term t.
To fully describe these situations, we introduce the auxiliary notion of configuration

of a BPAint term. To this end, we assume a set of symbols

Vd = {xd | x ∈ V }

disjoint from V . Intuitively, the symbol xd (read “during x”) will be used to denote
that the closed term substituted for variable x has begun executing, but has not yet
terminated.

Definition 2. The collection of BPAint configurations is given by the following gram-
mar:

c ::= t | xd | c · t | c � t ,

where t is a BPAint term, and xd ∈ Vd.

Bisimilarity Is Not Finitely Based over BPA with Interrupt 57

For example, the configuration xd · (a � x) is meant to describe a state of the computa-
tion of some term in which the (closed term substituted for the) occurrence of variable x
on the left-hand side of the · operator has begun its execution (and has not terminated),
but the one on the right-hand side has not. Note that each configuration contains at most
one occurrence of an xd ∈ Vd.

We shall consider the symbols xd as variables, and use the notation σ[xd → p],
where σ is a closed substitution and p is a closed BPAint term, to stand for the substitu-
tion mapping xd to p, and acting like σ on all of the other variables.

Table 2. SOS Rules for the Auxiliary Transitions
x→,

xs→ and
x→� (x ∈ V)

x
xs→ xd x

x→�

t
x→ t′

t + u
x→ t′

t
xs→ c

t + u
xs→ c

t
x→�

t + u
x→�

u
x→ u′

t + u
x→ u′

u
xs→ c

t + u
xs→ c

u
x→�

t + u
x→�

t
x→ t′

tu
x→ t′u

t
xs→ c

tu
xs→ cu

t
x→�

tu
x→ u

t
x→ t′

t � u
x→ t′ � u

t
xs→ c

t � u
xs→ c � u

t
x→�

t � u
x→�

u
x→ u′

t � u
x→ u′t

u
xs→ c

t � u
xs→ ct

u
x→�

t � u
x→ t

The way in which the initial behaviour of a term may depend on that of the vari-
ables that occur in it is formally described by three auxiliary transition relations whose
elements have the following forms:

– t
xs→ c (read “t can start executing x and become c in doing so”), where t is a term,

x is a variable, and c is a configuration,
– t

x→ t′, where t and t′ are terms and x is a variable, or
– t

x→�, where t is a term.

The first of these types of transitions will be used to account for those transitions of the
form σ(t) a→ p that are due to a-labelled transitions of the closed term σ(x) that do not
lead to its termination. The second will describe the origin of transitions of the form
σ(t) a→ σ(t′) that are due to a-labelled transitions of the closed term σ(x) that lead to
its termination. Finally, transitions of the third kind will allow us to describe the origin
of termination transitions of the form σ(t) a→� that are due to a-labelled termination
transitions of the closed term σ(x).

The SOS rules defining these transitions are given in Table 2. In those rules, the
meta-variables t, u, t′ and u′ denote BPAint terms, and c ranges over the collection of
configurations that contain one occurrence of a symbol of the form xd. The attentive

58 L. Aceto et al.

reader might have already noticed that the left-hand sides of the rules in Table 2 are
always BPAint terms, and therefore that no transitions are possible from configurations
that contain one occurrence of a symbol of the form xd. This is in line with our aim in
defining the auxiliary transition relations

x→,
xs→ and

x→� (x ∈ V), viz. to describe the
possible origins of the initial transitions of a term of the form σ(t), with t a BPAint term
and σ a closed substitution.

Lemma 1. For each BPAint term t, configuration c and variable x, if t
xs→ c, then xd

occurs in c. Moreover, if c = xd then x is a summand of t.

The precise connection between the transitions of a term σ(t) and those of t is expressed
by the following lemma.

Lemma 2 (Operational Correspondence). Assume that t is a BPAint term, σ is a
closed substitution and a is an action. Then the following statements hold:

1. If t
a→�, then σ(t) a→�.

2. If t
x→� and σ(x) a→�, then σ(t) a→�.

3. If t
x→ t′ and σ(x) a→�, then σ(t) a→ σ(t′).

4. Assume that t
xs→ c and σ(x) a→ p, for some closed term p. Then

σ(t) a→ σ[xd → p](c) .

5. If t
a→ t′, then σ(t) a→ σ(t′).

6. Assume that σ(t) a→�. Then either t
a→� or there is a variable x such that t

x→�
and σ(x) a→�.

7. Assume that σ(t) a→ p, for some closed term p. Then one of the following possibil-
ities applies:

– t
x→ t′, σ(x) a→� and p = σ(t′), for some term t′ and variable x,

– t
a→ t′ for some term t′ such that p = σ(t′), or

– t
xs→ c and σ(x) a→ q, for some variable x, configuration c and closed term q

such that σ[xd → q](c) = p.

In this paper, we consider the language BPAint modulo bisimulation equivalence [29].

Definition 3. Two closed BPAint terms p and q are bisimilar, denoted by p↔ q, if there
exists a symmetric binary relation B over closed BPAint terms which relates p and q,
such that:

- if r B s and r
a→ r′, then there is a transition s

a→ s′ such that r′ B s′;
- if r B s and r

a→�, then s
a→�.

Such a relation B will be called a bisimulation. The relation ↔ will be referred to as
bisimulation equivalence or bisimilarity.

It is well known that ↔ is an equivalence relation [29]. Moreover, the transition rules
in Table 1 are in the ‘path’ format of Baeten and Verhoef [10]. Hence, bisimulation
equivalence is a congruence with respect to all the operators in the signature of BPAint.

Note that bisimilar closed BPAint terms afford the same finite non-empty collection
of (termination) traces, and therefore have the same norm and depth.

Bisimulation equivalence is extended to arbitrary BPAint terms thus:

Bisimilarity Is Not Finitely Based over BPA with Interrupt 59

Definition 4. Let t, u be BPAint terms. Then t ↔ u iff σ(t) ↔ σ(u) for every closed
substitution σ.

For instance, we have that
x � y ↔ (x � y) + yx

because, as our readers can easily check, the terms p � q and (p � q) + qp have the
same set of initial “capabilities”, i.e.,

p � q
a→ r iff (p � q) + qp

a→ r , for each a and r, and
p � q

a→� iff (p � q) + qp
a→�, for each a .

It is natural to expect that the interrupt operator cannot be defined in the language BPA
modulo bisimulation equivalence. This expectation is confirmed by the following sim-
ple, but instructive, result:

Proposition 1. There is no BPAint term t such that t does not contain occurrences of
the interrupt operator, and t↔ x � y.

Proof. Assume, towards a contradiction, that t is a BPAint term such that t does not
contain occurrences of the interrupt operator, and t↔ x � y.

Consider the closed substitution σa mapping each variable to a. Since

σa(t)↔ a � a and a � a
a→� ,

we have that σa(t) a→�. Lemma 2(6) yields that either t
a→� or there is a variable z

such that t
z→� and σa(z) a→�. We shall now argue that both of these possibilities

imply that t↔/ x � y, contradicting our assumption.
Indeed, using the former possibility and Lemma 2(1), we may infer that

σa[x → a2](t) a→� .

This implies that t ↔/ x � y, because a2 � a does not have termination traces of
length 1.

Assume now that there is a variable z such that t
z→� and σa(z) a→�. It is not

hard to see that t↔ z + u for some term u, since t does not contain occurrences of the
interrupt operator and t

z→�. We claim that

σa[x → a2](t)↔/ a2 � a .

If z �= x, our claim follows, because, reasoning as above,

σa[x → a2](t)↔ a + σa[x → a2](u) a→�

whereas a2 � a does not have termination traces of length 1.
If t↔ x + u, then σa[x → a2](t) a→ p for some p↔ a. On the other hand, the two

a-derivatives of a2 � a, namely a � a and a2, have depth 2, and thus neither of them
is bisimilar to a. �

60 L. Aceto et al.

2.2 Equational Logic
An axiom system is a collection of equations t ≈ u over the language BPAint. An
equation t ≈ u is derivable from an axiom system E, notation E � t ≈ u, if it can
be proven from the axioms in E using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under BPAint contexts):

t ≈ t
t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)

t ≈ u t′ ≈ u′

t + t′ ≈ u + u′
t ≈ u t′ ≈ u′

tt′ ≈ uu′
t ≈ u t′ ≈ u′

t � t′ ≈ u � u′ .

Without loss of generality one may assume that substitutions happen first in equational
proofs, i.e., that the rule

t ≈ u

σ(t) ≈ σ(u)

may only be used when (t ≈ u) ∈ E. In this case, the equation σ(t) ≈ σ(u) is called a
substitution instance of an axiom in E.

Moreover, by postulating that for each axiom in E also its symmetric counterpart is
present in E, one may assume that applications of symmetry happen first in equational
proofs. In the remainder of this paper, we shall tacitly assume that our equational axiom
systems are closed with respect to symmetry.

It is well-known (see, e.g., Sect. 2 in [21]) that if an equation relating two closed
terms can be proven from an axiom system E, then there is a closed proof for it.

Definition 5. An equation t ≈ u over the language BPAint is sound with respect to ↔
iff t↔ u. An axiom system is sound with respect to ↔ iff so is each of its equations.

An example of a collection of equations over the language BPAint that are sound with
respect to ↔ is given in Table 3. Those equations stem from [12]. Equations dealing
with the interrupt operator using two auxiliary operators are offered in [7].

Table 3. Some Axioms for BPAint

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 (x + y)z ≈ (xz) + (yz)
A5 (xy)z ≈ x(yz)

3 Bisimilarity Is Not Finitely Based over BPAint

Our order of business in the remainder of this paper will be to show the following
theorem:

Bisimilarity Is Not Finitely Based over BPA with Interrupt 61

Theorem 1. Bisimilarity is not finitely based over the language BPAint—that is, there is
no finite axiom system that is sound with respect to ↔, and proves all of the equations
t ≈ u such that t ↔ u. Moreover, the same holds true if we restrict ourselves to the
collection of closed equations over BPAint that hold modulo↔.

The above theorem is an immediate corollary of the following result:

Theorem 2. Let E be a finite collection of equations over the language BPAint that is
sound modulo↔. Let n > 2 be larger than the size of each term in the equations in E.
Then E does not prove the equation en, where the family of equations en (n ≥ 1) is
defined thus:

en :
(∑n

i=1 pi

)
� a ≈ b +

n∑
i=2

b((bi−1 + b) � a) + a

n∑
i=1

pi . (1)

In the above family, p1 = b and pi = b(bi−1 + b) for i > 1.

Observe that, for each n ≥ 1, the closed equation en is sound modulo bisimilarity. In-
deed, the left-hand and right-hand sides of the equation have isomorphic labelled transi-
tions systems. Therefore, as claimed above, Theorem 1 is an immediate consequence of
Theorem 2. In the remainder of this study, we shall offer a proof of Theorem 2. In order
to prove this theorem, it will be sufficient to establish the following technical result:

Proposition 2. Let E be a finite axiom system over the language BPAint that is sound
modulo bisimilarity. Let n > 2 be larger than the size of each term in the equations in
E. Assume, furthermore, that

– E � p ≈ q,
– p↔

(∑n
i=1 pi

)
� a and

– p has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Then q has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Indeed, assuming Proposition 2, we can prove Theorem 2, and therefore Theorem 1, as
follows.

Proof of Theorem 2: Assume that E is a finite axiom system over the language BPAint

that is sound modulo bisimilarity. Pick n > 2 and larger than the size of the terms in
the equations in E. Assume that, for some closed term q,

E �
(∑n

i=1 pi

)
� a ≈ q .

Using Proposition 2, we have that q has a summand bisimilar to
(∑n

i=1 pi

)
� a. Note

now that the summands of the right-hand side of equation en, viz.

b +
n∑

i=2

b((bi−1 + b) � a) + a
n∑

i=1

pi ,

are the terms

62 L. Aceto et al.

– b,
– b((bi−1 + b) � a), for some 2 ≤ i ≤ n, and
– a

∑n
i=1 pi.

Unlike
(∑n

i=1 pi

)
� a, none of these terms can initially perform both an a and a b

action. It follows that no summand of the right-hand side of equation en is bisimilar to(∑n
i=1 pi

)
� a, and thus that

q �= b +
n∑

i=2

b((bi−1 + b) � a) + a

n∑
i=1

pi .

We may therefore conclude that the axiom system E does not prove equation en,
which was to be shown. �

Our order of business will now be to provide a proof of Proposition 2. Our proof of
that result will be proof-theoretic in nature, and will proceed by induction on the depth
of equational derivations from a finite axiom system E. The crux in such an induction
proof is given by the following proposition, to the effect that the statement of Proposi-
tion 2 holds for closed instantiations of axioms in E.

Proposition 3. Let t ≈ u be an equation over the language BPAint that holds modulo
bisimilarity. Let σ be a closed substitution, p = σ(t) and q = σ(u). Assume that

– n > 2 and the size of t is smaller than n,
– p↔

(∑n
i=1 pi

)
� a and

– p has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Then q has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Indeed, let us assume for the moment that the above result holds. Using it, we can prove
Proposition 2 thus:

Proof of Proposition 2: Assume that E is a finite axiom system over the language
BPAint that is sound with respect to bisimulation equivalence, and that the following
hold, for some closed terms p and q and positive integer n > 2 that is larger than the
size of each term in the equations in E:

1. E � p ≈ q,
2. p↔

(∑n
i=1 pi

)
� a, and

3. p has a summand bisimilar to (
∑n

i=1 pi) � a.

We prove that q also has a summand bisimilar to
(∑n

i=1 pi

)
� a by induction on the

depth of the closed proof of the equation p ≈ q from E. Recall that, without loss of
generality, we may assume that applications of symmetry happen first in equational
proofs (that is, E is closed with respect to symmetry).

We proceed by a case analysis on the last rule used in the proof of p ≈ q from E.
The case of reflexivity is trivial, and that of transitivity follows immediately by using
the inductive hypothesis twice. Below we only consider the other possibilities.

Bisimilarity Is Not Finitely Based over BPA with Interrupt 63

– CASE E � p ≈ q, BECAUSE σ(t) = p AND σ(u) = q FOR SOME EQUATION

(t ≈ u) ∈ E AND CLOSED SUBSTITUTION σ. Since n > 2 is larger than the size
of each term mentioned in equations in E, the claim follows by Proposition 3.

– CASE E � p ≈ q, BECAUSE p = p′ + p′′ AND q = q′ + q′′ FOR SOME p′, q′, p′′, q′′

SUCH THAT E � p′ ≈ q′ AND E � p′′ ≈ q′′. Since p has a summand bisimilar
to

(∑n
i=1 pi

)
� a, we have that so does either p′ or p′′. Assume, without loss of

generality, that p′ has a summand bisimilar to
(∑n

i=1 pi

)
� a. Since p is bisim-

ilar to
(∑n

i=1 pi

)
� a, so is p′. The inductive hypothesis now yields that q′ has

a summand bisimilar to
(∑n

i=1 pi

)
� a. Hence, q has a summand bisimilar to(∑n

i=1 pi

)
� a, which was to be shown.

– CASE E � p ≈ q, BECAUSE p = p′p′′ AND q = q′q′′ FOR SOME p′, q′, p′′, q′′

SUCH THAT E � p′ ≈ q′ AND E � p′′ ≈ q′′. This case is vacuous. In fact,
norm(p) = 1 by our assumption that p↔

(∑n
i=1 pi

)
� a, whereas the norm of a

closed term of the form p′p′′ is at least 2.

– CASE E � p ≈ q, BECAUSE p = p′ � p′′ AND q = q′ � q′′ FOR SOME

p′, q′, p′′, q′′ SUCH THAT E � p′ ≈ q′ AND E � p′′ ≈ q′′. The claim is immediate
because p and q are their only summands, and E is sound modulo bisimilarity.

This completes the proof. �

In light of our previous discussion, all that we are left to do to complete our proof
of Theorem 1 is to show Proposition 3. The rather lengthy proof of that result may be
found in [6].

4 BPA with the Disrupt Operator

As mentioned in Sect. 1, in their paper [7], Baeten and Bergstra have given a finite
axiomatization of bisimilarity over BPAδ (the extension of BPA with a constant δ to
describe “deadlock”) enriched with two mode transfer operators, viz. the disrupt and
interrupt operators, using auxiliary operators. The main result in this paper (Theorem 1)
shows that the use of auxiliary operators is indeed necessary in order to obtain a finite
axiomatization of bisimulation equivalence over the language BPAint, and that this holds
true even if we restrict ourselves to axiomatizing the collection of closed equations over
this language.

A natural question to ask at this point is whether this negative result applies also to
the language BPAdis obtained by enriching BPA with the disrupt operator. Intuitively,
“p disrupted by q”—which we shall write p � q in what follows—describes a process
that normally behaves like p. However, at each point of the computation before p ter-
minates, q can begin its execution. If this happens, q takes over, and p never resumes its
computation. This intuition is captured formally by the following transition rules:

t
a→�

t � u
a→�

t
a→ t′

t � u
a→ t′ � u

u
a→�

t � u
a→�

u
a→ u′

t � u
a→ u′

64 L. Aceto et al.

It is not hard to see that the following equations are sound modulo bisimilarity over the
language BPAdis:

a � x ≈ a + x

ax � y ≈ a(x � y) + y and

(x + y) � z ≈ (x � z) + (y � z) .

The last of these equations is particularly important, at least as far as obtaining a fi-
nite equational axiomatization of bisimilarity over the collection of closed terms in the
language BPAdis is concerned. (The interested reader may have already noticed that
its soundness modulo bisimulation equivalence depends crucially on the fact that tran-
sitions due to moves of the second argument of a disrupt discard the first argument.)
Indeed, its repeated use in conjunction with the first two laws allows us to eliminate oc-
currences of the disrupt operator from closed terms. This effectively reduces the prob-
lem of finitely axiomatizing bisimilarity over the collection of closed terms in the lan-
guage BPAdis to that of offering a finite axiomatization of bisimilarity over closed BPA
terms. As shown by Bergstra and Klop in [12], the five equations in Table 3 suffice to
axiomatize bisimilarity over the language BPA.

In sharp contrast to Theorem 1, we therefore have that:

Theorem 3. The collection of closed equations over BPAdis that hold modulo ↔ is
axiomatized by the five equations in Table 3 together with the aforementioned three
equations for the disrupt operator, and is therefore finitely based.

It follows that the use of auxiliary operators is not necessary in order to obtain a finite
axiomatization of bisimulation equivalence over closed terms in the language BPAdis.

The axiomatization of bisimilarity over closed terms in the language BPAdis offered
in the theorem above is not ω-complete. For example, the reader can easily check that
the disrupt operator is associative modulo bisimilarity, i.e., that the equation

(x � y) � z ≈ x � (y � z)

holds modulo↔. This equation is not provable using the equations mentioned in Theo-
rem 3. However, we conjecture that bisimilarity also affords a finite ω-complete axiom-
atization over BPAdis.

References

1. L. ACETO, Z. ÉSIK, AND A. INGOLFSDOTTIR, On the two-variable fragment of the equa-
tional theory of the max-sum algebra of the natural numbers, in Proceedings of the 17th
International Symposium on Theoretical Aspects of Computer Science, STACS 2000 (Lille),
H. Reichel and S. Tison, eds., vol. 1770 of Lecture Notes in Computer Science, Springer-
Verlag, Feb. 2000, pp. 267–278.

2. , The max-plus algebra of the natural numbers has no finite equational basis, Theoret-
ical Comput. Sci., 293 (2003), pp. 169–188.

3. L. ACETO, W. FOKKINK, R. VAN GLABBEEK, AND A. INGOLFSDOTTIR, Nested semantics
over finite trees are equationally hard, Information and Computation, 191 (2004), pp. 203–
232.

Bisimilarity Is Not Finitely Based over BPA with Interrupt 65

4. L. ACETO, W. FOKKINK, AND A. INGOLFSDOTTIR, A menagerie of non-finitely based
process semantics over BPA*—from ready simulation to completed traces, Mathematical
Structures in Computer Science, 8 (1998), pp. 193–230.

5. L. ACETO, W. FOKKINK, A. INGOLFSDOTTIR, AND B. LUTTIK, CCS with Hennessy’s
merge has no finite equational axiomatization, Theoretical Comput. Sci., 330 (2005),
pp. 377–405.

6. L. ACETO, W. FOKKINK, A. INGOLFSDOTTIR, AND S. NAIN, Bisimilarity is not Finitely
Based over BPA with Interrupt, Research report RS-04-24, BRICS, Oct. 2004. Available
from http://www.brics.dk/RS/04/24/index.html.

7. J. C. BAETEN AND J. BERGSTRA, Mode transfer in process algebra, Report CSR 00–01,
Technische Universiteit Eindhoven, 2000. This paper is an expanded and revised version
of [11].

8. J. C. BAETEN, J. BERGSTRA, AND J. W. KLOP, Syntax and defining equations for an
interrupt mechanism in process algebra, Fundamenta Informaticae, IX (1986), pp. 127–168.

9. , Decidability of bisimulation equivalence for processes generating context-free lan-
guages, J. Assoc. Comput. Mach., 40 (1993), pp. 653–682.

10. J. C. BAETEN AND C. VERHOEF, A congruence theorem for structured operational seman-
tics, in Proceedings CONCUR 93, Hildesheim, Germany, E. Best, ed., vol. 715 of Lecture
Notes in Computer Science, Springer-Verlag, 1993, pp. 477–492.

11. J. BERGSTRA, A mode transfer operator in process algebra, Report P8808, Programming
Research Group, University of Amsterdam, 1988.

12. J. BERGSTRA AND J. W. KLOP, Fixed point semantics in process algebras, Report IW 206,
Mathematisch Centrum, Amsterdam, 1982.

13. , Process algebra for synchronous communication, Information and Control, 60
(1984), pp. 109–137.

14. S. BLOM, W. FOKKINK, AND S. NAIN, On the axiomatizability of ready traces, ready sim-
ulation and failure traces, in Proceedings 30th Colloquium on Automata, Languages and
Programming—ICALP’03, Eindhoven, J. C. Baeten, J. K. Lenstra, J. Parrow, and G. J.
Woeginger, eds., vol. 2719 of Lecture Notes in Computer Science, Springer-Verlag, 2003,
pp. 109–118.

15. E. BRINKSMA, A tutorial on LOTOS, in Proceedings of the IFIP Workshop on Protocol
Specification, Testing and Verification, M. Diaz, ed., North-Holland, 1986, pp. 73–84.

16. J. H. CONWAY, Regular Algebra and Finite Machines, Mathematics Series (R. Brown and J.
De Wet eds.), Chapman and Hall, London, United Kingdom, 1971.

17. A. DSOUZA AND B. BLOOM, On the expressive power of CCS, in Foundations of Software
Technology and Theoretical Computer Science (Bangalore, 1995), P. S. Thiagarajan, ed.,
vol. 1026 of Lecture Notes in Computer Science, Springer-Verlag, 1995, pp. 309–323.

18. W. FOKKINK AND B. LUTTIK, An omega-complete equational specification of interleaving,
in Proceedings 27th Colloquium on Automata, Languages and Programming—ICALP’00,
Geneva, U. Montanari, J. Rolinn, and E. Welzl, eds., vol. 1853 of Lecture Notes in Computer
Science, Springer-Verlag, July 2000, pp. 729–743.

19. W. FOKKINK AND S. NAIN, On finite alphabets and infinite bases: From ready pairs to possi-
ble worlds, in Proceedings of Foundations of Software Science and Computation Structures,
7th International Conference, FOSSACS 2004, I. Walukiewicz, ed., vol. 2897, Springer-
Verlag, 2004, pp. 182–194.

20. J. L. GISCHER, The equational theory of pomsets, Theoretical Comput. Sci., 61 (1988),
pp. 199–224.

21. J. F. GROOTE, A new strategy for proving ω–completeness with applications in process
algebra, in Proceedings CONCUR 90, Amsterdam, J. C. Baeten and J. W. Klop, eds., vol. 458
of Lecture Notes in Computer Science, Springer-Verlag, 1990, pp. 314–331.

66 L. Aceto et al.

22. M. HENNESSY, Axiomatising finite concurrent processes, SIAM J. Comput., 17 (1988),
pp. 997–1017.

23. ISO, Information processing systems – open systems interconnection – LOTOS – a for-
mal description technique based on the temporal ordering of observational behaviour
ISO/TC97/SC21/N DIS8807, 1987.

24. S. MAUW, PSF – A Process Specification Formalism, PhD thesis, University of Amsterdam,
Dec. 1991.

25. R. MILNER, Communication and Concurrency, Prentice-Hall International, Englewood
Cliffs, 1989.

26. R. MILNER, M. TOFTE, R. HARPER, AND D. MACQUEEN, The Definition of Standard ML
(Revised), MIT Press, 1997.

27. F. MOLLER, The importance of the left merge operator in process algebras, in Proceedings
17th ICALP, Warwick, M. Paterson, ed., vol. 443 of Lecture Notes in Computer Science,
Springer-Verlag, July 1990, pp. 752–764.

28. , The nonexistence of finite axiomatisations for CCS congruences, in Proceedings 5th

Annual Symposium on Logic in Computer Science, Philadelphia, USA, IEEE Computer
Society Press, 1990, pp. 142–153.

29. D. PARK, Concurrency and automata on infinite sequences, in 5th GI Conference, Karlsruhe,
Germany, P. Deussen, ed., vol. 104 of Lecture Notes in Computer Science, Springer-Verlag,
1981, pp. 167–183.

30. V. REDKO, On defining relations for the algebra of regular events, Ukrainskii Matematich-
eskii Zhurnal, 16 (1964), pp. 120–126. In Russian.

31. P. SEWELL, Nonaxiomatisability of equivalences over finite state processes, Annals of Pure
and Applied Logic, 90 (1997), pp. 163–191.

Algebra ∩ Coalgebra = Presheaves

J. Adámek�

Technical University of Braunschweig
J.Adamek@tu-bs.de

Abstract. The intersection of algebra and coalgebra, i.e., the collection
of all categories that are varieties as well as covarieties, is proved to
consist of precisely the presheaf categories.

1 Introduction

A sequential automaton can be viewed as an algebra, or as a coalgebra. In fact,
the main ingredient, the next-state function

δ : Q× I �� Q (I = the input set)

defines an algebra of the endofunctor (−)× I of Set, but by currying it

δ̂ : Q �� QI

one gets a coalgebra of the endofunctor (−)I . Is this a unique such situation, or
are there other interesting examples of coalgebras that are algebras? A surpris-
ingly general example was discovered by James Worrell: he proved that for every
(not necessarily finitary) signature Σ we can view Σ-coalgebras, i.e., coalgebras
of the polynomial endofunctor

HΣQ =
∐
σ∈Σ

Qn (n = arity of σ)

as a variety of algebras. In fact, the category Coalg HΣ of all Σ-coalgebras is
equivalent to a presheaf category SetA op

for some small category A , see [W].
Now SetA op

is always a variety, in fact, a variety of unary algebras—but not
always one-sorted! Thus, the slogan

Σ-coalgebras form a variety of algebras

is, in general, only true if we move from one-sorted sets to many-sorted ones.
Therefore, in the present paper we consider algebra and coalgebra of many-sorted
sets (given by endofunctors of SetS for nonempty sets S).

We are going to describe the intersection of algebra and coalgebra, i.e., those
categories which are at the same time varieties of F -algebras and covarieties of
� Support by the grant MSM 6840770014 of the Ministry of Education of the Czech

Republic is acknowledged.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 67–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 J. Adámek

G-coalgebras for endofunctors F and G of many-sorted sets. We consider all these
categories as concrete categories, i.e., pairs consisting of a category V and a for-
getful functor V : V �� SetS . Given two concrete categories Vi : Vi

�� SetS

for i = 1, 2 we call them concretely equivalent if there exists an equivalence func-
tor E : V1 �� V2 such that V1 is naturally isomorphic to V2·E; notation V1 	 V2
(see [P]). We will strengthen the result of James Worrell in several directions:

(1) Considering presheaf categories SetA op
as concrete categories over Set,

we prove that the category of Σ-coalgebras is concretely equivalent to a presheaf
category. And conversely: given an endofunctor H of Set such that Coalg H is
concretely equivalent to a presheaf category, then H is a reduction of a polyno-
mial functor—thus CoalgH is the category of Σ-coalgebras for some Σ. (“Re-
duction” means that the value at the empty set can be changed.)

(2) Considering SetA op
as a concrete category over SetS (S-sorted sets),

where S is the set of objects of A , this category is always concretely equivalent to
a covariety of coalgebras. And conversely: every many-sorted variety concretely
equivalent to a many-sorted covariety is a category of presheaves.

(3) In contrast to (2), only very special small categories A have the property
that SetA op

is concretely equivalent to Coalg H over Set: A has to be equiva-
lent to the Σ-tree category for some signature. This category has all Σ-trees1 as
objects, and morphisms from t′ to t are all nodes of t whose subtree (in t) is t′.

For all these results we work with concrete categories over SetS . For example,
every variety of S-sorted coalgebras, or every covariety of S-sorted coalgebras
(i.e., algebras and coalgebras over endofunctors of SetS). The fact that Worrell’s
result can be strengthened as above makes heavy use of concrete equivalence:
we do not know the answer to the
Open Problem. For which endofunctors H of SetS is the category Coalg H
equivalent to a presheaf category?
Acknowledgement. The author is grateful to Jǐŕı Rosický and Hans Porst for
interesting discussions on the topic of this paper.

2 Varieties and Covarieties

Remark 1. What is a many-sorted variety? Each of the following is a reasonable
answer, depending on the generality one has in mind:

(a) An equationally presentable category of Σ-algebras, where Σ is a finitary,
S-sorted signature, see e.g. [LEW].

(b) As above, but dropping “finitary”. Thus, an S-sorted signature is a set Σ
together with an arity of every operation symbol σ ∈ Σ of the form

σ :
(
si

)
i<n

�� s

1 By a tree we mean a labelled, ordered tree throughout the paper. And we consider
trees always up to isomorphism (of labelled, ordered trees) only.

Algebra ∩ Coalgebra = Presheaves 69

where si and s are sorts, and n is a cardinal number. The concept of an
equationally presentable category of Σ-algebras is analogous to the finitary
case (a).

(c) A full subcategory of AlgH , the category of H-algebras for a varietor
on SetS (i.e., an endofunctor H having free algebras), closed under

products,
subalgebras, and
quotient algebras.

See e.g. [Re].
(d) A monadic category over SetS , see e.g. [AP].

Fortunately, our results about algebra meeting coalgebra are independent of the
answer one chooses: even if varieties are understood in the most general sense (d),
the meet of algebra and coalgebra is given by presheaf categories, a special case
of (a).

Notation 2.2. For an endofunctor H of SetS we denote by Alg H the category
of all H-algebras, i.e., pairs (A, α) where A is an S-sorted set and α : HA �� A
an S-sorted function. Morphisms f : (A, α) �� (B, β), called homomorphisms,
are the S-sorted functions with f · α = β ·Hf .

For example,
Alg HΣ

is the usual category of Σ-algebras. Here HΣ : SetS �� SetS is the polynomial
functor defined on objects X = (Xs)s∈S by(

HΣX
)
s

=
∐

σ∈Σs

∏
i<n

Xsi

where the arity of σ is σ : (si)i<n
�� σ, and analogously on morphisms.

Remark 2. What is a many-sorted covariety? Each of the following is a reason-
able answer, depending on the generality one has in mind:

(a) A coequationaly presentable category of Σ-algebras, where Σ is a finitary,
S-sorted signature. That is, a full subcategory of AlgHΣ presentable by
subsets D of the cofree coalgebras CΣ(X) (formed by colored trees, see 2.7
below). A coalgebra satisfies D if, under any coloring by colors from X , the
tree expansions of all states are trees lying in D.

(b) As above but dropping “finitary”.
(c) A full subcategory of Coalg H , the category of H-coalgebras for a covarietor

on SetS (i.e., an endofunctor H having cofree coalgebras C(X) on all X ∈
SetS), closed under

coproducts
subcoalgebras, and
quotient coalgebras.

See [Ru].
(d) A comonadic category over SetS , see e.g. [AP].

70 J. Adámek

Fortunately, our results about algebra meeting coalgebra are independent of
the answer one chooses: even if covarieties are understood in the most general
sense (d), the meet of algebra and coalgebra is given by presheaf categories, a
special case of (a).

Example 1. As observed by Jan Rutten [Ru], deterministic systems having bi-
nary input and halting states (not reacting to inputs) are coalgebras of the
one-sorted polynomial endofunctor

HΣ = X ×X + 1.

A cofree coalgebra CΣ(k) is the coalgebra of all binary trees, possibly infinite,
colored by k colors. In fact, given a coalgebra

α : Q �� Q×Q + 1

and a coloring f : Q �� k of its states, every state q produces a k-colored
tree f̄(q) which is full tree expansion in the system, and f̄ : Q �� CΣ(k) is the
unique homomorphism extending f .

Consider the subset
D = C(1)− {t0}

of all trees distinct from the trivial, root-only, tree t0. A coalgebra satisfies D iff
it has no halting states. This covariety is also a variety: each such coalgebra is
given by a function

α : Q �� Q×Q

corresponding to a pair of endofunctions of Q, or, to the algebra structure

α̂ : Q + Q �� Q.

Thus the covariety presented by D is nothing else than the category

Alg(Id + Id)

of algebras of the functor Id + Id.
Next, consider the subset

D′ ⊆ C(1)

of all finite trees. A coalgebras satisfies D′ iff it always halts in finitely many
steps. Is the corresponding covariety a variety? No! It is easy to verify that
the covariety presented by D′ does not have products on the level of Set. (In
fact, consider coalgebras An and states qn such that An halts in n steps when
started in qn, but not in less steps. Then the cartesian product of these coalgebras
contains the state (q0, q1, q2, . . .) in which halting is impossible.) Since varieties of
one-sorted algebras have products on the level of Set, this finishes the argument.

Notation 2.5. (1) For an endofunctor H of SetS we denote by CoalgH the
category of all H-coalgebras, i.e., pairs (A, α) consisting of an S-sorted set A and

Algebra ∩ Coalgebra = Presheaves 71

an S-sorted function α : A �� HA. Morphisms f : (A, α) �� (B, β), called
homomorphisms, are the S-sorted functions such that β · f = Hf · α.

For example, a Σ-coalgebra, i.e., an object of CoalgHΣ , consists of an S-
sorted set A and an S-sorted function α assigning to every element a ∈ As

an n-tuple (ai)i<n in
∏

i<n Asi for some operation σ : (si)i<n
�� s of Σs.

Notation:
α(a) = σ(ai)i<n.

(2) Given an S-sorted set X (of colors), a cofree coalgebra on X is a coalge-
bra C(X) with a structure map

ψX : C(X) �� HC(X)

together with a universal coloring

C(X)
εX �� X.

The universal property means that for every coalgebra α : A �� HA and every
coloring f : A �� X there exists a unique coalgebra homomorphism f̄ : A ��

C(X) such that f = εX · f̄ .

Remark 2.6. (a) To say that H has cofree coalgebras means that the forgetful
functor U : CoalgH �� SetS has a right adjoint. Such functors H are called
covarietors in [AP].

(b) We can interpret C(X) as the collection of all possible behaviors of sys-
tems (represented as coalgebras) whose states are not observable, but their colors
are. Thus, if we color the states, using an arbitrary f , we can assign to every
state a ∈ A the corresponding behavior f̄(a) we observe.

Example 2.7. See [AP] For a polynomial functor HΣ we have the cofree coalgebra
CΣ(X) of all X-colored Σ-trees. More detailed:

(1) By a Σ-tree τ is meant a tree labelled in Σ in such a way that every node
labelled by a symbol σ of arity σ : (si)i<n

�� s (such nodes are said to have
sort s) has n children, and the i-th child has sort si. The sort of the root is called
the sort of the tree τ . We denote by TΣ the S-sorted set of all Σ-trees. (Recall
that trees are considered up to isomorphism throughout the paper.) And TΣ is
a terminal Σ-coalgebra whose coalgebra structure is the inverse of tree-tupling.

(2) Given an S-sorted set X of “colors”, by an X-colored Σ-tree is meant a
Σ-tree together with a coloring of its nodes: every node of sort s is colored by an
element of Xs. The color of the root is called the color of the tree τ . We denote
by CΣ(X) the S-sorted set of all X-colored trees.

(3) The coalgebra structure ψX of the cofree coalgebra CΣ(X) has sorts

(ψX)s : CΣ(X)s
��
∐

σ∈Σs

∏
i<n

CΣ(X)si

which assign to every tree τ whose root is labelled by σ of arity σ : (si)i<n
�� s

the n-tuple of its children in
∏

i<n CΣ(X)si . The color of tree-roots yields the
universal map

εX : CΣ(X) �� X.

72 J. Adámek

(4) For every Σ-coalgebra (A, α) and every coloring f : A �� X the unique
homomorphism

f̄ : A �� CΣ(X) with f = εX · f̄
can be described as follows. Given an element a ∈ As then α(a) has the form

α(a) = σ(ai)i<n for some σ ∈ Σs

where the sorts si of ai are such that σ has arity σ : (si)i<n
�� s. This gives

us an unfolding tree τ of a: the root of τ is labelled by σ and colored by fs(a),
the children ai of the root are labelled (recursively) by an operation in Σ and
colored by fsi(ai), etc. We put

f̄s(a) = τ.

Definition 2.8. (See [Ru].) Let H be a covarietor. Given a subobject

d : D
� � �� C(X)

of a cofree coalgebra, we say that a coalgebra A satisfies D provided that
for every coloring f : A �� X the corresponding homomorphism f̄ factorizes
through d. By a covariety of S-sorted coalgebras is meant a full subcategory
of CoalgH , where H is a covarietor in Set, which can be presented by sub-
objects of cofree coalgebras; or, equivalently, which is closed under coproducts,
subcoalgebras, and quotient coalgebras, see [Ru].

Example 2.9. M -sets as a variety. Unary algebras with operations indexed by a
set M are just algebras of the functor X

& �� M ×X . If M is a monoid with
unit e, recall that an M -set is a unary algebra α : M ×A �� A such that

α(e, x) = x for x ∈ A

and, whenever u · v = w in M , then

α(w, x) = α(u, α(v, x)) for x ∈ A.

This is, obviously, precisely the variety presented by the equations e(x) = x and
w(x) = u(v(x)).

Example 2.10. M -sets as a covariety. Here we use the obvious currification, for
every unary algebra A:

M ×A �� A

A �� AM

to obtain a coalgebra of the set functor X & �� XM . Observe that this functor
is polynomial: consider one M -ary operation. The elements of a cofree coalge-
bra C(X) are the trees colored in X such that the children of every node are
indexed by M . Therefore, the nodes of such a tree are in a bijective correspon-
dence with words in M∗: the empty word is the root, and the children of a word
w are the words wm for all m ∈M . Consequently, to present a member of C(X)

Algebra ∩ Coalgebra = Presheaves 73

means to present a coloring of words in M∗ by colors in X . Shortly: we can
consider C(X) as the set of all colorings:

C(X) = XM∗
.

Consider the coequation
D ⊆ C(2)

of all colorings of M∗ by two colors such that
(a) e has the same color as the empty word and
(b) if u · v = w in M then w has the same color as the two-letter word uv.
It is easy to verify that D presents precisely the M -sets in Coalg(−)M .

3 Coalgebras as Presheaves

Assumption 3.1. Unlike the rest of the paper, in the present section we work
with one-sorted algebras and coalgebras only. Thus “concrete category” means
here a category together with a faithful functor into Set. Examples include

(a) Alg H and Coalg H for endofunctors H of Set, and
(b) presheaf categories SetA op

(where A is any small category) endowed with
the forgetful functor

V : SetA op �� Set, V (A) =
∐

s∈objA

A(s).

Remark 3.2. For every one-sorted signature Σ each Σ-coalgebra (A, α) defines a
graph (with multiple, directed edges) on the set A: the edges from a node b into
a node a with α(a) = σ(ai)i<n are precisely all the indices i with b = ai.

For example, the graph of the terminal coalgebra TΣ, see Example 2.7 (1)
has (uncolored) Σ-trees as nodes, and edges from t′ to t are all children of t
which are (isomorphic to) t′.

Notation 3.3. Let TΣ be the free category on the graph TΣ; we can describe
it as follows:

– objects are all Σ-trees;
– morphisms from t′ to t are all nodes of t such that the corresponding subtree

of t is (isomorphic to) t′;
– identity morphisms are given by the roots of trees;
– composition is the obvious one, given by the transitivity of the relation “sub-

tree”.

In particular, every morphism is a composite of the basic morphisms t′ �� t
given by all children of t equal to t′.

Theorem 3.4. For every one-sorted signature Σ the category of Σ-coalgebras is
concretely equivalent, over Set, to the presheaf category of TΣ :

Coalg HΣ 	 SetT op
Σ .

74 J. Adámek

Remark. (1) This theorem is a special case of the following result (the proof of
which is completely analogous): given a Σ-coalgebra A, let A denote the free
category on the graph of A. Then the comma-category CoalgHΣ/A is concretely
equivalent to the presheaf category of A .

(2) Although we formulated the theorem for one-sorted signatures only,
it holds for S-sorted ones: Coalg HΣ is concretely equivalent over SetS to
(SetS)T op

Σ .
(3) The equivalence of CoalgHΣ to a presheaf category was proved by James

Worrell [W]; he uses wide-pullbacks preserving functors instead of polynomial
functors, but for set functors these are the same.

(4) The proof below is due to Hans Porst and Christian Dzieron [PD], except
that the concreteness of the equivalence was not mentioned there.

Proof. For every HΣ-coalgebra A denote by

hA : A �� TΣ

the unique homomorphism (which takes every element to the tree unfolding
in A). Define a functor E : CoalgHΣ

�� SetT op
Σ as follows. With every coal-

gebra A associate a presheaf EA : T op
Σ

�� Set defined on objects t ∈ TΣ

by
EA(t) = h−1

A (t).

Thus, to every tree t we assign the set of all elements of A which unfold to t.
For every basic morphism j : t′ �� t (where t = σ(ti)i<n and t′ = tj) the
function EA(j) : h−1

A (t) �� h−1
A (t′) assigns to every element a with hA(t) = a

the element aj, where α(a) = (ai)i<n.
With every coalgebra homomorphism f : (A, α) �� (B, β) we associate a

natural transformation Ef : EA �� EB whose t-component is the restriction
of f to h−1

A (t) �� h−1
B (t). Then E is an equivalence functor, see [PD].

V E : Coalg HΣ
�� Set takes a coalgebra A to the isomorphic copy of UA

one gets from the bijection between UA and
∐

h−1
A (t). This isomorphism UA 	

V EA is clearly natural in A. ��

Remark 3.5. As mentioned in the Introduction, we call a set functor H a reduction
of H ′ provided that H and H ′ coincide on all nonempty sets and nonempty
functions. (Example: the constant functor C1 of value 1 has the reduction C10
with C10∅ = ∅.) In that case CoalgH is, obviously, concretely equivalent (in
fact, isomorphic) to CoalgH ′. Thus we have an immediate

Corollary 3.6. For every reduction H of a polynomial functor the category
CoalgH is concretely equivalent to a presheaf category.

Example 3.7. (i) Let Σ be the signature with a nullary symbol, then HΣ has
C1 (the constant functor of value 1) as a summand. Consequently, reductions H
of HΣ can have any value at ∅: define H∅ = R (an arbitrary set) and for the
empty map f : ∅ �� X let Hf : M �� HΣX factor through the summand
1 = C1X

� � �� HΣX above.

Algebra ∩ Coalgebra = Presheaves 75

(ii) If Σ has no nullary symbols, then HΣ has no reductions H �= HΣ :
any element of H∅ leads to a natural transformation from C10 to HΣ . But
hom(C10, HΣ) = ∅, thus, H∅ = ∅. This means H = HΣ .

Theorem 3.8. For a set functor H the category Coalg H is concretely equivalent
to a presheaf category iff H is a reduction of a polynomial functor.

Proof. Sufficiency is Corollary 3.6. For the necessity, let A be a small category
such that Coalg H is concretely equivalent to V : SetA op �� Set of 3.1 (b).
Observe that V is a coproduct of hom-functors: in fact, the functor A

& �� A(s)
of evaluation at s is, by the Yoneda lemma, representable by the object A (−, s)
of SetA op

. Since hom-functors preserve limits, and coproducts commute in Set
with connected limits, we conclude that

V preserves connected limits.

Consequently, so does the forgetful functor U : Coalg H �� Set (since U ≈
V · E for some equivalence functor E : Coalg H �� SetA op

).
We will prove next that H preserves nonempty wide pullbacks, i.e., limits

of cocones pi : Pi
�� P (i ∈ I) in Set, provided that the limit cone qi : Q

�� Qi (i ∈ I) has nonempty domain, Q �= ∅. In fact, given elements

xi ∈ HPi (i ∈ I) and x ∈ HP

with Hpi(xi) = x, it is our task to prove that there is a unique y ∈ HQ with
xi = Hqi(y) for all i ∈ I. We can endow each Pi with the constant function of
value xi and obtain an H-coalgebra; analogously with P . This turns each pi into a
coalgebra homomorphism. Now Coalg H is complete (because SetA op

is), thus,
it has a wide pullback of that cocone of homomorphisms. Since U preserves this
wide pullback, we have a coalgebra structure ρ : Q �� HQ turning each qi into
a homomorphism (and forming the domain of the wide pullback in Coalg H).
For every element z ∈ Q the element y = ρ(z) of HQ has the desired property:
for each i ∈ I we have

Hqi(y) = (Hqi · ρ)(z) = (constxi · qi)(z) = xi.

And y is unique: suppose y′ also fulfils Hqi(y) = xi, then the constant function
with value y′ turns each qi into a coalgebra homomorphism, from which it easily
follows that ρ is equal to this constant function; thus, y = y′.

We are ready to prove that H is a reduction of a polynomial functor, using re-
sults of Věra Trnková on the structure of set functors. Express H as a coproduct
of functors Hi preserving terminal objects, Hi1 ≈ 1, which is possible by [T1],
see I.11. It is clear that since H preserves nonempty wide pullbacks, so does
each Hi. It is sufficient to prove that, then, Hi is a reduction of a representable
functor. Then H is a reduction of a coproduct of representable functors. This
concludes the proof: polynomial functors are precisely the coproducts of repre-
sentable functors.

76 J. Adámek

Since Hi preserves terminal objects and nonempty wide pullbacks, it pre-
serves nonempty products. Then the reduction H ′

i of Hi with H ′
i∅ = ∅ preserves

products. Věra Trnková calls a set functor separating if it preserves disjointness
of pairs of subobjects. Every separating functor preserves finite intersections, see
Corollary 2.1 in [T1]. If H ′

i is separating, then it consequently preserves limits,
thus, it is representable. If H ′

i is not separating, then it is naturally isomorphic
to C01 by [T2], IV.4. This is a reduction of C1, representable by ∅. Thus, H ′

i is
a reduction of a representable functor, which implies the same for Hi. ��

4 Presheaves as Coalgebras

Notation 4.1. Throughout this section A denotes a small category, and we
consider S-sorted sets for

S = objA .

Thus, unlike 3.1(b), the presheaf category is now endowed with the forgetful
functor

U : SetA op �� SetS , A & �� (A(s))s∈S .

Remark 4.2. The presheaf category is a variety of S-sorted unary algebras: take
Σ = morA as the signature, and given a morphism u ∈ A (t, s) let u : s �� t
be the arity of u. Then the following equations present SetA op

in Alg Σ:

ids(x) = x and u(v(x)) = w(x)

where s is any sort, x is a variable of sort s, and w ∈ A (t, s) is a morphism
which factorizes as w = v · u in A .

We are now going to show that SetA op
is also a covariety of coalgebras.

Observation 4.3. Generalizing Example 2.10 to presheaves

A : A op �� Set

observe that A is completely specified by (a) the underlying S-sorted set UA =
(As)s∈S and (b) the function

A (t, s)×As
�� At for all (t, s) ∈ S × S

which assigns to every pair u : t �� s in A and x ∈ As the value Au(x) in At.
We use, as in 2.10, currification:

A (t, s)×As
�� At

As
�� AA (t,s)

t

and, for a given sort s ∈ S, we collect all these functions together by using the
product (over all t ∈ S):

As
��
∏
t∈S

A
A (t,s)
t .

Algebra ∩ Coalgebra = Presheaves 77

In this sense, every presheaf is a coalgebra of the endofunctor HA of SetS given
on objects A by

(HA A)s =
∏
t∈S

A
A (t,s)
t , (1)

for all s ∈ S. This is a polynomial functor (see Definition 2.2) of the signature Σ
which has for every sort s precisely one operation σs ∈ Σs of arity

σs : (t t . . . t t′ t′ . . . t′ . . .) �� s

in which every sort t ∈ S is repeated precisely A (t, s)-times.

Remark 4.4. Let us describe the cofree coalgebras

C(X)

for the above polynomial functor HA , see Example 2.7. An element τ of C(X)s

is a tree whose root is colored in Xs and labelled in Σs – but since Σs has just
one element, we can forget the latter label. Thus we only need to remember that
the children of the root of sort t correspond to A (t, s), for any t ∈ S. And we
need to know the color, from Xt, of each child of sort t. Analogously, the children
of a child of sort t correspond to A (t′, t) for any t′ ∈ S and are colored in Xt′ .
Etc. Thus, such a tree τ is completely described by its sort s and a coloring of
all finite sequences of composable morphisms

t0
u0 �� t1

u1 �� t2 �� · · ·
un−1 �� tn = s (2)

of A by colors from Xt0 .
Denote by

A 〈t, s〉
the set of all sequences (2) in A with t = t0. This includes, for t = s, the empty
sequence, consisting of s alone. Then we can consider C(X) as the coalgebra of
all colorings of sequences:

C(X)s =
∏
t∈S

X
A 〈t,s〉
t

for all s ∈ S (compare with C(X) = XM∗
in 2.10). Here (εX)s : C(X)s

�� Xs

takes each coloring to the color of the empty sequence:(
εX

)
s
: ϕ

& �� ϕs(s) for all ϕ =
(
ϕt

)
t∈S

.

And the coalgebra structure(
ψX

)
s
: C(X)s

��
(
HA C(X)

)
s

=
∏
p∈S

∏
t∈S

X
A 〈t,p〉×A (p,s)
t

is determined by the obvious concatenation maps A 〈t, p〉×A (t, s) �� A (t, s).
Thus (ψX)s assigns to a coloring ϕ = (ϕt)t∈S of sequences the tuple (indexed

78 J. Adámek

by all morphisms u : p �� s of A) of colorings ϕs(. . . p
u �� s) obtained by

concatenating u at the end of the sequence, and then using ϕs.
Notation 4.5. The S-sorted set all sorts of which are {0, 1} is denoted by bool.

Proposition 4.6. The presheaf category SetA op
is a covariety of HA -coalgebras

presented by the subset
D ⊆ C(bool)

which consists of precisely those colorings (ϕt)t∈S such that

(i) ϕs(s
id �� s) = ϕs(s)

and
(ii) ϕt(t

u0 �� t1
u1 �� s) = ϕt(t

u1·u0 �� s) for every composable pair u0, u1
of morphisms of A .
Proof. (1) Let A be a presheaf. For every map f : UA �� bool we prove that
f̄ factorizes through D. In fact, the homomorphism f̄ : UA �� C(bool) assigns
to every element a ∈ As the following coloring ϕ = (ϕt)t∈S of sequences (2) above
form the composed morphism v = u0 · u1 · · · · · un−1 in A op, then ϕt0 colors the
sequence by the color which ft0 assigns to A(v)(a). This coloring ϕ fulfils (i) be-
cause A preserves identity morphisms, and (ii) because A preserves composition.

Conversely, let A be a coalgebra of HA satisfying D. The underlying S-
sorted set UA = (As)s∈S gives the object-function of a presheaf. The coalgebra
structure

αs : As
��
∏
t∈T

A
A (t,s)
t (s ∈ S)

defines, for every morphism u : t �� s of A , a function A(u) : As
�� At

assigning to every element a ∈ As the u-component of αs(a). This would give
the morphism-function of a presheaf, in case we verify the preservation of identity
morphisms and composition. In fact:

(i) A(ids)(a) = a follows from the property that every coloring f : UA ��

bool assigns the same color to a and to A(ids)(a). This property is a consequence
of (i) in the definition of D and the fact that f̄s(a) ∈ Ds because f̄s(a) colors s

id �� s with the color of A(ids)(a).

(ii) A(u0 ·u1)(a) = Au0(Au1(a)) follows, for every composable pair t0
u0 �� t1

u1 �� s in A , from the property that every coloring f : UA �� bool colors
both sequences in the same color. This property is a consequence of (ii) in the

definition of D and the fact that f̄s(a) ∈ Ds because f̄s(a) colors t0
u0 �� u1

u1 �� s and t0
u1·u0 �� s with the above two colors. ��

5 Algebra ∩ Coalgebra

Remark 5.1. We saw in Section 2 that the category

M -Set (M a monoid)

is equal both to a variety of one-sorted algebras and a to covariety of one-sorted
coalgebras. Well, “equal” is a bit strong: it only is a variety and a covariety up

Algebra ∩ Coalgebra = Presheaves 79

to a concrete equivalence over Set. In the present section we prove that there are
no other such categories, that is, for categories concrete over Set we prove that

Algebra ∩ Coalgebra = M -sets. (3)

Is this not in a contradiction to the result of Section 3 that Coalg HΣ is both
a covariety and a presheaf category? No contradiction! If SetA op

is viewed as a
concrete category over Set, see 3.1 (b), then, unless A is equivalent to a monoid,
the presheaf category is never a variety. (Proof: assuming that V of 3.1 (b)
is naturally isomorphic to a forgetful functor of a variety, then V preserves
products. Consider the product 1 = 1× 1 of the terminal presheaf 1 with itself:
if V preserves this product, then objA is a product of two copies of itself. Thus,
objA has at most one element.)

Theorem 5.2. (Algebra ∩ Coalgebra=Presheaves.) For every concrete category
V on S-sorted sets the following conditions are equivalent:

(i) V is concretely equivalent both to a variety of S-sorted algebras, and to a
covariety of S-sorted coalgebras;

(ii) V is concretely equivalent to SetA op
for a small category A with S =

objA .

Remark. (a) The statement (and the proof) of the above theorem does not de-
pend on the generality of the concept of variety we use: this can mean an equa-
tionalty defined class of Σ-algebras, or, more generally, any monadic category
over SetS . The same goes for covariety: this can mean a coequationally defined
class of Σ-coalgebras, or, more generally, a comonadic category over SetS , see
Section 2.

(b) In the one-sorted case we get the above equation (3).

Proof. Let V : V �� SetS be a concrete category concretely equivalent to a
variety and concretely equivalent to a covariety. It is sufficient to prove that the
monad T = (T, η, μ) induced by V is isomorphic to the monad induced, for some
category A with S = objA , by the forgetful functor U : SetA op �� SetS of
Notation 4.1. In fact, the functor V is monadic, i.e., the category V is concretely
equivalent to the category of T-algebras. But also U is monadic, so that SetA op

is also concretely equivalent to the category of T-algebras.
Since V , due to the coalgebra part, preserves colimits, its composite T with

a left adjoint of V also preserves colimits. By Special Adjoint Functor Theorem,
see [M], T has a right adjoint, T � R. Each component

Rs : SetS �� Set (s ∈ S)

is, then, also a right adjoint – thus, it is representable by an S-sorted set. Let
M(s, t) denote, for t ∈ S, the components of that representing set. Then R is
naturally isomorphic to the functor

X
& ��

(∏
t∈S

X
M(s,t)
t

)
s∈S

80 J. Adámek

whose left adjoint, T , is given (by currification) as

X & ��
(∐

t∈S

M(s, t)×Xt

)
s∈S

.

Thus, without loss of generality we can assume that T is defined by

(TX)s =
∐
t∈S

M(s, t)×Xt.

More succinctly: let Ps : SetS �� Set be the s-th projection, then

Ps · T =
∐
t∈S

M(s, t) • Pt

(where M• denotes copowers indexed by M).
The unit of the monad T

η : Id �� T

consists of natural transformations

Psη : Ps
��
∐
t∈S

M(s, t) • Pt.

Since Ps is representable by the S-sorted set whose components are empty except
the s-th one which is 1, we see that, by the Yoneda lemma, Psη is just a choice
of an element

es ∈ M(s, s).

Then ηs has components

(ηs)X : Xs
��
∐
t∈S

M(s, t)×Xt

which are the coproduct injections corresponding to es.
Analogously, the monad multiplication

μ : T · T �� T

consists of natural transformations μs from

Ps · T · T =
∐
t∈S

M(s, t) • PtT =
∐

t,t′∈S

(M(s, t)×M(t, t′)) • Pt′

into Ps · T . By using the Yoneda lemma on the (u, v)-component of μs, for any
(u, v) ∈ M(s, t)×M(t, t′):

Pt′ �� Ps · T · T
μs �� Ps · T =

∐
t′∈T

M(s, t′) • Pt′ ,

Algebra ∩ Coalgebra = Presheaves 81

we see that μ chooses for u, v an element in M(t′, s), which we denote by v · u.
Then μs has components

(μs)X :
∐

t,t′∈S

[M(s, t)×M(t, t′)] • Pt′ ��
∐
t′∈T

M(s, t′) • Pt′

given, for every (u, v)-copy of Pt′ , by the coproduct injection corresponding to
v · u ∈M(s, t′).

Let us prove that we obtain a category A with objects S and hom-sets M(s, t)
where es is the identity morphism and (u, v) & �� v · u is the composition. In
fact, the unit law of monads

μ · Tη = μ · ηT = id

tells us precisely that es is a unit of the composition. And the associative law of
monads

μ · Tμ = μ · μT

tells us precisely that the above composition is associative. Thus, we obtained a
category A .

It remains to verify that the forgetful functor U : SetA op �� SetS in-
duces the above monad T. In fact, for every S-sorted set X we have an obvious
presheaf X∗ : A op �� Set with

UX∗ = TX :

put X∗(s) =
∐

t∈S A (s, t) × Xt on objects, and for a morphism w : s′ �� s
of A define X∗(w) : X∗(s) �� X∗(s′) at a pair (u, a) ∈ A (s, t) × Xt to be
the pair (u · w, a) ∈ A (s′, t) ×Xt, shortly: X∗(w)(u, a) = (u · w, a). The above
natural transformation ηX : X �� TX = UX∗ is clearly a universal arrow for
U . Since U is monadic on Sets, this proves that U induces the monad T. ��

6 Conclusions

We have started the present paper by asking whether sequential automata are
the only type of systems which have both an algebraic treatement and a coal-
gebraic one. The answer is esentially affirmative in the realm of one-sorted al-
gebra and coalgebra: the only generalizations of sequential automata living in
“algebra ∩ coalgebra” are M -sets for monoids M (where the case of automata
corresponds to free monoids). We say “essentially” because our answer depends
on viewing categories of algebras and coalgebras as concrete categories over Set.
For the corresponding question concerning abstract categories we do not know
the answer at present.

A surprising fact proved by F. E. J. Linton and R. C. Paré [LP] is that every
covariety is equivalent to the dual of a variety. We do not know the answer to
the following

Open problem: Is every variety equivalent to the dual of a covariety?

82 J. Adámek

For varieties and covarieties of many-sorted algebras, i.e., monadicity and
comonadicity over SetS up to concrete equivalence, the categories of presheaves
form the intersection of algebra and coalgebra. In other words, the obvious cur-
rification (which enables us to view many-sorted unary algebras as coalgebras)
describes the whole intersection of algebra and coalgebra. A generalization of
Theorem 3.4, the opposite implication to J. Worrell’s result about categories of
Σ-coalgebras, to many-sorted sets is also left as an open problem.

References

[AP] J. Adámek and H.-E. Porst, On varieties and covarieties in a category, Math.
Structures Comput. Sci. 13 (2003), 201–232

[LEW] J. Loeckx, H.-D. Ehrich and M. Wolf, Specification of abstract data types,
Wiley and Teubner, Chichester 1996

[LP] F. E. J. Linton and R. C. Paré, Injectives in topoi I: Representing coalgebras
as algebras, Lect. Notes Mathem. 719, Springer Verlag 1970, 196–206

[M] S. MacLane, Categories for the working mathematician, Springer Verlag 1971
[P] H.-E. Porst, What is concrete equivalence? Appl. Categorical Structures 2

(1994), 57–70
[PD] H.-E. Porst and C. Dzieron, On coalgebras which are algebras, in Categori-

cal Structures and Applications (Gähler and Preuss, editors) World Scientific
Publ. 2004, 227–234

[Re] J. Reiterman, One more cagorical model of universal algebra, Math. Z. 161
(1978), 137–146

[Ru] J. Rutten, Universal coalgebra: a theory of systems, Theor. Comput. Sci. 249
(2000), 3–80

[T1] V. Trnková, Some properties of set functors, Comment Math. Univ. Carolinae
10 (1969), 323–352

[T2] V. Trnková, On descriptive classification of set-functors I, Comment. Math.
Univ. Carolinae 12 (1971), 143–174

[W] J. Worrell, A note on coalgebras and presheaves, Electr. Notes Theor. Comput.
Sci. 65.1 (2002)

Strong Splitting Bisimulation Equivalence

J.A. Bergstra and C.A. Middelburg

1 Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

janb@science.uva.nl
2 Department of Philosophy, Utrecht University,

P.O. Box 80126, 3508 TC Utrecht, The Netherlands
janb@phil.uu.nl

3 Computing Science Department, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

keesm@win.tue.nl

Abstract. We present ACPc, a process algebra with conditional ex-
pressions in which the conditions are taken from a Boolean algebra, and
extensions of this process algebra with mechanisms for condition evalua-
tion. We confine ourselves to finitely branching processes. This restriction
makes it possible to presentc in a concise and intuitively clear way, and
to bring the notion of splitting bisimulation equivalence and the issue of
condition evaluation in process algebras with conditional expressions to
the forefront.

1 Introduction

It is not unusual that process algebras include conditional expressions of some
form. Several extensions of ACP [1,2] include conditional expressions of the form
ζ :→p or p� ζ 	q (see e.g. [3,4,5,6]). What are considered to be conditions differs
from one extension to another. The set of conditions is usually one of the follow-
ing: (i) a two-valued set, usually called B; (ii) the set of all propositions with a
given set of propositional variables and with finite conjunctions and disjunctions;
(iii) the domain of a free Boolean algebra over a given set of generators. The
third alternative generalizes the first two alternatives. In this paper, we present
ACPc, an extension of ACP with conditional expressions of the form ζ :→ p in
which the domain of a free Boolean algebra over a given set of generators is taken
as the set of conditions. We give the axioms of ACPc, describe the structural
operational semantics of ACPc, and introduce a variant of bisimulation equiva-
lence, called splitting bisimulation equivalence, for which the axiomatization is
sound. In the title, the qualification “strong” is used to indicate that splitting
bisimulation equivalence does not provide for abstraction from internal actions.
Outside the title, we leave out this qualification.

How conditions are evaluated is usually not considered. The state operators
as introduced in [4] allow for a kind of condition evaluation. However, state
operators were not especially devised for that purpose. In this paper, we extend

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 83–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

84 J.A. Bergstra and C.A. Middelburg

ACPc with operators especially devised for condition evaluation and with the
state operators from [4]; and show how those extensions are related. Two kinds of
operators are devised for condition evaluation, one for the case where condition
evaluation is not dependent on process behaviour and the other for the case
where condition evaluation is dependent on process behaviour. We show how a
theory about the set of atomic conditions can be used for condition evaluation
with an operator of the former kind, that the operators of the former kind are
superseded by the operators of the latter kind and that those operators are in
their turn superseded by the state operators.

The work presented in this paper can easily be adapted to other process
algebras based on (strong) bisimulation models, such as the strong bisimulation
version of CCS [7]. Adaptation to CSP [8], which is not based on bisimulation
models, will be more difficult and in part perhaps even impossible. In some
extensions of ACP with conditional expressions, the conditions are propositions
of a three-, four- or five-valued propositional logic, see e.g. [9,10]. Such conditions
will bring us outside the domain of Boolean algebras.

In [11], we investigated conditional expressions in the setting of ACP more
extensively. In that paper, we presented ACPc for the first time. We also pre-
sented its main models, called full splitting bisimulation models. We extended
ACPc with the above-mentioned operators especially devised for condition eval-
uation, the state operators from [4] and the signal emission operator from [6],
which like the state operators allows for a kind of condition evaluation. We also
showed how those extensions are related. On purpose to incorporate the past in
conditions, we also added a retrospection operator on conditions to ACPc.

All this fitted in with our intention at the time: to arrive at a well-considered
extension of ACP with conditional expressions in which retrospective conditions
can be used. Retrospective conditions allow for looking back on conditions under
which preceding actions have been performed. Their addition is considered to be
a basic way to increase expressiveness. In the full splitting bisimulation models
of ACPc, infinitely branching processes are taken into account. Because the
set of atomic conditions is not required to be finite, those models are rather
complicated. Moreover, the adaptation of the full splitting bisimulation models
to the retrospection operator on conditions is quite substantial. As a result, other
interesting matters are pushed to the background in [11].

The current paper can be viewed as an extended abstract of some parts
of [11]. Most importantly, the full splitting bisimulation models of ACPc and
the addition of the retrospection operator on conditions to ACPc are not cov-
ered. Moreover, because we confine ourselves to finitely branching processes, the
presentation of what is left over has been fairly simplified.

We do not give proofs of the theorems concerning congruence properties
of splitting bisimulation equivalence, soundness of axiomatizations for splitting
bisimulation equivalence, and uniqueness of solutions of guarded recursive spec-
ifications. Those theorems follow from the corresponding theorems in [11] be-
cause the structural operational semantics induces a model isomorphic to the
full bisimulation model that covers only finitely branching processes.

Strong Splitting Bisimulation Equivalence 85

2 BPA with Conditions

BPAδ is a subtheory of ACP that does not support parallelism and communica-
tion (see e.g. [2]). In this section, we present an extension of BPAδ with guarded
commands, i.e. conditional expressions of the form ζ :→p. The extension is called
BPAc

δ. In the extension, just as in BPAδ, it is assumed that a fixed but arbitrary
finite set of actions A, with δ �∈ A, has been given. Moreover it is assumed that
a fixed but arbitrary set of atomic conditions Cat has been given.

In BPAc
δ, conditions are taken from the domain of the free Boolean algebra

over Cat. We denote this algebra by C. As usual, we identify Boolean algebras with
their domain. Thus, we also write C for the domain of C. It is well known that C
is isomorphic to the Boolean algebra of equivalence classes with respect to logical
equivalence of the set of all propositions with elements of Cat as propositional
variables and with finite conjunctions and disjunctions (see e.g. [12]).

The algebraic theory BPAc
δ has two sorts:

– the sort P of processes ;
– the sort C of (finite) conditions.

The algebraic theory BPAc
δ has the following constants and operators to build

terms of sort C:

– the bottom constant ⊥ : C;
– the top constant � : C;
– for each η ∈ Cat, the atomic condition constant η : C;
– the unary complement operator − : C→ C;
– the binary join operator � : C×C→ C;
– the binary meet operator � : C×C→ C.

The algebraic theory BPAc
δ has the following constants and operators to build

terms of sort P:

– the deadlock constant δ : P;
– for each a ∈ A, the action constant a : P;
– the binary alternative composition operator + : P×P→ P;
– the binary sequential composition operator · : P×P→ P;
– the binary guarded command operator :→ : C×P→ P.

We use infix notation for the binary operators. The following precedence con-
ventions are used to reduce the need for parentheses. The operators to build
terms of sort C bind stronger than the operators to build terms of sort P. The
operator · binds stronger than all other binary operators to build terms of sort
P and the operator + binds weaker than all other binary operators to build
terms of sort P.

The constants and operators of BPAc
δ to build terms of sort P are the con-

stants and operators of BPAδ and additionally the guarded command operator.
Let p and q be closed terms of sort P and ζ be a closed term of sort C. Intu-
itively, the constants and operators to build terms of sort P can be explained as
follows:

86 J.A. Bergstra and C.A. Middelburg

Table 1. Axioms of Boolean algebras

φ � ⊥ = φ BA1

φ � −φ = 	 BA2

φ � ψ = ψ � φ BA3

φ � (ψ
 χ) = (φ � ψ)
 (φ � χ) BA4

φ
 	 = φ BA5

φ
 −φ = ⊥ BA6

φ
 ψ = ψ
 φ BA7

φ
 (ψ � χ) = (φ
 ψ) � (φ
 χ) BA8

Table 2. Axioms of BPAc
δ

x + y = y + x A1

(x + y) + z = x + (y + z) A2

x + x = x A3

(x + y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x + δ = x A6

δ · x = δ A7

	 :→ x = x GC1

⊥ :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x + y) = φ :→ x + φ :→ y GC4

φ :→ x · y = (φ :→ x) · y GC5

φ :→ (ψ :→ x) = (φ
 ψ) :→ x GC6

(φ � ψ) :→ x = φ :→ x + ψ :→ x GC7

– δ cannot perform any action;
– a first performs action a unconditionally and then terminates successfully;
– p + q behaves either as p or as q, but not both;
– p · q first behaves as p, but when p terminates successfully it continues by

behaving as q;
– ζ :→ p behaves as p under condition ζ.

Some earlier extensions of ACP include conditional expressions of the form
p � ζ 	 q; see e.g. [4]. This notation with triangles originates from [13]. We treat
conditional expressions of the form p � ζ 	 q, where p and q are terms of sort
P and ζ is a term of sort C, as abbreviations. That is, we write p � ζ 	 q for
ζ :→ p +−ζ :→ q.

The axioms of BPAc
δ are the axioms of Boolean Algebras (BA) given in

Table 1 and the additional axioms given in Table 2. Axioms A1–A7 are the
axioms of BPAδ. So BPAc

δ imports the (equational) axioms of both BA and
BPAδ. The axioms of BA given in Table 1 have been taken from [14]. Several
alternatives for this axiomatization can be found in the literature. If we use basic
laws of BA other than axioms BA1–BA8, such as φ � φ = φ and −(φ � ψ) =
−φ � −ψ, in a step of a derivation, we will refer to them as applications of BA
and not give their derivation from axioms BA1–BA8. Axioms GC1–GC7 have
been taken from [4], but with the axiom x · z � φ	 y · z = (x � φ	 y) · z (CO5)
replaced by φ :→ x · y = (φ :→ x) · y (GC5).

Example 1. Consider a careful pedestrian who uses a crossing with traffic lights
to cross a road with busy traffic safely. When the pedestrian arrives at the
crossing and the light for pedestrians is green, he or she simply crosses the
street. However, when the pedestrian arrives at the crossing and the light for

Strong Splitting Bisimulation Equivalence 87

Table 3. Transition rules for BPAc
δ

a
[�] a−−−→√

x
[φ] a−−−→√

x + y
[φ] a−−−→√

y
[φ] a−−−→√

x + y
[φ] a−−−→√

x
[φ] a−−−→ x′

x + y
[φ] a−−−→ x′

y
[φ] a−−−→ y′

x + y
[φ] a−−−→ y′

x
[φ] a−−−→√

x · y
[φ] a−−−→ y

x
[φ] a−−−→ x′

x · y
[φ] a−−−→ x′ · y

x
[φ] a−−−→√

ψ :→ x
[φ�ψ]a−−−−−→√ φ � ψ �= ⊥

x
[φ] a−−−→ x′

ψ :→ x
[φ�ψ] a−−−−−→ x′

φ � ψ �= ⊥

pedestrians is red, he or she first makes a request for green light (e.g. by pushing
a button) and then crosses the street when the light has changed. This behaviour
can be described in BPAc

δ as follows:

PED = arrive · (green :→ cross + red :→ (make-req · (green :→ cross))) .

The careful pedestrian described above does not cross the street if the light
for pedestrians does not change from red to green after a request for green light.
Whether the change from red to green will ever happen is not described here.

Henceforth, we write TP for the set of all closed terms of sort P and TC for
the set of all closed terms of sort C. The terms of sort C are interpreted in C as
usual. Henceforth, we write C− for C \ {⊥}.

We proceed to the presentation of the structural operational semantics of
BPAc

δ. The following transition relations on TP are used:

– for each � ∈ C− × A, a binary relation �−→;
– for each � ∈ C− × A, a unary relation �−→√.

We write p
[α] a−−−→ q instead of (p, q) ∈ (α,a)−−−→ and p

[α] a−−−→√ instead of p ∈ (α,a)−−−→√.
The relations �−→√ and �−→ can be explained as follows:

– p
[α] a−−−→√

: p is capable of performing action a under condition α and then
terminating successfully;

– p
[α] a−−−→ q: p is capable of performing action a under condition α and then

proceeding as q.

The structural operational semantics of BPAc
δ is described by the transition rules

given in Table 3.
Bisimilarity has to be adapted to the setting with guarded actions. In the

definition given below, we use a well-known notion from the field of Boolean
algebras: the partial order relation on C defined by α β iff α � β = β.
Moreover, we use the notation

⊔
A, where A = {α1, . . . , αn} ⊆ C, for α1�. . .�αn.

88 J.A. Bergstra and C.A. Middelburg

A splitting bisimulation B between closed terms p, q ∈ TP is a binary relation
on TP such that B(p, q) and for all p1, q1 such that B(p1, q1):

– if p1
[α] a−−−→ p2, then there exists a finite set CT ′ ⊆ C− × TP such that

α
⊔

dom(CT ′) and for all (α′, q2) ∈ CT ′, q1
[α′] a−−−→ q2 and B(p2, q2);

– if q1
[α] a−−−→ q2, then there exists a finite set CT ′ ⊆ C− × TP such that

α
⊔

dom(CT ′) and for all (α′, p2) ∈ CT ′, p1
[α′] a−−−→ p2 and B(p2, q2);

– if p1
[α] a−−−→√, then there exists a finite set C′ ⊆ C− such that α

⊔
C′ and

for all α′ ∈ C′, q1
[α′] a−−−→√;

– if q1
[α] a−−−→√, then there exists a finite set C′ ⊆ C− such that α

⊔
C′ and

for all α′ ∈ C′, p1
[α′] a−−−→√.

Two closed term p, q ∈ TP are splitting bisimulation equivalent or splitting bisim-
ilar for short, written p ⇔ q, if there exists a splitting bisimulation B between
p and q. Let B be a splitting bisimulation between p and q. Then we say that B
is a splitting bisimulation witnessing p⇔ q.

The name splitting bisimulation is used because a transition of one of the
related processes may be simulated by a set of transitions of the other process.
Splitting bisimulation should not be confused with split bisimulation [15].

Splitting bisimilarity is a congruence with respect to alternative composition,
sequential composition and guarded command.

Proposition 1 (Congruence). For all p, p′, q, q′ ∈ TP and α ∈ C, p⇔ q and
p′⇔ q′ implies p + p′⇔ q + q′, p · p′⇔ q · q′ and α :→ p⇔ α :→ q.

The axioms of BPAc
δ constitute a sound and complete axiomatization of splitting

bisimilarity.

Theorem 1 (Soundness). For all p, q ∈ TP, BPAc
δ � p = q implies p⇔ q.

Theorem 2 (Completeness). For all p, q ∈ TP, p⇔ q implies BPAc
δ � p = q.

Proof. The proof follows the same line as the completeness proof for BPAδ given
in [16]. ��

3 ACP with Conditions

In order to support parallelism and communication, we add parallel composition
and encapsulation operators to BPAc

δ, resulting in ACPc.
Like in BPAc

δ, it is assumed that a fixed but arbitrary finite set of actions
A, with δ �∈ A, and a fixed but arbitrary set of atomic conditions Cat has been
given. We write Aδ for A ∪ {δ}. In ACPc, it is further assumed that a fixed but
arbitrary commutative and associative communication function | :Aδ×Aδ → Aδ,
such that δ | a = δ for all a ∈ Aδ, has been given. The function | is regarded
to give the result of synchronously performing any two actions for which this is
possible, and to be δ otherwise.

The theory ACPc is an extension of BPAc
δ. It has the constants and operators

of BPAc
δ and in addition:

Strong Splitting Bisimulation Equivalence 89

Table 4. Additional axioms for ACPc (a, b, c ∈ Aδ)

x ‖ y = x �� y + y �� x + x | y CM1

a �� x = a · x CM2

a · x �� y = a · (x ‖ y) CM3

(x + y) �� z = x �� z + y �� z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

∂H(a) = a if a ∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

(φ :→ x) �� y = φ :→ (x �� y) GC8

(φ :→ x) | y = φ :→ (x | y) GC9

x | (φ :→ y) = φ :→ (x | y) GC10

∂H(φ :→ x) = φ :→ ∂H(x) GC11

– the binary parallel composition operator ‖ : P×P→ P;
– the binary left merge operator ## : P×P→ P;
– the binary communication merge operator | : P×P→ P;
– for each H ⊆ A, the unary encapsulation operator ∂H : P→ P.

We use infix notation for the additional binary operators as well.
The constants and operators of ACPc to build terms of sort P are the con-

stants and operators of ACP and additionally the guarded command operator.
Let p and q be closed terms of ACPc. Intuitively, the additional operators

can be explained as follows:

– p ‖ q behaves as the process that proceeds with p and q in parallel;
– p ## q behaves the same as p ‖ q, except that it starts with performing an

action of p;
– p |q behaves the same as p‖q, except that it starts with performing an action

of p and an action of q synchronously;
– ∂H(p) behaves the same as p, except that it does not perform actions in H .

The axioms of ACPc are the axioms of BPAc
δ and the additional axioms

given in Table 4. CM2–CM3, CM5–CM7, C1–C3 and D1–D2 are actually axiom
schemas in which a, b and c stand for arbitrary constants of ACPc (i.e. a, b, c ∈
Aδ). In D1–D4, H stands for an arbitrary subset of A. So, D3 and D4 are axiom
schemas as well.

Axioms A1–A7, CM1–CM9, C1–C3 and D1–D4 are the axioms of ACP. So
ACPc imports the axioms of ACP.

A well-known subtheory of ACP is PA, ACP without communication. Like-
wise, we have a subtheory of ACPc, to wit PAc. The theory PAc is ACPc without
the communication merge operator, without axioms CM5–CM9 and C1–C3, and

90 J.A. Bergstra and C.A. Middelburg

Table 5. Additional transition rules for ACPc

x
[φ] a−−−→√

x ‖ y
[φ] a−−−→ y

y
[φ] a−−−→√

x ‖ y
[φ] a−−−→ x

x
[φ] a−−−→ x′

x ‖ y
[φ] a−−−→ x′ ‖ y

y
[φ] a−−−→ y′

x ‖ y
[φ] a−−−→ x ‖ y′

x
[φ] a−−−→√

, y
[ψ] b−−−→√

x ‖ y
[φ�ψ] c−−−−−→√ a | b = c, φ � ψ �= ⊥

x
[φ] a−−−→√

, y
[ψ] b−−−→ y′

x ‖ y
[φ�ψ] c−−−−−→ y′

a | b = c, φ � ψ �= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→√

x ‖ y
[φ�ψ] c−−−−−→ x′

a | b = c, φ � ψ �= ⊥
x

[φ] a−−−→ x′, y
[ψ] b−−−→ y′

x ‖ y
[φ�ψ] c−−−−−→ x′ ‖ y′

a | b = c, φ � ψ �= ⊥

x
[φ] a−−−→√

x 		 y
[φ] a−−−→ y

x
[φ] a−−−→ x′

x 		 y
[φ] a−−−→ x′ ‖ y

x
[φ] a−−−→√

, y
[ψ] b−−−→√

x | y
[φ�ψ] c−−−−−→√ a | b = c, φ � ψ �= ⊥

x
[φ] a−−−→√

, y
[ψ] b−−−→ y′

x | y
[φ�ψ] c−−−−−→ y′

a | b = c, φ � ψ �= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→√

x | y
[φ�ψ] c−−−−−→ x′

a | b = c, φ � ψ �= ⊥
x

[φ] a−−−→ x′, y
[ψ] b−−−→ y′

x | y
[φ�ψ] c−−−−−→ x′ ‖ y′

a | b = c, φ � ψ �= ⊥

x
[φ] a−−−→√

∂H(x)
[φ] a−−−→√ a �∈ H

x
[φ] a−−−→ x′

∂H(x)
[φ] a−−−→ ∂H(x′)

a �∈ H

with axiom CM1 replaced by x ‖ y = x ## y + y ## x (M1). In other words, the
possibility that actions are performed synchronously is not covered by PAc.

The structural operational semantics of ACPc is described by the transition
rules for BPAc

δ and the additional transition rules given in Table 5.
Splitting bisimilarity is a congruence with respect to parallel composition,

left merge, communication merge and encapsulation.

Proposition 2 (Congruence). For all p, p′, q, q′ ∈ TP, p ⇔ q and p′ ⇔ q′

implies p ‖ p′⇔ q ‖ q′, p ## p′⇔ q ## q′, p | p′⇔ q | q′ and ∂H(p)⇔ ∂H(q).

The axioms of ACPc constitute a sound and complete axiomatization of splitting
bisimilarity.

Theorem 3 (Soundness). For all p, q ∈ TP, ACPc � p = q implies p⇔ q.

Theorem 4 (Completeness). For all p, q ∈ TP, p⇔ q implies ACPc � p = q.

Proof. The proof follows the same line as the completeness proof for ACP given
in [16]. ��

4 Guarded Recursion

In order to allow for the description of (potentially) non-terminating processes,
we add guarded recursion to ACPc.

Strong Splitting Bisimulation Equivalence 91

Table 6. Axioms for recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Table 7. Transition rules for recursion

〈tX |E〉 [φ] a−−−→√

〈X|E〉 [φ] a−−−→√ X = tX ∈ E
〈tX |E〉 [φ] a−−−→ x′

〈X|E〉 [φ] a−−−→ x′
X = tX ∈ E

A recursive specification over ACPc is a set of equations E = {X = tX | X ∈
V } where V is a set of variables and each tX is a term of ACPc that only contains
variables from V . We write V(E) for the set of all variables that occur on the left-
hand side of an equation in E. A solution of a recursive specification E is a set of
processes (in some model of ACPc) {PX | X ∈ V(E)} such that the equations of
E hold if, for all X ∈ V(E), X stands for PX . Let t be a term of ACPc containing
a variable X . We call an occurrence of X in t guarded if t has a subterm of the
form a · t′ containing this occurrence of X . A recursive specification over ACPc

is called a guarded recursive specification if all occurrences of variables in the
right-hand sides of its equations are guarded or it can be rewritten to such
a recursive specification using the axioms of ACPc and the equations of the
recursive specification.

For each guarded recursive specification E and each variable X ∈ V(E), we
introduce a constant of sort P standing for the unique solution of E for X . This
constant is denoted by 〈X |E〉. We will also use the following notation. Let t be
a term of ACPc and E be a guarded recursive specification over ACPc. Then we
write 〈t|E〉 for t with, for all X ∈ V(E), all occurrences of X in t replaced by
〈X |E〉.

The additional axioms for recursion are the equations given in Table 6. Both
RDP and RSP are axiom schemas. A side condition is added to restrict the
variables, terms and guarded recursive specifications for which X , tX and E
stand. The additional axioms for recursion are known as the recursive definition
principle (RDP) and the recursive specification principle (RSP). The equations
〈X |E〉 = 〈tX |E〉 for a fixed E express that the constants 〈X |E〉 make up a
solution of E. The conditional equations E ⇒ X = 〈X |E〉 express that this
solution is the only one.

The structural operational semantics for the constants 〈X |E〉 is described by
the transition rules given in Table 7.

Guarded recursive specifications over ACPc have unique solutions in the
model induced by the structural operational semantics of ACPc extended with
guarded recursion.

Theorem 5 (Unique solutions). Let E be a guarded recursive specifications
over ACPc. If {pX | X ∈ V(E)} and {qX | X ∈ V(E)} are solutions of E, then
pX ⇔ qX for all X ∈ V(E).

92 J.A. Bergstra and C.A. Middelburg

Table 8. Axioms for condition evaluation (a ∈ Aδ, η ∈ Cat, η′ ∈ Cat ∪ {⊥, 	})

CEh(a) = a CE1

CEh(a · x) = a · CEh(x) CE2

CEh(x + y) = CEh(x) + CEh(y) CE3

CEh(φ :→ x) = CEh(φ) :→ CEh(x) CE4

CEh(CEh′(x)) = CEh◦h′(x) CE5

CEh(⊥) = ⊥ CE6

CEh() = 	 CE7

CEh(η) = η′ if h(η) = η′ CE8

CEh(−φ) = −CEh(φ) CE9

CEh(φ � ψ) = CEh(φ) � CEh(ψ) CE10

CEh(φ
 ψ) = CEh(φ)
 CEh(ψ) CE11

5 Evaluation of Conditions

Guarded commands cannot always be eliminated from closed terms of ACPc

because conditions different from both ⊥ and � may be involved. The condition
evaluation operators introduced below, can be brought into action in such cases.

There are unary condition evaluation operators CEh :P→ P and CEh :C→ C
for each endomorphisms h of C.

These operators can be explained as follows: CEh(p) behaves as p with each
condition ζ occurring in p replaced according to h. If the image of C under h is
B, i.e. the Boolean algebra with domain {⊥,�}, then guarded commands can
be eliminated from CEh(p). In the case where the image of C under h is not B,
CEh can be regarded to evaluate the conditions only partially.

Henceforth, we write H for the set of all endomorphisms of C.
The additional axioms for CEh, where h ∈ H, are the axioms given in Table 8.

Example 2. We return to Example 1, which is concerned with a pedestrian who
uses a crossing with traffic lights to cross a road with busy traffic safely. Let hg be
such that hg(green) = � and hg(red) = ⊥; and let hr be such that hr(green) = ⊥
and hr(red) = �. Then we can derive the following:

CEhg (PED) = arrive · cross and CEhr(PED) = arrive ·make-req · δ .

So in a world where the traffic light for pedestrians is green he or she will cross
the street without making a request for green light; and in a world where the
traffic light for pedestrians is red he or she will become completely inactive after
making a request for green light. In reality, the request would cause a change
from red to green, but the condition evaluation operators CEh cannot deal with
that. We will return to this issue in Example 3.

The structural operational semantics of ACPc extended with condition eval-
uation is described by the transition rules for ACPc and the transition rules
given in Table 9.

The elements of C can be used to represent equivalence classes with respect
to logical equivalence of the set of all propositions with elements of Cat as propo-
sitional variables and with finite conjunctions and disjunctions. We write P for
this set of propositions. It is likely that there is a theory Φ about the atomic

Strong Splitting Bisimulation Equivalence 93

Table 9. Transition rules for condition evaluation

x
[φ] a−−−→√

CEh(x)
[h(φ)] a−−−−−→√ h(φ) �= ⊥

x
[φ] a−−−→ x′

CEh(x)
[h(φ)] a−−−−−→ CEh(x′)

h(φ) �= ⊥

conditions in the shape of a set of propositions. Let Φ ⊂ P , and let hΦ ∈ H be
such that for all α, β ∈ C:

Φ � 〈〈hΦ(α)〉〉 ⇔ 〈〈α〉〉 and hΦ(α) = hΦ(β) iff Φ � 〈〈α〉〉 ⇔ 〈〈β〉〉 (1)

where 〈〈α〉〉 is a representative of the equivalence class of propositions isomorphic
to α. Then we have hΦ(α) = � iff 〈〈α〉〉 is derivable from Φ and hΦ(α) = ⊥ iff
¬ 〈〈α〉〉 is derivable from Φ. The image of C under hΦ is B iff Φ is a complete
theory. If Φ is not a complete theory, then hΦ is not uniquely determined by (1).
However, the images of C under the different endomorphisms satisfying (1) are
isomorphic subalgebras of C. Moreover, if both h and h′ satisfy (1), then Φ �
〈〈h(α)〉〉 ⇔ 〈〈h′(α)〉〉 for all α ∈ C.

Below, we show that condition evaluation on the basis of a complete theory
can be viewed as substitution on the basis of the theory. That leads us to the
use of the following convention: for α ∈ C, α stands for an arbitrary closed term
of sort C of which the value in C is α.

Proposition 3 (Condition evaluation on the basis of a theory). Let Φ ⊂
P be a complete theory and let p be a closed term of ACPc. Then CEhΦ(p) = p′

where p′ is p with, for all α ∈ C, in all subterms of the form α :→ q, α replaced
by � if Φ � 〈〈α〉〉 and α replaced by ⊥ if Φ � ¬ 〈〈α〉〉.

Proof. This result follows immediately from the definition of hΦ and the distrib-
utivity of CEhΦ over all operators of ACPc. ��

In μCRL [17], an extension of ACP which includes conditional expressions, we
find a formalization of the substitution-based alternative for CEhΦ .

The substitution-based alternative works properly because condition evalu-
ation by means of a condition evaluation operator is not dependent on process
behaviour. Hence, the result of condition evaluation is globally valid. Below, we
will generalize the condition evaluation operators introduced above in such a
way that condition evaluation may be dependent on process behaviour. In that
case, the result of condition evaluation is in general not globally valid.

Remark 1. Let h ∈ H. Then h induces a theory Φ ⊂ P such that h = hΦ, viz.
the theory Φ defined by

Φ = {〈〈h(α)〉〉 ⇔ 〈〈α〉〉 | α ∈ C} ∪ {〈〈α〉〉 ⇔ 〈〈β〉〉 | h(α) = h(β)} .

Consequently, condition evaluation by means of the condition evaluation
operators introduced above is always condition evaluation of which the result
can be determined from a set of propositions.

94 J.A. Bergstra and C.A. Middelburg

Table 10. Axioms for generalized condition evaluation (a ∈ Aδ)

GCEh(a) = a GCE1

GCEh(a · x) = a · GCEeff(a,h)(x) GCE2

GCEh(x + y) = GCEh(x) + GCEh(y) GCE3

GCEh(φ :→ x) = CEh(φ) :→ GCEh(x) GCE4

Table 11. Transition rules for generalized condition evaluation

x
[φ] a−−−→√

GCEh(x)
[h(φ)] a−−−−−→√ h(φ) �= ⊥

x
[φ] a−−−→ x′

GCEh(x)
[h(φ)] a−−−−−→ GCEeff(a,h)(x′)

h(φ) �= ⊥

We proceed with generalizing the condition evaluation operators introduced
above. It is assumed that a fixed but arbitrary function eff :A×H → H has been
given.

There is a unary generalized condition evaluation operator GCEh :P→ P for
each h ∈ H; and there is again the unary operator CEh : C→ C for each h ∈ H.

The generalized condition evaluation operator GCEh allows, given the func-
tion eff, to evaluate conditions dependent of process behaviour. The function
eff gives, for each action a and endomorphism h, the endomorphism h′ that
represents the changed results of condition evaluation due to performing a. The
function eff is extended to Aδ such that eff(δ, h) = h for all h ∈ H.

The additional axioms for GCEh, where h ∈ H, are the axioms given in
Table 10 and axioms CE6–CE11 from Table 8.

Example 3. We return to Example 1, which is concerned with a pedestrian who
uses a crossing with traffic lights to cross a road with busy traffic safely. In
Example 2, we illustrated that the condition evaluation operators CEh cannot
deal with the change from red light to green light caused by a request for green
light. Here, we illustrate that the generalized condition evaluation operators
GCEh can deal with such a change. Let hg and hr be as in Example 2; and let
eff be such that eff(make-req , hr) = hg and eff(a, h) = h otherwise. Then we can
derive the following:

GCEhg(PED) = arrive · cross ,

GCEhr(PED) = arrive ·make-req · cross .

The change from red light to green light is due to interaction between the
pedestrian and the traffic lights.

The structural operational semantics of ACPc extended with generalized con-
dition evaluation is described by the transition rules for ACPc and the transition
rules given in Table 11.

We can add both the condition evaluation operators and the generalized
condition evaluation operators to ACPc. However, Proposition 4 stated below
makes it clear that the latter operators supersede the former operators.

Strong Splitting Bisimulation Equivalence 95

The equation CEh(CEh′(x)) = CEh◦h′(x) is an axiom, but the equation
GCEh(GCEh′(x)) = GCEh◦h′(x) is not an axiom. The reason is that the lat-
ter equation is only valid if eff satisfies eff(a, h ◦ h′) = eff(a, h) ◦ eff(a, h′) for all
a ∈ A and h, h′ ∈ H.

As their name suggests, the generalized condition evaluation operators are
generalizations of the condition evaluation operators.

Proposition 4 (Generalization). We can fix the function eff such that
GCEh(x) = CEh(x) for all h ∈ H.

Proof. Clearly, if eff(a, h′) = h′ for all a ∈ A and h′ ∈ H, then GCEh(x) = CEh(x)
for all h ∈ H. ��

The state operators that are added to ACPc in Sect. 6 are in their turn gener-
alizations of the generalized condition evaluation operators.

6 State Operators

The state operators make it easy to represent the execution of a process in a
state. The basic idea is that the execution of an action in a state has effect on
the state, i.e. it causes a change of state. Besides, there is an action left when
an action is executed in a state. The operators introduced here generalize the
state operators added to ACP in [18]. The main difference with those operators
is that guarded commands are taken into account.

It is assumed that a fixed but arbitrary set S of states has been given,
together with functions act : A × S → Aδ, eff : A× S → S and eval : C × S → C,
where, for each s ∈ S, the function hs : C → C defined by hs(α) = eval(α, s) is
an endomorphism of C.

There are unary state operators λs : P→ P and λs : C→ C for each s ∈ S.
The state operator λs allows, given the above-mentioned functions, processes

to interact with a state. Let p be a process. Then λs(p) is the process p executed
in state s. The function act gives, for each action a and state s, the action that
results from executing a in state s. The function eff gives, for each action a and
state s, the state that results from executing a in state s. The function eval gives,
for each condition α and state s, the condition that results from evaluating α in
state s. The functions act and eff are extended to Aδ such that act(δ, s) = δ and
eff(δ, s) = s for all s ∈ S.

The additional axioms for λs, where s ∈ S, are the axioms given in Table 12.
Axioms SO1–SO3 are the axioms for the state operators added to ACP in [18].

The structural operational semantics of ACPc extended with state operators
is described by the transition rules for ACPc and the transition rules given in
Table 13.

We can add, in addition to the state operators, the condition evaluation
operators and/or the generalized condition evaluation operators from Sect. 5 to
ACPc.

The state operators are generalizations of the generalized condition evalua-
tion operators from Sect. 5.

96 J.A. Bergstra and C.A. Middelburg

Table 12. Axioms for state operators (a ∈ Aδ , η ∈ Cat, η′ ∈ Cat ∪ {⊥, 	})

λs(a) = act(a, s) SO1

λs(a · x) = act(a, s) · λeff(a,s)(x) SO2

λs(x + y) = λs(x) + λs(y) SO3

λs(φ :→ x) = λs(φ) :→ λs(x) SO4

λs(⊥) = ⊥ SO5

λs() = 	 SO6

λs(η) = η′ if eval(η, s) = η′ SO7

λs(−φ) = −λs(φ) SO8

λs(φ � ψ) = λs(φ) � λs(ψ) SO9

λs(φ
 ψ) = λs(φ)
 λs(ψ) SO10

Table 13. Transition rules for state operators

x
[φ] a−−−→√

λs(x)
[eval(φ,s)] act(a,s)−−−−−−−−−−−−→√ act(a, s) �= δ, eval(φ, s) �= ⊥

x
[φ] a−−−→ x′

λs(x)
[eval(φ,s)] act(a,s)−−−−−−−−−−−−→ λeff(a,s)(x′)

act(a, s) �= δ, eval(φ, s) �= ⊥

Proposition 5 (Generalization). We can fix S, act, eff and eval such that,
for some f :H → S, λf(h)(x) = GCEh(x) holds for all h ∈ H.

Proof. Clearly, if S = H, f is the identity function on H, and act(a, s) = a,
eff(a, s) = eff(a, f−1(s)) and eval(α, s) = f−1(s)(α) for all a ∈ A, s ∈ S and
α ∈ C, then λf(h)(x) = GCEh(x) holds for all h ∈ H. ��
Notice that, in so far as condition evaluation is concerned, the state operators
do not add anything to the generalized condition evaluation operators.

7 Concluding Remarks

Conditional expressions of the form ζ :→ p are not new. They were added to
ACP for the first time in [3]. In [4], it was proposed to take the domain of a free
Boolean algebra over a given set of generators as the set of conditions. Splitting
bisimilarity is based on a variant of bisimilarity that was defined for the first
time in [4]. The formulation given here is closer to the one given in [5]. State
operators were added to ACP for the first time in [18]. The condition evaluation
operators and the generalized condition evaluation operators were introduced
for the first time in [11]. We are not aware of other work studying condition
evaluation in a process algebra with conditional expressions.

In ACPc, like in ACPps [6], conditional expressions give rise to the inclusion
of conditional transitions in the behaviour being described, whereas in most other
process algebraic formalisms that include conditional expressions, they concern
the conditional inclusion of unconditional transitions (see e.g. μCRL [19]). ACPc,
like ACPps, is a development following ideas from [4]. ACPc is based on a more
abstract view on conditions than ACPps, but it lacks signal emission – a mech-
anism from ACPps that allows for a kind of condition evaluation.

Strong Splitting Bisimulation Equivalence 97

References

1. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60 (1984) 109–137

2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge (1990)

3. Baeten, J.C.M., Bergstra, J.A., Mauw, S., Veltink, G.J.: A process specification
formalism based on static COLD. In Bergstra, J.A., Feijs, L.M.G., eds.: Alge-
braic Methods II: Theory, Tools and Applications. Volume 490 of Lecture Notes in
Computer Science., Springer-Verlag (1991) 303–335

4. Baeten, J.C.M., Bergstra, J.A.: Process algebra with signals and conditions. In
Broy, M., ed.: Programming and Mathematical Methods. Volume F88 of NATO
ASI Series., Springer-Verlag (1992) 273–323

5. Bergstra, J.A., Ponse, A., van Wamel, J.J.: Process algebra with backtracking. In
de Bakker, J.W., de Roever, W.P., Rozenberg, G., eds.: A Decade of Concurrency
(Reflections and Perspectives). Volume 803 of Lecture Notes in Computer Science.,
Springer-Verlag (1994) 46–91

6. Baeten, J.C.M., Bergstra, J.A.: Process algebra with propositional signals. Theo-
retical Computer Science 177 (1997) 381–405

7. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency.
Journal of the ACM 32 (1985) 137–161

8. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31 (1984) 560–599

9. Bergstra, J.A., Ponse, A.: Process algebra and conditional composition. Informa-
tion Processing Letters 80 (2001) 41–49

10. van der Zwaag, M.B.: Models and Logics for Process Algebra. PhD thesis, Pro-
gramming Research Group, University of Amsterdam, Amsterdam (2002)

11. Bergstra, J.A., Middelburg, C.A.: Splitting bisimulations and retrospective condi-
tions. Computer Science Report 05-03, Department of Mathematics and Computer
Science, Eindhoven University of Technology (2005)

12. Monk, J.D., Bonnet, R., eds.: Handbook of Boolean Algebras. Volume 1. Elsevier,
Amsterdam (1989)

13. Hoare, C.A.R., Hayes, I.J., He Jifeng, Morgan, C.C., Roscoe, A.W., Sanders, J.W.,
Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Communications
of the ACM 30 (1987) 672–686

14. Halmos, P.R.: Lectures on Boolean Algebras. Mathematical Studies. Van Nostrand,
Princeton, NJ (1963)

15. Busi, N., van Glabbeek, R.J., Gorrieri, R.: Axiomatising ST-bisimulation seman-
tics. In Olderog, R.R., ed.: PROCOMET’94. Volume 56 of IFIP Transactions A.,
North-Holland (1994) 169–188

16. Baeten, J.C.M., Verhoef, C.: Concrete process algebra. In Abramsky, S., Gabbay,
D.M., Maibaum, T.S.E., eds.: Handbook of Logic in Computer Science. Volume IV.
Oxford University Press, Oxford (1995) 149–268

17. Groote, J.F., Ponse, A.: Proof theory for μCRL: A language for processes with data.
In Andrews, D.J., Groote, J.F., Middelburg, C.A., eds.: Semantics of Specification
Languages. Workshops in Computing Series, Springer-Verlag (1994) 232–251

18. Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process
algebra. Information and Control 78 (1988) 205–245

19. Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In Ponse, A., Ver-
hoef, C., van Vlijmen, S.F.M., eds.: Algebra of Communicating Processes 1994.
Workshops in Computing Series, Springer-Verlag (1995) 26–62

Complete Axioms for Stateless Connectors�

Roberto Bruni, Ivan Lanese, and Ugo Montanari

Computer Science Department, University of Pisa, Italy
{bruni, lanese, ugo}@di.unipi.it

Abstract. The conceptual separation between computation and coordination in
distributed computing systems motivates the use of peculiar entities commonly
called connectors, whose task is managing the interaction among distributed com-
ponents. Different kinds of connectors exist in the literature, at different levels
of abstraction. We focus on a basic algebra of connectors which is expressive
enough to model, e.g., all the architectural connectors of CommUnity. We first
define the operational, observational and denotational semantics of connectors,
then we show that the observational and denotational semantics coincide and fi-
nally we give a complete normal-form axiomatization.

1 Introduction

The advent of modern communication technologies shifted the focus of computer sci-
ence researchers from isolated computing systems to distributed communicating sys-
tems, in which interaction plays the prominent role. In Milner’s words [21], “computing
has grown into informatics and Turing’s logical computing machines are matched by
a logic of interaction”. In this perspective, the analysis of global computing systems is
facilitated by approaches, techniques and paradigms that exploit a clean conceptual sep-
aration between computation and coordination. This is much evident at several levels
of abstraction (architecture, software, processes), where issues like reusability, mainte-
nance, heterogeneity call for modular specifications, theories and models.

When separating coordination from computation, the notion of a connector emerges
in different contexts, with slightly different meaning, expressiveness and functionalities.
The common trait is the role of a connector: a component that mediates the interaction
of other computational components and connectors. In particular, connectors have been
studied within both algebraic and categorical approaches to system modeling.

The algebraic approach [14,20] models systems a elements of a suitable term al-
gebra, with constants modeling basic components that can be composed via the other
operators, e.g., parallel composition and name restriction. Operational and abstract se-
mantics are usually based on a labelled transition system defined by structural induction.

The categorical approach [13] models systems as objects in a category, with mor-
phisms defining relations such as subsystem or refinement. Complex software architec-
tures can be modeled as diagrams in the category, with universal constructions, such
as colimit, building an object in the same category that behaves as the whole system

� Research supported by the FET-GC Project IST-2001-32747 AGILE and by the project HPRN-
CT-2002-00275 SEGRAVIS.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 98–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Complete Axioms for Stateless Connectors 99

and that is uniquely determined up to isomorphism. The use of architectural connectors
within the categorical approach is well exemplified by CommUnity [11,10].

Having rigorous mathematical foundations is crucial for the analysis of coordinated
distributed systems. Several different kinds of connectors have been studied in the lit-
erature, studying e.g. the observational semantics of process contexts [17,24,12,16], or
analysing suitable equational theories and reduction to normal forms [25,6,3,15].

In this paper, we concentrate on the algebraic approach by promoting a small alge-
bra of connectors, for which we define suitable operational, observational and denota-
tional semantics. The first one is expressed using the Tile Model [12]. The observational
semantics we select is tile bisimilarity, that also coincides with tile trace equivalence
for the algebra under inspection. The denotational semantics is original to this contri-
bution and it is based on (an algebra of) suitable boolean matrices, called tick-tables.
We first show that the observational and denotational semantics coincide and then give
a complete normal-form axiomatization for them, which is the main result of the paper.

Our connectors are rather simple: they essentially model basic synchronization, mu-
tual exclusion and hiding and they are all stateless. Nevertheless, we think that the anal-
ysis of these connectors is quite interesting, since they allow to build a wide range of co-
ordination connectors. For instance, they are expressive enough to model the multiple-
action synchronization mechanism of CommUnity which uses morphisms and complex
architectural connectors. This is shown in the previous work [2], where an encoding
from CommUnity into the Tile Model is defined. One of the main results of [2] is that
the translation of a diagram is tile bisimilar to the translation of its colimit.

The above mentioned main result of this paper, namely the complete axiomatiza-
tion of abstract semantics, improves the work in [2] by showing that, for the part of
action coordination, tile bisimilarity can be axiomatized as a suitable equational the-
ory, where equivalence classes have standard representatives. While in the algebraic
approach equivalence classes are usually abstract entities, having a normal form gives a
concrete representation that matches a nice feature of the categorical approach, namely
that the colimit of a diagram is its best concrete representative.

The research initiated in [2] and extended in this paper is a first step towards a more
general reconciliation between the categorical and the algebraic approach, of which
CommUnity and the Tile Model are just intended to be two selected representatives.

With respect to other approaches to synchronization connectors existing in the lit-
erature [3,5,25,6,15], our main contribution is the introduction of the mutual exclusion
connector, which allows to specify a wider range of possible synchronization policies.
Furthermore, the semantics based on matrices is new and it provides a clean mathemat-
ical definition of connectors. Finally, we characterize the classes of matrices that can be
specified, both with and without mutual exclusion.

Structure of the paper. § 2 contains some background on symmetric monoidal cate-
gories and on the Tile Model. § 3 presents syntax and semantics of connectors, showing
the correspondence between the observational and denotational semantics. § 4 contains
the main results of the paper, namely the axiomatization of connectors and the theorems
for semantic equivalence and normal form: we consider the case without mutual exclu-
sion first (§ 4.1) and the general case later (§ 4.2). Conclusion and future work are in
§ 5. Due to space constraints, proofs are just sketched: full proofs can be found in [4].

100 R. Bruni, I. Lanese, and U. Montanari

2 Background

Symmetric monoidal categories for connectors. It has been shown in the literature that
distributed systems can be conveniently modeled as graphs [8,22,9] that straightfor-
wardly account for the network distribution of processes, mobile agents, etc. The ad-
vantage representing configuration graphs as (freely generated) symmetric monoidal
categories is three-fold. First, they introduce a suitable notion of (observable) interfaces
for configurations. Second, they introduce two key operations for composing graphs,
namely sequential and parallel compositions. Third, the natural isomorphism defined
by symmetries allows to take graphs up to interface-preserving graph isomorphism.

We recall that a (strict) monoidal category [18] (C ,⊗,e) is a category C together
with a functor ⊗ : C ×C → C called the tensor product and an object e called the unit,
such that for any arrows α1,α2,α3 ∈ C we have (α1⊗α2)⊗α3 = α1⊗ (α2⊗α3) and
α1⊗ ide = α1 = ide⊗α1. Note that, by functoriality of ⊗ we have, e.g., α1⊗α2 =
α1⊗ ida2; idb1 ⊗α2 = ida1⊗α2;α1⊗ idb2 for any αi : ai → bi, i ∈ {1,2}.

Definition 1. A symmetric (strict) monoidal category (C ,⊗,e,γ) is a (strict) monoidal
category (C ,⊗,e) together with a family of arrows, called symmetries, {γa,b : a⊗b →
b⊗a}a,b indexed by pairs of objects in C such that for any two arrows α1,α2 ∈ C with
αi : ai → bi, we have α1⊗α2;γb1,b2 = γa1,a2 ;α2⊗α1 (that is γ is a natural isomorphism)
that satisfies the coherence equalities (for any objects a,b,c):

γa,b;γb,a = ida⊗b γa⊗b,c = ida⊗ γb,c;γa,c⊗ idb.

The categories we are interested in are those freely generated from an unsorted
(hyper)signature Σ, i.e., from a ranked family of operators σ : n → m. The objects are
just natural numbers expressing the arities of the interfaces, i.e., the number of “attach
points”, with n⊗m = n + m and e = 0. The operators σ ∈ Σ are seen as basic arrows
with source and target defined accordingly to the arity of σ. Symmetries can be always
expressed in terms of the basic symmetry γ1,1 : 2 → 2. Intuitively, symmetries can be
used to rearrange the input-output interfaces of graph-like configurations. We call per-
mutation any composition of identities and symmetries. A generic arrow can always be
expressed as a suitable composition of id1, γ1,1 and σ ∈ Σ.

Lemma 1. Any arrow α can be decomposed as idn1 ⊗σ1⊗ idm1 ; . . . ; idnk ⊗σk⊗ idmk

for some natural numbers k,n1, . . . ,nk,m1, . . . ,mk and σ1, . . . ,σk ∈ {γ1,1}∪Σ.

An arrow expressed using only identities and (possibly multiple instances of) one
particular σ ∈ {γ1,1}∪Σ is called a layer of σ. For example, a permutation is a layer of
γ1,1.

Tile Model. In this paper, we choose the Tile Model for defining the operational and ob-
servational semantics of connectors. In fact, tile configurations are suitable to represent
connectors, which include input and output interfaces where actions can be observed
and that can be used to compose configurations and to coordinate their behaviours.

The Tile Model [12] is a rule-based framework whose main ingredients are rewrite
rules with side effects, called basic tiles that combine inspirations from SOS rules [23],

Complete Axioms for Stateless Connectors 101

x s
��

a
��

A

initial input interface y

b
��

initial output interface

z
t

��

final input interface
w

final output interface

Fig. 1. Graphical representation of a tile A

context systems [17], structured transition systems [7] and rewriting logic [19]. A tile
A : s

a−→
b

t is a rewrite rule stating that the initial configuration s can evolve to the final

configuration t via A, producing the effect b; but the step is allowed only if the ‘argu-
ments’ of s can produce a, which acts as the trigger of A (see Figure 1). Triggers and
effects are called observations and tile vertices are called interfaces. The operational se-
mantics of concurrent systems can be expressed via tiles if system configurations form
a monoidal category H , and observations form a monoidal category V with the same
set of objects as H . Abusing the notation, we denote by ⊗ both monoidal functors of
H and V and by ; both sequential compositions in H and V .

Definition 2. A tile system is a tuple R = (H ,V ,N,R) where H and V are monoidal
categories with the same set of objects OH = OV , N is the set of rule names and R : N →
H ×V ×V ×H is a function such that for all A ∈ N, if R(A) = 〈s,a,b,t〉, then the
arrows s,a,b,t can form a tile like in Figure 1.

Tiles can be composed horizontally, in parallel, and vertically to generate larger
steps. Horizontal composition A;B coordinates the evolution of the initial configuration
of A with that of B, yielding the ‘synchronization’ of the two rewrites. Horizontal com-
position is possible only if the initial configurations of A and B interact cooperatively:
the effect of A must provide the trigger for B. The parallel composition A⊗B builds
concurrent steps. Vertical composition A∗B is sequential composition of computations.

Tiles can be seen as sequents of tile logic: the sequent s
a−→
b

t is entailed by the tile

logic associated with R , written R � s
a−→
b

t, if it can be obtained by composing some

basic tiles in R (possibly using also auxiliary tiles, like identities id
a−→
a

id propagating

observations). The “borders” of composed sequents are defined in Figure 2.
The main feature of tiles is their double labeling with triggers and effects, that allows

to observe the input-output behaviour of configurations. By taking 〈trigger,effect〉 pairs
as labels one can see tiles as a labeled transition system. In this context, the usual notion
of bisimilarity is called tile bisimilarity.

Definition 3. Let R = (H ,V ,N,R) be a tile system. A symmetric relation ∼t on con-
figurations is called tile bisimulation if whenever s ∼t t and R � s

a−→
b

s′, then t ′ exists

such that R � t
a−→
b

t ′ and s′ ∼t t ′.

The maximal tile bisimulation is called tile bisimilarity and it is denoted by	t. Note
that s	t t only if s and t have the same input-output interfaces.

102 R. Bruni, I. Lanese, and U. Montanari

s
a
−→
b

t h
b
−→
c

f

s;h
a
−→
c

t; f
(hor)

s
a
−→
b

t h
c
−→
d

f

s⊗h
a⊗c

��

b⊗d
t ⊗ f

(par)
s

a
−→
b

t t
c
−→
d

h

s
a;c
−−→
b;d

h
(ver)

Fig. 2. Inference rules for tile logic

A syntactic property on tiles guaranteeing that 	t is a congruence, i.e. that the se-
mantics is compositional, is the so-called basic source format [12], which amounts to
require that H is generated from a (hyper)signature Σ and that the initial configuration
of each basic tile consists of a basic operator in Σ.

We shall focus on tile systems of stateless connectors, meaning that in all basic
tiles the final configuration is equal to the initial one. Operatively, this means that the
behaviour of a connector is history independent. An easy consequence is that 	t coin-
cides with tile trace equivalence.

3 Algebra of Connectors

We present here a rich algebra of connectors for action coordination. We have devel-
oped such an algebra to model systems where multiple actions can be executed at each
time, either independently or synchronized. Connectors are used to guarantee the global
consistency of local evolutions. For instance, in the translation of CommUnity [2], con-
nectors are used in conjunction with other operators representing the computational
entities. Roughly these have n attach points associated with actions and according to
the computed action they emit 1 tick (action performed) and n−1 unticks (forced inac-
tivity).

We remark that all structures that we are going to present are based on the symmetric
strict monoidal structure given by symmetries γ, tensor product⊗ and unit 0.

The complete list of connectors is in Figure 3. The ordinary basic connectors are in
the leftmost part of the table, while their duals are on the right (symmetry is self-dual).
The term mex stands for “mutual exclusion”. We also speak about synch connectors (∇
and

∇

), choice connectors (∇
 and

∇
), hiding connectors (! and

!

) and inaction connec-
tors (0 and 0). This set of connectors has been used in [2] to model action coordination
in CommUnity, an architectural design language which has the extreme separation be-
tween computation and coordination as distinctive feature.

We now define the tile semantics for our connectors. As usual for tiles, we first fix
the categories of configurations and of observations and then we give the basic tiles.

As explained in Section 2, the objects of our categories are natural numbers.
The horizontal category of configurations is the free symmetric (strict) monoidal

category generated by the basic connectors. The basic connector γ is the symmetry γ1,1.
We call connector any arrow in the horizontal category. Given a connector α : n → m
we denote by αc : m → n its dual, defined in the obvious way for basic connectors (see
Figure 3) and then inductively by (α;β)c = βc;αc and (α⊗β)c = αc⊗βc.

The vertical category is the free monoidal category generated by the arrows tick :
1 → 1 and untick : 1 → 1.

Complete Axioms for Stateless Connectors 103

Ordinary structure Dual structure
name symbolic graphical name symbolic graphical

symmetry γ : 2 → 2
·

������ ·
·

������ ·
symmetry γ : 2 → 2

·
������ ·

·
������ ·

duplicator ∇ : 1 → 2
·

·
������
������
·

coduplicator

∇

: 2 → 1
·

·
������
������

·
bang ! : 1 → 0 · � cobang

!

: 0 → 1 ·�

mex ∇�: 1 → 2
·

·
������
������•
·

comex

∇

� : 2 → 1
·

·
������
������•

·
zero 0 : 1 → 0 · ◦ cozero 0 : 0 → 1 ·◦

Fig. 3. Syntax of basic connectors

γ x⊗y−−→
y⊗x

γ where x,y ∈ {tick,untick} ∇ tick−−−−−→
tick⊗tick

∇ ∇ untick−−−−−−−−−→
untick⊗untick

∇ 0 untick−−−−→
id0

0

!
tick−−→
id0

! !
untick−−−−→

id0

! ∇
 untick−−−−−−−−−→
untick⊗untick

∇
 ∇
 tick−−−−−−−→
tick⊗untick

∇
 ∇
 tick−−−−−−−→
untick⊗tick

∇

Fig. 4. Basic tiles for ordinary connectors

The tiles defining the semantics of ordinary connectors are in Figure 4. The first
rule specifies that a symmetry can accept any input pair which is swapped in the output.
Then there are the two rules for duplicator, where the constraint is that all the actions
must coincide. Last rule in the first row defines the only allowed behaviour for zero,
which admits just untick on its interface. Rules in the second row specify the behaviour
of bang, which hides any action on its interface, and mex: if the trigger is untick, then
the effects are two unticks, otherwise the trigger tick is propagated to exactly one effect.

Dual connectors have symmetric tiles. For instance, the tiles for

∇

are:

∇tick⊗tick−−−−−→
tick

∇ ∇untick⊗untick−−−−−−−−→
untick

∇

From the tile system we can derive an observational semantics using tile bisimilar-
ity. This semantics is compositional, as proved by the following theorem.

Theorem 1. In all the tile systems built using only the above tiles for connectors,	t is
a congruence (w.r.t. parallel and sequential composition).

Proof. Trivial, since all the basic tiles satisfy the basic source property. ��

It is worth noting that the axioms for symmetry “bisimulate”, in the sense that the
left hand side and the right hand side of each axiom are tile bisimilar.

104 R. Bruni, I. Lanese, and U. Montanari

id 0 1

0 �
1 �

γ 00 01 10 11

00 �
01 �
10 �
11 �

∇ 00 01 10 11

0 �
1 �

! ∅

0 �
1 �

∇
 00 01 10 11

0 �
1 � �

0 ∅

0 �
1

Fig. 5. Denotational semantics

The coordination policy of a connector α : n → m can be represented as a 2n× 2m

tick-table whose cells contain boolean values. Each row (resp. column) represents a
combination of tick/untick values (denoted as 1 or 0 in the tick-tables) for the n inputs
(resp. m outputs). If a cell is true (i.e., marked), then the corresponding combination of
inputs and outputs is admissible, otherwise (the cell is false, i.e., empty, unmarked) the
corresponding combination of inputs and outputs is forbidden. The tick-tables for basic
connectors are in Figure 5 (dual basic connectors have transposed tables).

We denote with T (α) the tick-table associated to connector α. Furthermore, given
a position [i, j] in a tick-table T we denote with dT ([i, j]) its domain, that is the set of
elements in its input and output interfaces on which tick actions are performed.

A connector α : n → m can be seen as an hypergraph where basic connectors are
edges and elements of interfaces are nodes. The solution of the network of constraints
S associated with α is the set of consistent assignments of tick/untick values to all the
nodes appearing in the graph denoted by α in such way that a corresponding “tiling” can
be found. However this semantics is too concrete when one is not interested in knowing
the way in which all constraints of the network are satisfied. A more abstract semantics
of α is the solution of the network, where all the internal nodes have been existentially
quantified. Thus tick-tables can be seen as the denotational semantics of connectors.

Next lemma shows the effect on tick-tables of the operations on connectors.

Lemma 2. For any two connectors α : n → h,β : h → m, T (α;β) is the product matrix
T (α)× T (β), i.e., T (α;β)[i, j] =

∨
k(T (α)[i,k] ∧ T (β)[k, j]). For any two connectors

α : n → h,β : l → m, T (α⊗β) is obtained by refining each marked entry of T (β) by
a copy of T (α), and each unmarked entry of T (β) by the empty table with the same
dimension as T(α). Moreover, for any connector α, T (αc) is the transposition of T (α).

The denotational semantics of connectors given by tick-tables agrees with the obser-
vational semantics defined by tile bisimilarity, that is two connectors are tile bisimilar
iff they have the same associated tick-table.

Theorem 2. For each pair of connectors α and β, α	t β iff T (α) = T (β).

Proof. Since all connectors are stateless, two connectors are tile bisimilar iff their al-
lowed combinations of ticks and unticks on the interfaces are equal, i.e., iff their tables
are equal. ��

4 Normal Form

We first show an axiomatization of connectors which is correct and complete w.r.t. their
denotational semantics, and then we show an algorithm to derive a standard representa-

Complete Axioms for Stateless Connectors 105

tive for each equivalence class, i.e., a normal form. From the categorical point of view,
this corresponds to compute the colimit of a diagram (such as a CommUnity one).

Several axioms for connectors have been proposed, studied and applied in the litera-
ture, see e.g. [1,5,25,6,3]. Axioms over connectors are usually aimed at characterizing a
category of links between objects as the equational term algebra freely generated from a
restricted set of basic connectors. Usually the axioms have just to consider the few pos-
sible ways in which two or three basic connectors can be composed together. However,
our algebra is very rich and thus a few more complex patterns need to be considered.

The consistency of all the axioms we are going to present w.r.t. the denotational
semantics can be checked just by looking at the tables associated to each term. More
precisely, for each axiom α = β that we propose, it is easy to check that T (α) = T (β).

Notation. Given a set of connectors S we denote with CC(S) the class of connectors generated
by connectors in S. Note that symmetries are always included in CC(S), even when S = ∅.

Two edges are adjacent if they share a node in the graph representation of the connector.
An edge is adjacent to any node in its interfaces. A path in the graph is a sequence of nodes
{ni|i ∈ {1, . . . ,n}} such that for each i ∈ {1, . . . ,n−1} ni is an element of the input interface of
a basic connector and ni+1 is an element of the output interface of the same basic connector if
the connector is not a symmetry. As suggested by their graphical representation, for symmetries
the path can only enter in the first element of the input interface and exit from the second one in
the output interface, or enter from the second one and exit from the first one. The components
of a path are all its nodes and all the edges traversed. We say that two components of a graph
are linearly connected iff there exists a path of which they are both components. The relation of
connectedness is the transitive closure of the relation of linear connectedness.

We let ∇n denote the “tree” of ∇ connectors with n leaves, inductively defined as ∇0 =! and
∇n+1 = ∇; id⊗∇n. Note that ∇1 = id. We also define connectors for structured objects in terms
of connectors defined for smaller objects:

∇0 = id0 ∇n+1 = ∇⊗∇n; id⊗ γ1,n⊗ idn !0 = id0 !n+1 =!⊗!n

Note that ∇1 = ∇ and !1 =!. Similar notations are used for the other connectors.

4.1 Connectors for Synchronization

First, we focus on the class of connectors CC(∇,

∇

, !,

!

). The tick-tables associated to
these connectors can be characterized as below.

Proposition 1. Let α ∈ CC(∇,

∇

, !,

!

). Then T (α) satisfies the following properties.

– T (α)[0,0] = �;
– suppose T (α)[i1, j1] = � and T (α)[i2, j2] = �;

• if dT (α)([i, j]) = dT(α)([i1, j1])∪dT(α)([i2, j2]) then T (α)[i, j] = �
• if dT (α)([i, j]) = dT(α)([i1, j1])∩dT(α)([i2, j2]) then T (α)[i, j] = �
• if dT (α)([i, j]) = dT(α)([i1, j1])� dT(α)([i2, j2]) then T (α)[i, j] = �
• if dT (α)([i, j]) = dT(α)([i1, j1]) then T (α)[i, j] = �

106 R. Bruni, I. Lanese, and U. Montanari

Proposition 1 says that the cell with empty domain is always enabled and that table
entries are closed under domain union, intersection, difference and complement.

Intuitively, the last four properties are true because connectors built of synch and
hiding connectors individuate equivalence classes on the elements of the interfaces
(connected elements are in the same class), different equivalence classes act indepen-
dently and domains are unions of such classes. It is an easy consequence of the propo-
sition that, for instance, for any α ∈ CC(∇,

∇

, !,

!

), T (α)[1,1] = �.
We call synch-tables the tables that satisfy these properties.

Definition 4 (Base). Given a synch-table T its base b(T) is the set of the domains of
its marked cells that are minimal w.r.t. set inclusion.

The synch-tables are uniquely identified by their bases.

Lemma 3. Let T1 and T2 be any two synch-tables with the same dimension. Then T1 =
T2 iff b(T1) = b(T2).

Proof. The if part is trivial. The only if part follows from Proposition 1. ��

Analogous structures have been already studied in the literature [5,25,6,3]. If we
inspect which equalities are satisfied among those in [3], then according to the termi-
nology therein, we have a gs-monoidal structure (∇, !), a cogs-monoidal structure (

∇

,

!

),
a match-share structure (∇,

∇

) and a new-bang structure (!,

!

). The whole structure is
called a p-monoidal structure. Interestingly, the p-monoidal axioms characterize exactly
tile bisimilarity and allow for normal-form reduction. This is explained below in detail.

As far as the gs-structure is concerned there are three axioms expressing the “asso-
ciativity”, “commutativity” and “unit” for the ∇ (with ! as “unit”).

∇;(id⊗!) = id ∇;γ = ∇ ∇;(∇⊗ id) = ∇;(id⊗∇)

A cogs-monoidal structure is just a gs-monoidal structure in the dual category.
Therefore the axioms are obtained by reversing the order of composition.

The axioms of match-share categories have been proposed in [3], where the free
algebra of match-share connectors has been shown to model partition relations between
non-empty source and target objects. There are three match-share axioms:

∇;

∇

= id

∇

;∇ = (id⊗∇);(

∇⊗ id)

∇

;∇ = (∇⊗ id);(id⊗ ∇

)

The leftmost axiom essentially says that the multiplicity of connections between
two objects is not important. The other two axioms (which are in fact equivalent, thus
one of them can be dropped) say that the path connecting two objects is not important.

The new-bang categories just contain the axiom

!

; ! = id0 which represents garbage-
collection of isolated nodes.

We want to use the axioms to reduce any connector in a suitable normal form. We
start by defining a sorted form that forces a standard order on connector layers.

Definition 5 (Sorted form). A connector α ∈ CC(∇,

∇

, !,

!

) is in sorted form iff

α≡ α !;αγ;α ∇;β∇;βγ;β!

where ασ and βσ are layers of σ and ≡ is syntactic identity.

Complete Axioms for Stateless Connectors 107

Proposition 2. Any connector α ∈ CC(∇,

∇

, !,

!

) can be transformed in sorted form
using the axioms.

Proof. The proof is by induction on the construction of the connector. Essentially, we
have to prove that given a connector α in sorted form, we can transform in sorted form
any connector idn1 ⊗σ⊗ idn2 ;α. For each σ one can find axioms that make it to com-
mute with all the other connectors that it must traverse to reach its final position. ��

We want now to define for connectors a normal form which is strictly related to
tick-tables. We first need an auxiliary definition.

Definition 6 (Central point). A central point is any element of interface shared by
layers α ∇and β∇.

Definition 7 (Normal form). A connector α ∈ CC(∇,

∇

, !,

!

) is in normal form iff:

1. it is in sorted form;
2. hiding connectors have central points as interface;
3. each central point is linearly connected to at least an external interface.

Theorem 3. Any connector α ∈ CC(∇,

∇

, !,

!

) can be transformed in normal form us-
ing the axioms.

Proof. Trivial, using Proposition 2. ��

The theorems below show the connection between normal forms and synch-tables.

Theorem 4. For each synch-table T , we can build a connector α ∈ CC(∇,

∇

, !,

!

) in
normal form such that T = T (α). Moreover the construction is unique up to the ax-
ioms of symmetric monoidal categories and of associativity and commutativity of synch
connectors.

Proof. Let b(T) be the base of T . We build α in the following way:

– we create a central point Pb for each element b ∈ b(T);
– we build a tree

∇n (resp. ∇m) on the left (resp. right) of each central point Pb, where
n (resp. m) is the number of elements in b that are in the left (resp. right) interface;

– we add permutations to connect the trees

∇n and ∇m to the corresponding elements
of the interfaces. ��

Theorem 5. We have a bijective correspondence between synch-tables and connectors
in CC(∇,

∇

, !,

!

) up to the axioms.

Proof. The proof is done by showing that the function from synch-tables to connectors
up to the axioms defined in Theorem 4 is bijective. ��

108 R. Bruni, I. Lanese, and U. Montanari

∇
; ∇
 = id (1)

∇;

∇
 = 0;0 (2)

∇
 ;∇ = ∇2;

∇
 ⊗ ∇
 (3)

∇
 ;0 = 0⊗0 (4)

∇; id⊗0 = 0;0 (5)

∇

;0 = 0⊗0 (6)

∇
; !2 = ! (7)

∇; ∇
⊗ id = ∇
;∇⊗∇; id⊗ ∇
 ⊗id; id⊗ γ (8)

∇
;∇⊗ id = ∇; ∇
⊗∇
; id⊗ ∇⊗ id; id⊗ γ (9)

∇
 ; ∇
 = ∇

2;∇⊗∇⊗∇⊗∇; id⊗ ∇
 ⊗(∇
 ; !)⊗ ∇
 ⊗id;γ⊗ γ; id⊗ (∇
 ; !)⊗ id (10)

!

; ∇
; ∇
⊗ id =

!

3; ∇
⊗∇
⊗∇
; id⊗ γ⊗ γ⊗ id;

∇

⊗

∇

⊗

∇

(11)

id2 = ∇
⊗∇
; id⊗ ∇⊗ id; id⊗∇⊗ id;

∇
 ⊗ ∇
 (12)

id2 = ∇
⊗ (

!

; ∇
)⊗∇
; id⊗ γ⊗ γ⊗ id;

∇⊗ ∇⊗ ∇

; id⊗∇⊗ id;

∇
 ⊗ ∇
 (13)

!n = idn⊗

!

; idn⊗∇n;

∇
 n; !n (14)

Fig. 6. Axioms for mutual exclusion, textually

4.2 Adding the Mutual Exclusion Connector

As we have already seen, connectors in CC(∇,
∇

, !,
!

) allow to specify only a small class
of tick-tables. In particular, we can express synchronization constraints but not mutual
exclusion constraints. This is proved by the fact that the class CC(∇,

∇

, !,

!

) has limited
expressiveness. For instance, it is not expressive enough to model all CommUnity con-
nectors. To solve that problem we will add the mutual exclusion connector ∇
: 2 → 1.

Following the analogy with Section 4.1, one may think that also the dual connec-
tor

∇
 must be explicitly introduced, but this is not strictly required since the complex
term id⊗ (

!

;∇)⊗ id; id⊗∇
⊗ id2; id2⊗ γ⊗ id;

∇⊗ id⊗ ∇

; !⊗ id⊗! exhibits the same
behaviour as

∇
 . Similarly both inaction connectors 0 and 0 can be derived as auxiliary
connectors. In fact we have for instance T (0) = T (∇
; ∇

; !).
One may start considering just the axiomatization of choice and inaction connec-

tors, separately w.r.t. synch and hiding connectors. Thus one individuates a gs-monoidal
structure (∇
,0), a cogs-monoidal structure (∇
 ,0) and a new-bang structure (0,0). Un-
luckily no simple axiomatization can be found for (∇

,

∇
), since they form neither a
match-share category since T (

∇
 ; ∇
) �= T (∇
⊗ id; id⊗ ∇
) nor an r-monoidal [3] cate-
gory since T (∇
 ; ∇
) �= T (∇
⊗∇
; id⊗ γ⊗ id;

∇
 ⊗ ∇
).
Thus we resort to a complex axiomatization that deals with all the four classes of

connectors at the same time. The axioms are textually written in Figure 6. For simplicity,
dual axioms are omitted. Axioms 1–9 are quite simple. The other ones, which are more
complex, are depicted in Figure 7 and commented below. The last one, which is actually
an axiom scheme, is drawn only for n = 3. Axiom 10 deals with commutation of

∇
 and
∇
, but w.r.t. the conceptually similar axiom 3, we have to force mutual exclusion on
all the paths. Axiom 11 shows that mutual exclusion on three actions can be enforced

Complete Axioms for Stateless Connectors 109

by imposing mutual exclusion separately on each pair of actions. Axiom 12 shows
that given two independent actions we can freely add an action for their synchronized
execution and in that case axiom 13 says that we can also force mutual exclusion on
the two paths corresponding to the asynchronous execution of the two starting actions.
Finally, axiom 14 means that if all the elements of the interfaces of a connector are
adjacent to a node in the interface of a connector

∇
 ; ! (or of the dual form), then for
each denotation we can obtain a concrete correct behaviour by performing an untick on
each internal node, thus there is no real constraint on the behaviour of the elements of
the interfaces, which can be considered disconnected and closed by an hiding connector.

We present here some useful equivalence lemmas.

Lemma 4. ∇

n;

∇n⊗

∇n =

∇n; ∇
.

Proof. The proof is by induction on n. ��

Lemma 5. For each connector α : m → n let αc : n → m be its dual connector. We have
α⊗ idn;

∇

n; !n = idm⊗αc;

∇

m; !m.

Proof. The proof is by induction on the number of basic connectors in α. ��

Also for CC(∇,

∇

, !,

!

,∇
) we can define a sorted form and a normal form.

Definition 8 (Sorted form). A connector α ∈ CC(∇,

∇

, !,

!

,∇
) is in sorted form iff:

α≡ α !;α0;α∇
;αγ;α ∇;β∇;βγ;β ∇� ;β0;β!

where ασ and βσ are layers of σ and ≡ is syntactic identity.

Note that the definition of central point (Definition 6) can be applied also to this
new sorted form. Central points can be linearly connected to both free variables (i.e.,
external interfaces) and hidden variables (i.e., interfaces of hiding connectors).

Proposition 3. Any connector α ∈CC(∇,

∇

, !,

!

, ∇
) can be transformed in sorted form
using the axioms.

Proof. The proof strategy is the same of Proposition 2, but here when moving connec-
tors to their final layer, other basic connectors may be created, and in this case we have
to check that the procedure indeed terminates.

In most cases the proof can be done by induction on the width of layer that must be
traversed, that is on the maximum number of connectors in all the paths of the layer.
The complex case is the one dealing with connectors ∇ and

∇
 .
The only risk to cycle is when a ∇ connector while traversing layer α∇
 creates a

∇

connector that while traversing layer α ∇creates again a ∇
 connector that goes back to
the original ∇ connector. One can see that this may happen only if there are two different
paths starting from the same ∇ connector, one for each element of its right interface,
which arrive to the same

∇

connector. These paths can be deleted by isolating either the
connector ∇; ∇
⊗∇
; id⊗ ∇⊗ id or the connector ∇
; ∇

, which can be transformed using
the axioms respectively into ∇
;∇⊗ id; id⊗ γ and into 0;0. ��

110 R. Bruni, I. Lanese, and U. Montanari

· ��� ·
·

���
���••

·
��� ·

(10)
=

·
· ·

��� · ���
·

���
���• ·• ·
·

��
��

��
� · ��� ·

���

· ��� · �•
· �•

·
���

·

�������
·

��� · ���
·

���
���• ·• ·
· · ��� ·

���

·

·
·

���
���•

·� ���
���• ·
· ·

(11)
=

· · ���
·� ���

���• ·
· ��� ·

���

·
��� · ���

·� ���
���• ·
· ��� ·

���

·
��� · ���

·� ���
���• ·
· ·

���

· ·
· ·

(12)
=

· · · 			
·

			• ·•
· 			 ·

·

			

·

 · 			

·

			• ·•
· · ·

(13)
=

· · 			
· ·

			• · · 			
· 			 ·

 ·•
·

 · 			 ·

·�

			• · 			

· 			 ·

 · 			

·

 · 			 ·•

· ·

			• · ·

· ·

· �

· �

· �
(14)
=

· · · · 			
· · ·

������� · �•
· · ·

��
��

��
��

� ·

· 			
· �•

· ·

·

·�

			 ·

������� · 			
·

			 · �•
· ·

Fig. 7. Complex axioms for mutual exclusion, graphically

Definition 9 (Normal form). A connector α ∈ CC(∇,

∇

, !,

!

,∇
) is in normal form if
and only if:

1. α has the form α !;α0;α∇
;αγ;α ∇;β∇;βγ;β ∇� ;β0;β!;
2. hiding connectors are adjacent to either roots of mex trees or central points;
3. there exists at most one path between a fixed central point and a fixed variable;
4. no two central points are linearly connected to exactly the same set of variables;
5. each central point is linearly connected to at least one free variable;
6. each hidden variable is linearly connected to at most two central points;
7. no two hidden variables are linearly connected to the same set of central points;
8. each pair of central points associated with disjoint sets of free variables is linearly

connected to an hidden variable;
9. hidden variables are on the left of central points, unless they are adjacent to them.

Theorem 6. Any connector α ∈ CC(∇,

∇

, !,

!

,∇
) can be transformed in normal form
using the axioms.

Proof. Thanks to Proposition 3, α can be transformed in sorted form. Then the condi-
tions can be satisfied one at the time using the axioms. ��

Complete Axioms for Stateless Connectors 111

Again, there is a precise correspondence between normal forms and tick-tables.

Theorem 7. For any tick-table T with T [0,0] = �, we can build a connector α in
normal form such that T (α) = T. Moreover the construction is unique up to the axioms
of symmetric monoidal categories and of associativity and commutativity of synch and
choice connectors.

Proof. Given a tick-table T , the connector α is realized in the following way:

– variables that always have value 0 are connected to 0 or 0 connectors;
– for other input (resp. output) variables, we build a tree of ∇
 (resp.

∇
) with as many
leaves as the number of checked cells that have that variable in the domain;

– for each pair of central points with disjoint sets of free variables, we create an
hidden variable for them;

– for each checked cell in the table, we create a central point with two outgoing trees
of synch connectors. The number of leaves is the number of free variables (input on
the left, output on the right) in the domain, plus (on the left) the number of hidden
variables associated to the central point;

– we connect leaves of synchronization trees with leaves of mutual exclusion trees
using permutations, connecting each central point to the associated variables. ��

The theorem below establishes a bijective correspondence between denotations and
standard implementations of connectors.

Theorem 8. We have a bijective correspondence between tick-tables T with T [0,0] =
� and connectors in CC(∇,

∇

, !,

!

,∇
) up to the axioms.

Proof. Analogously to Theorem 5, the proof is done by showing that the function from
tick-tables to connectors up to the axioms defined in Theorem 7 is bijective. ��

These results can be used to extend the research in [2], where a mapping from Com-
mUnity to the Tile Model was presented, and the main result was that the translation of
a CommUnity diagram is tile bisimilar to the translation of its colimit. Using the cor-
respondence between observational semantics and connectors up to the axioms we can
state that the (synchronization part of the) translation of a CommUnity diagram is equal
up to the axioms to the (synchronization part of the) translation of its colimit. More
in general, colimit computation in the categorical approach is now strongly related to
normalization using suitable axioms in the algebraic approach.

5 Conclusion and Future Work

We have presented different classes of connectors and we have shown how they can
be analyzed from different points of view: their concrete structures can be described
by graphs, their operational and observational semantics are given using tiles and tile
bisimilarity, while the representation based on tick-tables provides a denotational se-
mantics. We have proved that there is a bijective correspondence among connectors up
to axioms, classes of bisimilar connectors and denotations. This allows to extend the

112 R. Bruni, I. Lanese, and U. Montanari

result of [2] proving that there is a correspondence between colimit computation in a
categorical framework and normalization up to the axioms in an algebraic framework.

Our work leaves an open problem: we argue that the axiom schema 14 (see Figure 7)
is needed for the completeness of the axiomatization, but we do not know whether a
different finite axiomatization of CC(∇,

∇

, !,

!

, ∇
) exists or not.
As future work we plan to study the complexity of our reduction to normal form.

Furthermore we want to generalize our connectors to a setting where we have a richer
set Act of actions ruled by a synchronization algebra, instead of just two possible obser-
vations (tick/untick). Another interesting extension is given by probabilistic connectors.

References

1. J.A. Bergstra, C.A. Middelburg, and G. Stefanescu. Network algebra for asynchronous
dataflow. International Journal of Computer Mathematics, 65:57–88, 1997.

2. R. Bruni, J.L. Fiadeiro, I. Lanese, A. Lopes, and U. Montanari. New insights on architectural
connectors. In Proc. IFIP TCS 2004, pp. 367–379. Kluwer Academics, 2004.

3. R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connections. Theoret.
Comput. Sci., 286(2):247–292, 2002.

4. R. Bruni, I. Lanese, and U. Montanari. Normal forms for stateless connectors. Tech. Rep.
TR-05-11, Computer Science Department, University of Pisa, Italy.

5. V.E. Cazanescu and G. Stefanescu. Towards a new algebraic foundation of flowchart scheme
theory. Fundamenta Informaticae, 13:171–210, 1990.

6. A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via gs-monoidal
categories. Applied Categorical Structures, 7:299–331, 1999.

7. A. Corradini and U. Montanari. An algebraic semantics for structured transition systems and
its application to logic programs. Theoret. Comput. Sci., 103:51–106, 1992.

8. P. Degano and U. Montanari. A model for distributed systems based on graph rewriting.
Journal of the ACM, 34(2):411–449, 1987.

9. H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic approach. In Proc.
IEEE Conference on Automata and Switching Theory, pp. 167–180, 1973.

10. J. L. Fiadeiro. Categories for Software Engineering. Springer, 2004.
11. J.L. Fiadeiro, A. Lopes, and M. Wermelinger. A mathematical semantics for architectural

connectors. In Generic Programming, LNCS 2793, pp. 190–234. Springer, 2003.
12. F. Gadducci and U. Montanari. The tile model. In Proof, Language and Interaction: Essays

in Honour of Robin Milner, pp. 133–166. MIT Press, 2000.
13. J. A. Goguen. Categorical foundations for general systems theory. In Advances in Cybernet-

ics and Systems Research, pp. 121–130. Transcripta Books, 1973.
14. C.A.R. Hoare. CSP – Communicating Sequential Processes. International Series in Com-

puter Science. Prentice-Hall, 1985.
15. P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of Processes. Journal of Pure and

Applied Algebra, 115:141–178, 1997.
16. Y. Lafont. Interaction combinators. Inform. and Comput., 137(1):69–101, 1997.
17. K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts.

In Proc. ICALP’90, LNCS 443, pp. 526–539. Springer, 1990.
18. S. MacLane. Categories for the Working Mathematician. Springer, 1971.
19. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoret. Comput.

Sci., 96:73–155, 1992.
20. R. Milner. A Calculus of Communicating Systems, LNCS 92. Springer, 1989.

Complete Axioms for Stateless Connectors 113

21. R. Milner. Turing, computation and communication. Turing anniversary lecture, 1997.
22. R. Milner. Bigraphical reactive systems. In Proc. CONCUR 2001, LNCS 2154, pp. 16–35.

Springer, 2001.
23. G.D. Plotkin. A structural approach to operational semantics. Tech. Rep. DAIMI FN-19,

Aarhus University, 1981.
24. A. Rensink. Bisimilarity of open terms. Inform. and Comput., 156(1/2):345–385, 2000.
25. G. Stefanescu. Network Algebra. Discrete Math. and Theoret. Comp. Sci., Springer, 2000.

On the Semantics of Coinductive Types
in Martin-Löf Type Theory

Federico De Marchi�

Department of Mathematics, University of Utrecht,
Utrecht, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

Abstract. There are several approaches to the problem of giving a cat-
egorical semantics to Martin-Löf type theory with dependent sums and
products and extensional equality types. The most established one relies
on the notion of a type-category (or category with attributes) with Σ
and Π types. We extend such a semantics by introducing coinductive
types both on the syntactic level and in a type-category. Soundness of
the semantics is preserved.

As an example of such a category, we prove that the type-category
built over a locally cartesian closed category C admits coinductive types
whenever C has final coalgebras for all polynomial functors.

1 Introduction

The problem of finding a categorical semantics to Martin-Löf type theory has
given rise to a substantial amount of very interesting research, over the years.
Most of it was inspired by Seely’s first attempt to use locally cartesian closed
categories [20], which however was proved slightly inaccurate. In fact, he had
glossed over the need to have a choice of pullbacks that compose on the nose
in the category, which is essential in order to interpret substitution. In order
to fix the problem, Cartmell devised the notion of a contextual category [7], on
which Streicher based his semantics for a dependent type theory with dependent
products and sums, and extensional equality [21]. However, the axioms for a
contextual category are very “uncategorical” in spirit, since they assume a well-
founded order on objects; for this reason, this notion was later replaced by the
more abstract one of category with attributes [11], or type-category, as Pitts
calls them [19].

From a fibrational point of view, a type-category is just a split fibration.
Adapting an argument of Bénabou [6], Hofmann could show that every locally
cartesian closed category C gives rise to a split fibration which is equivalent (in a
suitable higher-order sense) to the canonical indexing of C. In this way, he could
fix the bug in Seely’s paper by interpreting type theory in the type-category
built out of any locally cartesian closed one.

� This research is supported by NWO Grant n. 613.000.222.
Email: marchi@math.uu.nl

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 114–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Semantics of Coinductive Types in Martin-Löf Type Theory 115

In [23], Benno van den Berg and the present author suggested that such a
semantics could be extended to one for a theory with coinductive types, provided
the original locally cartesian closed category had M-types (i.e. final coalgebras
of polynomial functors). It is the purpose of this paper to make that statement
precise.

The problem of adding infinite objects to Martin-Löf type theory has been
considered by several authors over the years [8,16,17]. The main source of trouble,
in this case, is that infinite (non-well-founded) objects in a type might have
infinitely long reductions, therefore making a full description of their normal
form impossible to achieve. When in presence of well-founded types, one can
give a description of an infinite object by its finite approximations [17,10,14,23,1];
however, in our setting we want to avoid using well-founded types. In Section
2 we shall introduce a system of rules for coinductive types. These are very
close to the categorical formulation of the properties of the final coalgebra for a
polynomial functor. In particular, our way of introducing terms of a coinductive
type is by unfolding a coalgebra at a particular state. This is analogue to the
concept of a productive definition of a term as discussed by Coquand in [8]. The
guardedness he requires there is given in our context by the polynomial functor
itself.

In Section 3 we recall the concept of a type-category and introduce that of
a coinductive type therein, and we show how these categories provide a sound
categorical semantics for the aforementioned type theory. Finally, in Section 4
we show that, following Hofmann’s construction [11], any locally cartesian closed
category with final coalgebras of polynomial functors gives rise to a type-category
with coinductive types, thus providing a wide class of examples.

Acknowledgements. The author would like to thank Benno van den Berg for
the several useful discussions, and to Dr. Thorsten Altenkirch for his valuable
suggestions.

2 Coinductive Types in Martin-Löf Type Theory

We consider a version of Martin-Löf type theory with Σ-types, Π-types, and
extensional equality, as presented in [15,18]. When one views the theory as a
programming language, according to the “types-as-specification” paradigm, it
may be desirable to allow for some programs to have an infinite computation.
When using type theory to study constructive mathematics, coinductive types
can help modelling some non-well-founded sets [2]. In presence of inductive types,
infinite programs can be fully described by the collection of their finite (but
arbitrarily long) approximations [17,16,9,14]. Alternatively, one can describe the
elements of a non-well-founded set by means of a recursive definition, provided
this is guarded, or productive [8,10]. In our axioms, we shall resort to the second
method, since we do not assume to have W-types.

Categorically, it is clearly understood that non-well-founded terms over a
signature can be collected into the final coalgebra for a polynomial functor as-

116 F. De Marchi

sociated to it [13,22,5,3]. In order to be closer to the categorical semantics we
intend to present, we give axioms here, which closely resemble those of a final
coalgebra.

It is to be remarked that our definitions make equality undecidable in the
system. However, the fact that we take extensional equality into account already
breaks decidability, and we choose to accept this drawback. We are aware of
recent work by Altenkirch on “tracking the proofs” of equality of various terms
within a version of intensional type theory which he calls “observational type
theory” [4]. This seems to be a promising area for further developments in the
direction of actual implementations of the theory.

Now, we come to the axioms. The introduction rule takes the obvious form

[M-form]
A type B(a) type [a : A]

M(A, B) type

We should think of the elements of type A as term constructors, the arity of
a : A being given by the type B(a). Note that, following the conventions of
[18], we are omitting those contexts which are not discharged by the rule, and
we are omitting the obvious substitution rules that should come together with
the introduction of a new type constructor. Given types A and B(a) [a : A] as
above, we shall often write Pb(X) for the type (Σa : A)(B(a) → X).

Elements of the coinductive type M(A, B) are defined corecursively. When-
ever we have a type X and an element of the function type f : X → Pb(X), we
can think of it as a way of describing the evolution of the elements of X accord-
ing to the signature described by A and B. In particular, every element x : X
is productive, since f(x).1 is an element of type A (i.e. a term constructor of the
specified signature) and f(x).2 takes any b : B(f(x).1) to another element in
X , from which we can reiterate the procedure indefinitely. In this way, we can
associate to each element x : X a (possibly non-well-founded) tree whose nodes
are labelled by elements of type A and branches departing from a node labelled
by a are labelled by elements of type B(a). This is the unfolding of f at x, or
the behaviour of x under the evolution f .

[M-intro]
x : X f : X → Pb(X)

unfold(f, x) : M(A, B)

When we are given an element t of the coinductive type M(A, B), which we
think of as a tree, we can extract its root, which is an element of A, and its
branching function, which has type B(root(t)) →M(A, B).

[M-elim]
t : M(A, B)
root(t) : A

t : M(A, B)
br(t) : B(root(t)) →M(A, B)

In order to understand how root and br act on an element t : M(A, B), suppose t
is the tree representing the behaviour of some x : X under f : X → Pb(X); that
is, t = unfold(f, x). Then, f(x) is an element of Pb(X)≡(Σa : A)(B(a) → X),
which is a pair (a, s). These are precisely the root and the branching function of
the original t. This explanation, justifies the following equality rules:

On the Semantics of Coinductive Types in Martin-Löf Type Theory 117

[M-eq]
x : X f : X → Pb(X)

root(unfold(f, x)) = f(x).1 : A

x : X f : X → Pb(X)
br(unfold(f, x)) = (b)unfold(f, (f(x).2)b) : B(f(x).1) →M(A, B)

t : M(A, B)
t = unfold((y)(root(y), br(y)), t) : M(A, B)

By the definitions of root and br, it follows immediately that the abstraction
m≡(y)(root(y), br(y)) has type M(A, B) → Pb(M(A, B)). Therefore, for any
t : M(A, B) we can unfold m at t. The third equality rule above is stating
precisely that unfold(m, t) = t. This rule is essential in proving that, given any
function f : X → Pb(X), the function (x)unfold(f, x) is the unique one to
M(A, B) which preserves the root and branching functions.

3 Type-Categories and Coinductive Types

Now that we have introduced the axioms of our type theory, we can approach
the question of giving it a categorical semantics. It has already been mentioned
that Seely’s idea of using locally cartesian closed categories (lccc’s) for mod-
elling dependent types is very insightful, but not correct [20]. His idea was
to interpret contexts by objects in the category, and a judgement of the form
A(x1, . . . , xn) type [x1 : X1, . . . , xn : Xn] by an arrow α : A ��X over the object
interpreting the context [xi : Xi]. Given another context [y1 : Y1, . . . , ym : Ym]
interpreted by an object Y , and an n-tuple of terms fi(y1, . . . , ym) : Xi, this is
interpreted by an arrow f : Y ��X , and the interpretation of the substituted
term A[fi/xi] is the pullback of α along f . Now, supposing we are given two
composable substitutions, interpreted by maps

Z
g

��Y
f

��X,

the interpretation of the type (A[fi/xi])[gj/yj] obtained by first performing the
substitution f and then the substitution g, should be the same as the interpreta-
tion of the type A[fi[gj/yj]/xi], obtained by performing the composite substitu-
tion on A. In other words, the pullback of α first along f and then along g ought
to be the same as the pullback along the composite gf . Unfortunately, in general
we cannot make a coherent choice of pullbacks in an lccc which is closed under
pullback pasting. Hence, the need for a more refined model, in which substitution
can be traced more accurately.

The first attempt in this direction was that of Cartmell [7], who proposed in
his PhD thesis the notion of a contextual category. This has been further studied
by Streicher [21]; however, Cartmell himself, and later other authors, found that
contextual categories have a rather technical and cumbersome definition, that
could be left aside, in favour of what have been called categories with attributes,
or type-categories [19,11].

118 F. De Marchi

A type-category, in the notation of Pitts, is specified by a category C with a
terminal object 1, together with the following extra structure:

– for each object X in C, a set TypeC(X) of X-indexed types;
– for each X in C, a map p : TypeC(X) ��Ob(C/X) which takes an X-indexed

type A to the canonical projection

πA : X � A ��X

from the total object X � A of A to X itself;
– for each map f : Y ��X in C, an operation assigning to each X-indexed

type A a Y -indexed type f∗A, called the pullback of A along f , together with
a morphism

f � A : Y � f∗A ��X � A

making the following into a pullback:

Y � f∗A
f�A

��

πf∗A

��

X � A

πA

��

Y
f

�� X.

(1)

These data are subject to the following coherence conditions, for A ∈ TypeC(X),
f : Y ��X and g : Z ��Y :

id∗XA = A and idX � A = idX�A;
g∗(f∗A) = (fg)∗A and (f � A)(g � f∗A) = (fg) � A.

Example (The syntactic category of a theory). We shall provide a wide class
of examples of type-categories in the next section. For the time, it is useful to
notice that any dependent type theory T gives rise to a type-category T . Objects
in T are equivalence classes of well-formed contexts in the theory, modulo the
relation determined by provable equality of two contexts. An arrow f from (the
equivalence class of) a context Y = [yj : Yj] (j = 1, . . . , m) to X = [xi : Xi]
(i = 1, . . . , n) consists of the equivalence class (again, modulo provable equality)
of an n-tuple of terms fi(y1, . . . , ym) : Xi. The final object in T is clearly given
by the empty context. The family TypeT (X) consists of all those types A for
which the judgement A type [xi : Xi] is derivable in T, the canonical projection
of such a type being the projection

(xi)i=1,...,n : [x1 : X1, . . . , xn : Xn, x : A] ��[x1 : X1, . . . , xn : Xn].

The reindexing along a context morphism f : Y ��X of a type A(x1, . . . , xn)
depending on the context X , is the type obtained by substituting the xi’s by
the terms specified by f :

f∗A(y1, . . . , ym) = A[f1/x1, . . . , fn/xn].

On the Semantics of Coinductive Types in Martin-Löf Type Theory 119

It is clear that these data satisfy the conditions for a type-category, which is
called the syntactic category built over T.

When interpreting a type theory in a type-category C, objects of C are used to
represent well-formed contexts of the theory, whereas arrows are used to interpret
substitution; that is, tuples of terms of the appropriate types, which depend on
the variables defined in the domain. If we interpret a context X by an object
(which we denote again by X , abusing the notation), then a judgement of the
form A type [X] is interpreted by an element A ∈ TypeC(X). If f : Y ��X is a
substitution, then the pullback f∗A will interpret the type A with the variables
substituted according to f . The coherence conditions expressed above ensure
that composite substitutions are correctly interpreted. The total object of a
type A depending on a context X interprets the context [X, a : A], with the
obvious projection onto X (see [19,11] for further details). Finally, terms of a
given type are interpreted by sections of the canonical projection; that is, a
judgement t : A [X] is interpreted by a morphism t : X ��X � A in C such
that πAt = idX . Given a substitution f : Y ��X between contexts, and a term
t as above, the term obtained by substituting all the variables in t according to
f is interpreted by the unique section f∗t of πf∗A such that (f � A)f∗t = tf ,
which is determined by the pullback (1).

Note that the map p : TypeC(X) ��Ob(C/X) induces the structure of a
category on the collection of types over X , in an obvious way: maps between
two elements A and B are maps in the slice category C/X between the canonical
projections πA and πB . The map p then becomes a full and faithful functor from
TypeC(X) to C/X . Moreover, for a C-morphism f : Y ��X the pullback func-
tor f∗ : C/X �� C/Y restricts to a functor f∗ : TypeC(X) ��TypeC(Y), whose
action on objects is precisely the one specified by the type-category structure.
The association X → TypeC(X) and f → f∗ defines a functor C → Cat. Func-
toriality is ensured by the coherence conditions for the pullback functors, and
it is precisely the condition needed in order for the substitution to be correctly
interpreted. We could not use the slice categories C/X because they give rise to
a pseudo-functor, and the action of the pullback functors composes only up to
isomorphism.

Now, suppose the left adjoint Σf to the pullback functor f∗ : C/X ��C/Y
restricts to categories of types as well. Then, it is possible to interpret dependent
sums in our model. If A type [X] and B(a) type [X, a : A] are judgements in the
theory, interpreted by objects A in TypeC(X) and B in TypeC(X � A), then the
composite ΣπAπB = πAπB is the canonical projection of an object in TypeC(X),
which we define to be the interpretation of the type Σ(A, B) in the context X .

Likewise, we can interpret dependent products in C provided the pullback
functors have a right adjoint. More specifically, we need that for A in TypeC(X)
and B in TypeC(X � A) there is an indexed type Π(A, B) in TypeC(X) and a
morphism apA,B : π∗

AΠ(A, B) ��B in TypeC(X �A) with the obvious universal
property. Stability of the interpretation under substitution is ensured by the
further requirements that, for any f : Y ��X in C,

f∗Π(A, B) = Π(f∗A, f∗B) and (f � A)∗apA,B = apf∗A,(f�A)∗B.

120 F. De Marchi

We refer the reader to Streicher’s monograph [21] for a treatment of extensional
equality types.

Once we have defined an interpretation of the type-valued and term-valued
function symbols of a theory into a type-category, we can use the rules for de-
pendent products and coproducts in order to inductively define an interpretation
of all well-formed contexts, of types depending on a context, and of their terms.
We shall then say that a judgement of the form A type [X] is satisfied by the
model if A is interpreted by an element of TypeC(X), and similarly for one of
the form a : A [X]. Equality judgements will be satisfied when the two sides
of the equality have the same interpretation in C. The properties of dependent
products and coproducts ensure that this model is sound, in the sense that any
judgement derivable in the type theory is satisfied by any interpretation (see [19]
for more details).

Example (Interpretation in the syntactic category). Given a type theory T, this
has an obvious interpretation into its syntactic category T . A context is inter-
preted by its equivalence class, a judgement of the form A type [X] is interpreted
by the element A in TypeT (X), and a term t : A [X] is interpreted by the section

(x1, . . . , xn, t(x1, . . . , xn)) : [x1 : X1, . . . , xn : Xn] ��[x1 : X1, . . . , xn : Xn, x : A]

of the canonical projection of A. It is clear that a judgement is provable in T if
an only if it is satisfied by the model.

We now proceed to specify the amount of structure needed in order to inter-
pret coinductive types. Unsurprisingly, the properties closely resemble the type
theoretic rules described in Section 2.

Definition 1. A type-category C with dependent sums, dependent products and
extensional equality (in the sense of [11]), has coinductive types if for any A in
TypeC(X) and B in TypeC(X � A) there is a type

M(A, B) in TypeC(X)

with the following properties:

– for any type Y in TypeC(X) and sections y of πY and g of πY →Pb(Y) there
is a section

unfold(g, y) of πM(A,B);

– for any section t of πM(A,B) there are sections

root(t) of πA and br(t) of πroot(t)∗B→M(A,B)

– and the following are equal sections of πA, π(g(y).1)∗B→M(A,B) and πM(A,B),
respectively:

root(unfold(g, y)) = g(y).1
br(unfold(g, y)) = (b)unfold(g, (g(y).2)b)

unfold((s)(root(s), br(s)), t) = t;

On the Semantics of Coinductive Types in Martin-Löf Type Theory 121

– for a morphism f : X ′ ��X in C, the following coherence condition holds:

f∗M(A, B) = M(f∗A, f∗B),

together with the analogous conditions for the aforementioned sections.

It is immediate from the definition how to interpret a Martin-Löf type theory
with coinductive types in any type-category which has coinductive types, and
soundness readily extends.

Theorem 2 (soundness). With the notion of satisfaction described above, the
collection of judgements satisfied by a model in a type-category with coinductive
types is closed under the rules of Σ-types, Π-types, extensional equality as well
as those given in Section 2 for coinductive types.

Moreover, it is an immediate consequence of the definitions that the syntactic
category of a type theory T with coinductive types has the structure of a type-
category with coinductive types, which provides a complete semantics for T, in
the sense that a judgement is provable in the theory if and only if it is satisfied
by the model.

4 From M-Types to Coinductive Types

As we mentioned in the introduction, the reason for introducing type-categories
was that of overcoming the problem of not being able to make a coherent choice
of pullbacks in a locally cartesian closed category, in such a way that the pullback
functors between the slice categories would compose on the nose (instead of up to
isomorphism). Another way to phrase the problem is in terms of fibrations. The
association X → C/X defines a pseudofunctor Cop → Cat (it is a pseudofunctor
precisely because composition of the pullback functors is possible only up to
coherent isomorphisms), which is also called the canonical indexing of C. It is
a way to view C as an indexed category, or, equivalently, as a cloven fibration
(for definitions, see for example [12]). Moreover, the strict functoriality on the
composition of the pullback amounts exactly to saying that this fibration is split.
So, locally cartesian closed categories fail to support an interpretation of type
theory because their canonical indexing is not a split fibration.

However, Bénabou had described a method of associating to any fibration
an equivalent split one (i.e. a split fibration on the same base category, whose
fibres are pointwise equivalent to those of the given one) [6]. Hofmann found an
application of his work in the present context [11], and described an explicit way
of associating a type-category Ĉ to any lccc C, in such a way that TypeC(X) is
equivalent to C/X for every object X in C.

The underlying category of Ĉ is again C. For an object X in C, the collection
TypeC(X) consists of those functors F : C/X �� C→ which take any morphism
in C/X to a pullback square, and such that the codomain of F (f) is the domain
of f for any object f in C/X . Here, the notation C→ indicates the category whose
objects are arrows in C and morphisms are commuting squares.

122 F. De Marchi

Given an object X in C and a functor F ∈ TypeC(X), we define its canonical
projection p(F) to be πF = F (idX), which is a map over X . Its domain will be
the total object X �F . Finally, given a morphism f : Y ��X in C, the pullback
of F along f is given by the functor f∗F which takes an object g over Y to
the arrow F (fg). The map f � F : Y � f∗F ��X � F is the top arrow in the
following square

Y � f∗F
f�F

��

F (f)=πf∗F

��

X � F

πF =F (idX)
��

Y
f

�� X,

which is a pullback because it is the action of the functor F on the arrow f in
C/X . It is not hard to show that these data satisfy the necessary coherence con-
ditions, therefore they define a type-category, which has the universal property
that TypeC(X) is equivalent to C/X for every object X in C, one direction of
the equivalence being the canonical projection functor p : TypeC(X) ��C/X .

Furthermore, any extra structure on C induces some structure in Ĉ, with
the exception of impredicative universes, as Hofmann explains. In particular,
the presence of left and right adjoints to the pullback functors in C ensures
that Ĉ has dependent sums and products, respectively, whereas the existence of
equalisers determines the existence of extensional equality types. For example,
for elements A in TypeC(X) and B in TypeC(X � A), the total objects for
Σ(A, B) and Π(A, B) are

πΣ(A,B) = ΣπBπA = X � A � B
πB ��X � A

πA ��X

and
πΠ(A,B) = ΠπAπB : X � Π(A, B) ��X.

Having dependent products and coproducts, we can form, for any Y in TypeC(X)
and A and B as above, the element

Pb(Y) = Σ(A, Π(B, π∗
Bπ∗

AY))

which sits again in TypeC(X).

Lemma 3. Given A and B as above, the association Y → Pb(Y) defines a
polynomial functor on TypeC(X).

Proof. Let us first remind that, given a map f : B ��A in a locally cartesian
closed category C, the polynomial endofunctor on C associated to f is defined by

P (X) = ΣA(A×X
πA−−→ A)(B

f−→A),

where the exponential is taken in the slice category C/A. We have already men-
tioned that the functor p : TypeC(X) ��C/X defines an equivalence. In partic-
ular, this means that TypeC(X) is locally cartesian closed; hence, it makes sense

On the Semantics of Coinductive Types in Martin-Löf Type Theory 123

to talk about polynomial functors on it. Moreover, if we show that the canonical
projection of Pb(Y) is a polynomial expression over πY , the same will hold in
TypeC(X), because of the equivalence, and the result will be proved.

Using the descriptions above for dependent products and coproducts, we get
the following chain of equalities in C/X :

p(Σ(A, Π(B, π∗
Bπ∗

AY))) = ΣπA(p(Π(B, π∗
Bπ∗

AY)))
= ΣπAΠπB (π∗

Bπ∗
Ap(Y))

= ΣπA((π∗
Ap(Y))πB).

Now, note that πA is the unique map from πA to the terminal object idX in
C/X , and π∗

Ap(Y) is the first projection from πA × p(Y); hence, we can rewrite
p(Σ(A, Π(B, π∗

Bπ∗
AY))) as

ΣπA((πA × p(Y) → πA)πB) = PπB (p(Y)).

Functoriality of this expression in Y is an easy check, which closes the proof. ��

Using the previous result, we can now deduce the existence of coinductive
types in the type category associated to an lccc with M-types (i.e. final coalgebras
of polynomial functors, [23]).

Theorem 4. The type category Ĉ associated to a locally cartesian closed cate-
gory C with M-types has coinductive types.

Proof. Let A ∈ TypeC(X) and B ∈ TypeC(X � A). Then, by Lemma 3, the
mapping

Y → Pb(Y)

defines a polynomial functor over TypeC(X) 	 C/X . By assumption, this functor
has a final coalgebra

m : M(A, B) ��Σ(A, B → π∗
A(M(A, B))), (2)

whose domain is to interpret our coinductive type. In fact, here we are implicitly
using the fact that locally cartesian closed pretoposes with M -types are closed
under slicing, as proved in [23].

In order to give a concrete description of the functor M(A, B) : C/X ��C→,
we can reason as follows. For the functor to satisfy the coherence condition
of Definition 1, it is necessary that the equation f∗M(A, B) = M(f∗A, f∗B)
holds for any f : X ′ ��X in C. In particular, this means that, for an arrow
g : Y ��X ′, one must have

M(A, B)(f ◦ g) = M(f∗A, f∗B)(g)

and choosing g = idX′ we get that M(A, B)(f) = p(M(f∗A, f∗B)) for any f in
C/X . Therefore, in order to describe M(A, B), we first make a choice of final
coalgebras for the functor Pπf∗B

in each slice category C/X ′ (for f : X ′ ��X),

124 F. De Marchi

and then define M(A, B)(f) to be the carrier of the chosen coalgebra for Pπf∗B
.

The coherence condition is then automatically fulfilled.
Given sections y : X ��X � Y of πY and g : X ��X � (Y → Pb(Y)), g

determines a map g̃ over X :

X � Y
g

��

πY
��

X � Pb(Y)

πPb(Y)
��

X.

This is a Pb-coalgebra in TypeC(X), hence there is a unique coalgebra morphism

X � Y
g

��

πY
��

X � M(A, B)

πM(A,B)
��

X.

Post-composition with g takes y to a section of πM(A,B):

unfold(g, y) = gy.

Given a section t of πM(A,B), post-composition with the map m of (2) gives a
section of p(Pb(M(A, B))) = ΣπAp(B → π∗

AM(A, B)). Projection on A then
determines a section

root(t) = (mt).1 of πA,

whereas the second projection is a section

br(t) = (mt).2 of πroot(t)∗B→M(A,B).

The various equations of Definition 1 are obviously satisfied by the data we have
just defined, because of the finality of M(A, B). ��

Remark. The choice of a collection of final coalgebras made in the proof is needed
in order to ensure coherence of coinductive types under pullback. The situation
is analogous to that of Hofmann [11], where he needs a choice of pullbacks and
equalisers in order to describe the identity types.

5 Conclusions

We have extended the extensional type theory of Martin-Löf with Σ-types and
Π-types, by adding coinductive types. These allow for the specification of infinite
programs, and for the study of non-well-founded structures.

A sound categorical semantics has been given, in terms of type-categories
with coinductive types, which extends the well-known semantics presented in
[19,11]. We also prove that any locally cartesian closed category with M-types

On the Semantics of Coinductive Types in Martin-Löf Type Theory 125

gives rise to a type-category with coinductive types. This formalised the state-
ment in [23] saying that coinductive pretoposes give a semantics of type theories
with coinductive types.

From a computational point of view, the choice of working with extensional
equality (as well as the axioms we adopted for M-types in the type theory)
are rather unpleasant, since they make equality undecidable. We heard from
Altenkirch that the so-called “observational types” he introduced in [4] might
help handling infinite objects in an intensional setting, and that some research
in this direction has been undertaken.

In [23], the structure of a coinductive pretopos is studied, and that is not
only a locally cartesian closed category with M-types, but also exact (and with
distributive sums). These further properties have been ignored in the present
setting. They might be of use in giving a semantics to the study of setoids built
out of a type theory with conductive types, and this topic is clearly related to
the study of non-well-founded set theory [2].

References

1. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Representing strictly pos-
itive types. Presented at APPSEM annual meeting, invited for submission to
Theoretical Computer Science, 2004.

2. Peter Aczel. Non-Well-Founded Sets. Center for the Study of Language and In-
formation, Stanford University, 1988. CSLI Lecture Notes, Volume 14.

3. Peter Aczel, Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. Infinite trees and com-
pletely iterative theories: a coalgebraic view. Theoretical Computer Science, 300:1–
45, 2003.

4. T. Altenkirch. Extensional equality in intensional type theory. In 14th Symposium
on Logic in Computer Science (LICS’99), pages 412–421. IEEE, 1999.

5. Michael Barr. Terminal coalgebras for endofunctors on sets. Available from
ftp://www.math.mcgill.ca/pub/barr/trmclgps.zip, 1999.

6. Jean Bénabou. Fibered categories and the foundations of naive category theory.
J. Symbolic Logic, 50(1):10–37, 1985.

7. John Cartmell. Generalised algebraic theories and contextual categories. Ann.
Pure Appl. Logic, 32(3):209–243, 1986.

8. Thierry Coquand. Infinite objects in type theory. In Types for proofs and programs
(Nijmegen, 1993), volume 806 of Lecture Notes in Comput. Sci., pages 62–78.
Springer, 1994.

9. Veronica Gaspes. Infinite objects in type theory, 1997.
10. Lars Hallnäs. On the syntax of infinite objects: an extension of Martin-Löf’s theory

of expressions. In COLOG-88 (Tallinn, 1988), volume 417 of Lecture Notes in
Comput. Sci., pages 94–104. Springer, 1990.

11. Martin Hofmann. On the interpretation of type theory in locally cartesian closed
categories. In Computer science logic (Kazimierz, 1994), volume 933 of Lecture
Notes in Comput. Sci., pages 427–441. Springer, 1995.

12. Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic
and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,
1999.

126 F. De Marchi

13. Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. Bulletin
of the EATCS, 62:222–259, 1996.

14. Ingrid Lindström. A construction of non-well-founded sets within Martin-Löf’s
type theory. Journal of Symbolic Logic, 54(1):57–64, 1989.

15. Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory.
Lecture Notes. Bibliopolis, Naples, 1984.

16. Per Martin-Löf. Mathematics of infinity. In COLOG-88 (Tallinn, 1988), volume
417 of Lecture Notes in Comput. Sci., pages 146–197. Springer, 1990.

17. N. P. Mendler, P. Panangaden, and R. L. Constable. Infinite objects in type
theory. In Symposium on Logic in Computer Science (LICS ’86), pages 249–257.
IEEE Computer Society Press, 1986.

18. Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf ’s type theory, volume 7 of International Series of Monographs on Computer
Science. The Clarendon Press Oxford University Press, 1990.

19. Andrew M. Pitts. Categorical logic. In Handbook of logic in computer science, Vol.
5, Oxford Sci. Publ., pages 39–128. Oxford Univ. Press, 2000.

20. R. A. G. Seely. Locally cartesian closed categories and type theory. Math. Proc.
Cambridge Philos. Soc., 95(1):33–48, 1984.

21. Thomas Streicher. Semantics of type theory. Progress in Theoretical Computer
Science. Birkhäuser, 1991. Correctness, completeness and independence results.

22. Daniele Turi and Jan Rutten. On the foundations of final coalgebra semantics:
non-well-founded sets, partial orders, metric spaces. Mathematical Structures in
Computer Science, 8(5):481–540, October 1998.

23. Benno van den Berg and Federico De Marchi. Non-well-founded trees in categories.
(submitted). Available online at http://arxiv.org/abs/math.CT/0409158.

Look: Simple Stochastic Relations Are Just,
Well, Simple

Ernst-Erich Doberkat�

Chair for Software Technology, University of Dortmund
doberkat@acm.org

Abstract. Simple systems cannot decomposed further. Algebraically,
simple systems have only isomorphisms as epis. We characterize simple
stochastic relations through different forms of bisimulations for the case
that the underlying spaces are Polish, and analytic, respectively. This
requires a closer investigation of bisimulations, congruences and their
mutual relationship. We provide a complete characterization of simple
stochastic relations for analytic spaces.

1 Introduction

An algebraic structure which is isomorphic to each of its non-trivial factor spaces
is called simple. Take e.g. a simple and non-trivial group G and an epimorphism
φ : G → H , then φ is an isomorphism, because the factor system G/ker (φ) is
isomorphic to G, thus the kernel ker (φ) is trivial, cp. [8, p. 104]. Thus a system
S is simple if each epimorphism S → T is an isomorphism. On the other hand,
the very close connection between simple systems and trivial bisimulations is
well known in the theory of coalgebras: a system is simple iff it has only trivial
bisimulations.

We show in this paper that the investigation of simple stochastic relations
through bisimulations is fruitful as well. While in coalgebras heavy use is being
made of weak pullbacks, this is not possible for stochastic relations, since they are
not available there — in fact, one is glad to have semi-pullbacks [6]. Hence one
has to bypass this difficulty at the cost of some rather technical constructions. A
further technical point to be considered concerns the structure of the base space.
Stochastic relations can be defined on top of arbitrary measurable spaces, but
the probabilistic structure of these spaces is too poor to be of much use to us.
Thus we resort to a richer structure, viz., Polish spaces and their Borel images,
analytic spaces. A closer look will reveal that a careful distinction between these
spaces will be required, since stochastic relations on them are different in subtle
ways, as we will see.

Bisimulations are usually defined through spans of morphisms, and it turns
out that we need to capture different conditions on equivalence relations through

� Research funded in part by Deutsche Forschungsgemeinschaft, grant DO 263/8-1,
Algebraische Eigenschaften stochastischer Relationen.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 127–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 E.-E. Doberkat

Smooth
2-bisimulations on

K are trivial

�� Congruences on K
are trivial

�
Smoothness
of generated

relation

� Morphisms into K
are unique

Weak
2-bisimulations on

K are trivial

�

�

�� K is simple
�

�

Fig. 1. Simple systems: the Polish case

bisimulations in order to appreciate all properties of simple relations. We intro-
duce 2-bisimulations as those bisimulations that are based on a set-theoretic
relation on the space involved, so that the morphisms are just the projections.
For our discussion those 2-bisimulations are of interest that are defined through
the kernels of morphisms, or, equivalently, through congruences; we call them
smooth. There is a very close relationship between congruences and such smooth
2-bisimulations, since we show that each congruence gives rise to such a smooth
2-bisimulation (this is easy in the theory of coalgebras, it turns out to be rather
hard work for the stochastic case). This observation yields immediately that
a stochastic relation has only trivial congruences iff it has only trivial smooth
2-bisimulations.

This characterization is provided for the case that the spaces on which the
stochastic relations are built are Polish. Going a step further to analytic spaces
(hence to Borel images of Polish spaces) indicates that we need a further kind of
2-bisimulations that are called weak (they focus on Borel sets that are invariant
under the congruence and leave other Borel sets alone). In the Polish case we
can show that there is no difference, but in the analytic case this is presumably
not the case. We prove that a stochastic relation for relations over Polish spaces
is simple iff it has only the trivial congruence iff smooth as well as weak 2-
bisimulations are trivial. It is shown that if there can be at most one morphism
into a simple stochastic relation, then the relation is simple (the converse holds
as well, but under a restrictive condition); Figure 1 gives an overview. This
is essentially the situation for the analytic case, too, but the equivalence of
weak and smooth 2-bisimulations is a bit weaker; Figure 2 provides a pictorial
summary for this case as well. All this leads to a complete characterization of
simple analytic relations by injective measurable maps into the unit interval of
the reals. It implies that final systems do not exist unless the system is truly
probabilistic: then there is exactly one.

Final coalgebras are used by Rutten [10, 11] for establishing a calculus of
coinduction. Since the structure of simple systems is much poorer for stochastic
relations, such an endeavor cannot be expected to be as fruitful as in the general
coalgebraic case, but we indicate that the identification of simple relations may
occasionally be helpful nevertheless. We derive in the full paper [5] an explicit
representation of the number of heaps that is central to the analysis of Williams’

Look: Simple Stochastic Relations Are Just, Well, Simple 129

Smooth
2-bisimulations on

K are trivial

� Congruences on K
are trivial

� Morphisms into K
are unique

Weak
2-bisimulations on

K are trivial

� �� K is simple
�

�

Fig. 2. Simple systems: the analytic case

algorithms for heap construction from a continuous representation, and we show
how the inversions of an array can be counted. These examples illustrate possible
applications of the results presented here.

The paper is organized as follows: Section 2 defines the category of stochas-
tic relations and the basic version of bisimulations. Since smooth equivalence
relations play an important role for the discussion at the paper’s core, they
are studied separately in Section 3, and some techniques associated with them
are introduced and illustrated. Section 4 applies this to congruences, introduces
smooth and weak 2-bisimulations, and studies briefly the relationship between
them. Simple relations are formally introduced in Section 5, characterizations
both for the Polish and the analytic case are given. Section 6 mentions related
work and gives indications for further studies.

2 Stochastic Relations

Let (X,A) be a measurable space, then S (X,A) denotes the set of all subprob-
ability measures on (X,A). This is made into a measurable space through the
weak-*-σ-algebra, which is the smallest σ-algebra A∗ on S (X,A) that renders
the evaluation map μ → μ(A) measurable for all A ∈ A.

Definition 1. A stochastic relation K = ((X,A), (Y,B), K) with K : (X,A) �
(Y,B) is a map K : X → S (Y,B) that is A-B∗-measurable.

Thus a stochastic relation K : (X,A) � (Y,B) has the following properties:

1. B → K(x)(B) is a subprobability measure on B for each x ∈ X ,
2. x → K(x)(B) is a A-measurable map from X to the unit interval [0, 1] for

each B ∈ B.

Suppose that the base spaces (X,A) and (Y,B) are identical, then a stochastic
relation may be interpreted as a coalgebra for the subprobability functor. This
is an endofunctor in the category of measurable spaces with measurable maps as
morphisms. This point of view appears quite as attractive, because it suggests
to fit stochastic relations tightly under the roof of coalgebras, making tried and
tested approaches available for investigating problems of stochastic relations.

130 E.-E. Doberkat

Unfortunately, this proposal will work only partially. There are two reasons for
that: First, it is well known that the subprobability functor has some idiosyn-
cratic properties making work with it sometimes a little strenuous (for example,
there do not exist weak pullbacks). Second, a coalgebra 〈X, c〉 for functor F is
defined as a morphism c : X → FX, so the codomain of morphism c is just the
image of its domain under F. This is rather restrictive, both structurally and
regarding applications. “Unfolding” domain and codomain into two independent
objects provides much needed maneuverability, see e.g. [4, 6].

Let K1 and K2 be stochastic relations with Ki = ((Xi,Ai), (Yi,Bi), Ki), i =
1, 2, then f : K1 → K2 is a morphism between K1 and K2 iff f = (φ, ψ) is a pair
of surjective maps such that φ : X1 → X2 is A1−A2-measurable, ψ : Y1 → Y2 is
B1−B2-measurable with K2◦φ = S (ψ)◦K1. Here S (ψ) : S (Y1,B1)→ S (Y2,B2)
is the B∗

1 − B∗
2 measurable map defined through S (ψ) (μ)(B2) := μ(ψ−1 [B2]).

We want the maps underlying a morphism be onto in order to make sure
that each element in the range can be traced back to at least one element from
the domain, so that there are no unrelated elements in the range.

A bisimulation between the stochastic relations K1 and K2 is a stochastic
relation M (which is sometimes called the mediating object) together with two
morphisms

K1 � f1 M
f2 � K2.

If K1 and K2 coincide, this is called a bisimulation on K1. Thus a bisimulation
is a span of morphisms. The notion of a bisimulation can be refined: let M =
((A,X), (B,Y), M) be the mediating object with suitable σ-algebras X and Y
on A resp. B. If A and B are measurable subsets of X1 × X2 resp. Y1 × Y2,
and if f = (π1,X1 , π1,Y1), f′ = (π2,X2 , π2,Y2) — π indicating projections —, then
the bisimulation is called a 2-bisimulation. Thus a 2-bisimulation renders this
diagram commutative:

X1 � π1,X1 A
π2,X2 � X2

S (Y1,A1)

K1

�
�
S (π1,Y1)

S (B,Y)

M

�

S (π2,Y2)
� S (Y2,B2)

K2

�

We will discuss special versions of bisimulations in Section 4.
General measurable spaces are far too general for obtaining results of inter-

est. We will deal with Polish and analytic spaces instead which are much more
fruitful. A topological space X is called a Polish space iff there exists a metric
for the topology on X which is second countable and which is complete. Thus
the topology has a countable base (or, equivalently, a countable dense subset),
and each Cauchy sequence converges. The Borel sets B(X) on X are the smallest
σ-algebra on X that contains the open sets. A measurable space (X,A) is called
analytic iff there exists a Polish space X0 with X ⊆ X0 and (slightly abusing

Look: Simple Stochastic Relations Are Just, Well, Simple 131

notation) A = B(X) := B(X0)∩X such that X = f [Y] for some Polish space Y
and a Borel measurable map f : Y → X0; Y and f define the analytic structure
on X . We will write down Polish resp. analytic spaces without their σ-algebra
whenever this does not lead to confusion.

S (X) will always carry the weak-*-σ-algebra B(X)∗. If X is Polish, S (X)
is Polish as well: the weak topology, i.e., the smallest topology that makes μ →∫

X f dμ continuous for all bounded and continuous f : X → R, is metrizable and
has a countable dense subset. Similarly, if X is Polish or analytic, S (X) shares
this respective property. We will denote by P (X) the subspace of all probability
measures.

General stochastic relations with their morphisms form a category, and we
are mostly interested in the full subcategories of objects (X, Y, K) in which both
X and Y are Polish or both are analytic. We will not name these categories
but rather mention that we talk about Polish objects or about analytic objects,
depending on which case applies. Note that when a weak 2-bisimulation on an
analytic object is investigated, we do so in the category of all stochastic relations,
contrary to the usual custom of defining bisimulations through morphisms in the
category one investigates the object in.

We will make use of set-valued maps when investigating 2-bisimulations.
Suppose that we have Polish spaces V and W and a map R : V → P (W)
assigning each v ∈ V a nonempty subset R(v) of W . A measurable map f : V →
W is called a measurable selector for R iff f(v) ∈ R(v) holds for each v ∈ V ,
so that f picks for each v ∈ V an element of R(v) in a measurable way. The
existence of a measurable selector for a set-valued map can by no means always
be guaranteed (in fact, without the condition of measurability the existence of
a selector is equivalent to the axiom of choice). The Himmelberg-Van Vleck
Theorem [13, Theorem 4.2.e] provides a sufficient condition:

Proposition 1. Assume that V and W are Polish spaces, and that R : V →
P (W) is a set-valued map such that

1. R(v) is a non-empty closed subset of W for each v ∈ V ,
2. the weak inverse ∃R(C) := {v ∈ V | R(v) ∩ C �= ∅} is a Borel set for each

compact subset C of W .

Then there exists a measurable selector for R.

3 Smooth Equivalences

Fix an analytic space X . Smooth equivalence relations are introduced and some
properties are demonstrated. This is discussed separately for the reader’s conve-
nience.

Definition 2. An equivalence relation α on X is called smooth iff there exists
a Borel measurable map f : X → Q into a Polish space Q such that α is just the
kernel of f , thus α = ker (f) := {〈x, x′〉 ∈ X ×X | f(x) = f(x′)}.

132 E.-E. Doberkat

An equivalent definition [12] is to postulate the existence of a sequence (An)n∈N

of Borel sets in X such that x α x′ iff ∀n ∈ N : [x ∈ An ⇔ x′ ∈ An] . This
formulation is useful when it comes to define e.g. equivalent states in a Kripke
model M for a modal logic: denote for a formula ϕ by Aϕ := {s | M, s |= ϕ}
the set of all states that satisfy ϕ, then the equivalence relation defined through
s ∼ s′ iff ∀ϕ : [s ∈ Aϕ ⇔ s′ ∈ Aϕ] is smooth, because there are only countably
many formulas. It is the equivalence underlying the Hennessy-Milner Theorem,
see [2, 3].

Let X be a set with A ⊆ X × X a relation. Denote by �(A) the smallest
equivalence relation containing A. Denote for an equivalence relation α on X by
[x]α the equivalence class of x ∈ X .

This definition is central for the development:

Definition 3. Let α be a smooth equivalence relation on the analytic space X.

1. A subset B ⊆ X is called α-invariant iff B is the union on α-classes.
2. The σ-algebra of α-invariant Borel sets is denoted by I (B(X), α) .

It can be shown [4] that I (B(X), α) = σ({An | n ∈ N}), provided α is defined
through the sequence (An)n∈N, as indicated above. Since we can always find
such a sequence [12, Lemma 3.1.6, Exercise 5.1.10] for a smooth relation, the
σ-algebra of α- invariant Borel sets is countably generated, and vice versa. A
smooth relation α on X constitutes a measurable subset α ⊆ X ×X .

The factor space X/α is made into a measurable space by endowing it with
the largest σ-algebra B(X)/α that renders the canonic projection ηα : x →
[x]α measurable. It is well known that (X/α,B(X)/α) is an analytic space, in
particular that B(X/α) = B(X)/α holds, see [12, Exercise 5.1.14].

We list some important and helpful properties of I (B(X), α) and related
structures for later reference.

Lemma 1. Let α be a smooth equivalence relation. Then

1. I (B(X), α) = η−1
α [B(X/α)] ,

2. If P ∈ I (B(X), α), then (P ×X) ∩ α = (X × P) ∩ α = (P × P) ∩ α
3. ⊗ [X, α] := {(P ×X) ∩ α | P ∈ I (B(X), α)} is a σ-algebra on α,
4. If μ ∈ S (X, I (B(X), α)) is a subprobability measure on the α-invariant Borel

sets of X, then μ•((P × X) ∩ α) := μ(P) defines a subprobability measure
on ⊗ [X, α] .

Property 1 states that the Borel sets B(X/α) are essentially the α-invariant
Borel sets in X . The Borel sets in the factor space look somewhat inaccessible,
hence this representation will be a great help, since we now have a specific handle
on them (via the factor map ηα). Property 3 looks at the trace the invariant
Borel sets leave on α: these sets form a σ-algebra, when the pairs forming the
equivalence relation are considered as a space in its own right, and property 4
strengthens this view, because also a measure may be transported in this way.
It will be most helpful in the sequel to see that we can view measures that are

Look: Simple Stochastic Relations Are Just, Well, Simple 133

defined on the invariant Borel sets of X as measures on the somewhat strange
looking σ-algebra ⊗ [X, α] .

The interplay between smooth relations and measurable maps is further il-
lustrated by the technique of transporting a smooth relation backwards along
a measurable map. The proof makes use of Souslin’s famous characterization of
Borel sets as both analytic and complements of analytic sets.

Lemma 2. Let α be a smooth equivalence relation on the analytic space A so
that α = ker (h) for some measurable map h : A → W , W being a Polish space.
Define for the Polish space X and the Borel map f : X → A on X the smooth
relation αf := ker (h ◦ f) . If E ⊆ X is a αf -invariant Borel set, then

1. f [E] is a α-invariant Borel set in A,
2. E = f−1 [f [E]].

Consequently, the invariant Borel sets of αf are just the inverse images of the
invariant Borel set of α under f , viz., I (B(X), αf) = f−1 [I (B(A), α)] .

Because usually the image of a Borel set will not be a Borel set again, prop-
erty 1 is somewhat surprising, (exactly the observation that the images of Borel
sets under Borel maps are no longer Borel had led to the development of the
theory of analytic sets). Property 2 permits an explicit representation of the
αf -invariant sets in terms of their f -images. This is a rather strong and unusual
statement as well, indicating that smoothness is rather strong a property, in
particular when combined with invariance.

When investigating different morphisms for a stochastic relation, a relation
derived from the images will be helpful. Abbreviate for two maps g1, g2 : V →W
with common domain V and common range W (V and W are for the time being
arbitrary sets) the common product image by

#g1‖g2, := {〈g1(v), g2(v)〉 | v ∈ V }.

Intuitively, g1 and g2 correspond to two processes; they are run in parallel, and
we have a look at the equivalence relation spawned by them: they may be viewed
as the events common to both morphisms.

Lemma 3. Assume B is a Polish space, and let ψ1, ψ2 : B → Y be surjective
Borel maps. Assume further that �(#ψ1‖ψ2,) is smooth. Let

C := {C ∈ B(Y) | ψ−1
1 [C] = ψ−1

2 [C]}

be the σ-algebra of common events. Then the common events are exactly the
�(#ψ1‖ψ2,)-invariant Borel sets, thus C = I (B(Y), �(#ψ1‖ψ2,)) .

4 Congruences

Let K = (X, Y, K), be a stochastic relation over the analytic spaces X and Y . A
congruence c = (α, β) on K is a pair of smooth equivalence relations α and β on

134 E.-E. Doberkat

X resp. Y such that K(x1)(B) = K(x2)(B) holds whenever 〈x1, x2〉 ∈ α, and B
is a β-invariant Borel set in Y . Thus if α cannot separate x1 from x2, and if the
elements of B cannot be separated by β, then the probabilities for the respective
transitions are equal. Note that the kernel ker (f) of a morphism f : K → K′ is a
congruence on K, where ker (φ, ψ) is defined as the pair (ker (φ) , ker (ψ)), see [4].
This observation will be used occasionally.

We have defined bisimulations and 2-bisimulations in Section 2. Congruences
permit specializing the notion of a bisimulation further, and these specializations
will be used later on when characterizing simple systems.

Definition 4. Let α and β be smooth equivalence relations on X resp. Y .

1. A 2-bisimulation M = (α, β, M) on K is called a smooth 2-bisimulation on
K.

2. If for the stochastic relation N = ((α,B(α)), (β,⊗ [Y, β]), N)

(S (πi,Y) ◦N(a1, a2)) (E) = K(ai)(E)

holds for i = 1, 2 whenever 〈a1, a2〉 ∈ α and E is a β-invariant Borel set of
Y , then N is called a weak 2-bisimulation on K.

Smooth 2-bisimulations correspond to the bisimulation equivalences stud-
ied in coalgebras [9], as we will see soon. Weak 2-bisimulations restrict their
attention to the β-invariant Borel sets of Y (rather than on all Borel sets),
N(a) ((B × Y) ∩ β) is defined for a ∈ α and for the Borel set B ∈ I (B(Y), β),
see Lemma 1, part 3. This look of course much more restrictive than for a smooth
2-bisimulation: Clearly a smooth 2-bisimulation is a weak one, but we will show
in Proposition 2 that we can produce a smooth 2-bisimulation from a weak one,
provided the relation K is a Polish object.

We will begin with a fairly deep connection between congruences, smooth and
weak 2-bisimulations, that says among others that in Polish spaces congruences
and 2-bisimulations are just two sides of the same medal. Fix for the discussion
that follows the stochastic relation K = (X, Y, K) and a pair c = (α, β) of smooth
equivalence relations on the analytic spaces X resp. Y .

Proposition 2. Consider the following conditions:

a. c = (α, β) is a congruence on K.
b. There exists a weak 2-bisimulation ((α,B(α)), (β,⊗ [Y, β]), N) on K.
c. There exists a smooth 2-bisimulation (α, β, M) on K.

Then the following holds:

1. c ⇒ b ⇒ a is true for the analytic spaces X and Y ,
2. If both X and Y are Polish, then all conditions are equivalent.

Proof. 0. “c ⇒ b” is quite obvious, since each smooth 2-bisimulation is a weak
one, so for the general case the implication b ⇒ a, and for the Polish case the
implication a ⇒ c needs to be established.

Look: Simple Stochastic Relations Are Just, Well, Simple 135

1. “b ⇒ a” Let C ∈ I (B(Y), β) be a β-invariant Borel subset of Y , then
(C×Y)∩β equals both Y ×C)∩β and (C×C)∩β. (Lemma 1, part 2). Thus we
obtain for 〈x, x′〉 ∈ α from ((α,B(α)), (β,⊗ [Y, β]), N) being a 2-bisimulation:
K(x)(C) = N(x, x′)((C × Y) ∩ β) = N(x, x′)((Y × C) ∩ β) = K(x′)(C).

2. “a ⇒ c” This part is much harder. We need to construct a stochastic
relation M : α � β so that (α, β, M) forms a 2-bisimulation. The plan goes
as follows: we show that the problem can be considered a selection problem.
For this, we define on α a suitable set-valued map Γ that takes on closed sets of
measures on β and that satisfies the conditions of Proposition 1 for the existence
of a selector. The main difficulty will lie in showing that Γ takes in fact non-
empty values, and here invariant sets come in. An analysis of the topological
situation [12, Corollary 3.2.6] shows that we may select suitable Polish topologies
on X and Y with the same Borel sets as before such that both α and β are closed,
hence Polish subsets of X resp. Y , and that K : X → S (Y) may assumed to be
continuous.

Given 〈x1, x2〉 ∈ α, the set

Γ (x1, x2) := {μ ∈ S (β) | S (π1,Y) (μ) = K(x1),S (π2,Y) (μ) = K(x2)}

will be scrutinized with the goal of finding a measurable selector for Γ . It is
immediate that it is a closed subset of S (β), because the projections induce
continuous maps on the respective spaces of subprobabilities. Whenever C ⊆
S (β) is compact, the weak inverse ∃Γ (C) := {〈x1, x2〉 ∈ α | Γ (x1, x2) ∩ C �= ∅}
of C is a closed subset of α. This is established through a standard sequential
compactness argument.

We want to show first that Γ (x1, x2) �= ∅, whenever 〈x1, x2〉 ∈ α. For this the
techniques developed in [6] are used. Put Z := Y/β with C := B(Y/β), then (Z, C)
is an analytic space, hence it is known to be separable. The map ψ : y → [y]β
is measurable from Y onto Z, and we have S := {〈y1, y2〉 | ψ(y1) = ψ(y2)} = β.
We know moreover from Lemma 1, part 1 that η−1

β [C] = I (B(Y), β) holds. Now
fix 〈x1, x2〉 ∈ α and put ν1 := K(x1), ν2 := K(x2), then a measure θ1 on the
σ-algebra ⊗ [Y, β] is defined through θ1((B × B) ∩ β) = ν1(B) (= ν2(B)) , see
Lemma 1, part 4. The use of [6, Lemma 3] yields an extension of θ1 to a measure
θ which is defined on all of B(S). Thus we have now θ ∈ S (S) such that

∀Ei ∈ ψ−1 [C] : S (πi,Y) (θ)(Ei) = νi(Ei), i = 1, 2.

From [6, Proposition 5] we obtain a measure μ ∈ S (S) such that

∀Ei ∈ B(S) : S (πi,Y) (μ)(Ei) = νi(Ei), i = 1, 2.

But this means that Γ (x1, x2) �= ∅, thus we can apply the Himmelberg-Van
Vleck Selection Theorem (Proposition 1) and obtain a measurable selector M
for Γ , consequently, M : α � β. Thus M := (α, β, M) is a stochastic relation.
From M being a selector to Γ one sees that M is a 2-bisimulation for K, since

(S (π1,Y) ◦M) (x1, x2) = K(x1) and (S (π2,Y) ◦M) (x1, x2) = K(x2)

is true for all 〈x1, x2〉 ∈ α.

136 E.-E. Doberkat

Thus we have established a very close relationship between congruences and
2-bisimulations for stochastic relations. The basic idea has been to extend a
stochastic relation that is defined on a small and fairly easy to handle σ-algebra
to a larger one. But this is complicated, because we do not have direct access to
the Borel sets, when we need it: the Borel sets are defined in terms of a closure
operation and not through some explicit procedure, so we cannot put a handle
on them directly. Hence we have to walk a by-path: we show through a selection
argument that such a measure must exist. This argument works essentially as
follows: we know that the situation is easily managed on a the small σ-algebra
which we start from (this is like the begin of a proof by induction: the picture is
nice and clear in the beginning). We know also that our request for an extension
is not unreasonable, since our map Γ has some reasonable properties (this is like
the induction hypothesis); from this we conclude that we can find an extension
through a selector (this is much like the inductive step itself).

Quite apart from the somewhat involved technical development, this close
relationship is somewhat akin to general coalgebras. The situation cannot be
mirrored, however, since for coalgebras one usually requires a functor which
preserves weak pullbacks, see [9]. The structure for the subprobability functor
S is, however, slightly more involved: the existence of semi-pullbacks can be
established, examples show that the hope for establishing weak pullbacks is
vain, see [6]. Consequently it seems to be difficult to fit general coalgebras and
stochastic relations too tightly under one common roof.

Anyway, Proposition 2 provides us with a considerable degree of freedom,
because we can select the proper instrument in investigating simplicity without
having to be afraid that we loose important properties. This holds at least in
the Polish case. In the case of an analytic object we have to be a bit careful, but
the proposition tells us as well where to install watch dogs.

A partial converse to Proposition 2 is furnished through

Lemma 4. Let α and β be smooth equivalence relations on X resp. Y . Assume
that M := ((α,B(α)), (β,⊗ [Y, β]), M) is a weak 2-bisimulation on K. Then (α, β)
is a congruence of K.

Consequently, both smooth and weak 2-bisimulations for a stochastic relation
K are defined on congruences.

We leave this Section now, well armed with bisimulations of different sorts
for an investigation of simple relations.

5 Simple Relations

We are now ready to characterize simple systems both for Polish and analytic
spaces. We deal first with the Polish case which is a bit easier to handle, and
turn then to the analytic case. We develop a technique for reducing the analytic
to the Polish case, so that we may capitalize on previous results. A complete
characterization of simple relations will then be given for the general analytic
case.

Look: Simple Stochastic Relations Are Just, Well, Simple 137

Call a congruence c = (α, β) on X and Y trivial iff both equivalence relations
are the identity, viz., iff both α = ΔX and β = ΔY hold. Similarly, call a smooth
or weak 2-bisimulation trivial iff the underlying congruence is trivial.

Definition 5. A stochastic relation K is called simple iff each morphism with
domain K is an isomorphism.

This definition looks a bit stronger than usual, since usually epimorphisms
emanating from a simple structure are assumed to be isomorphisms. But since
we deal only with surjective maps, the common definition applies in this context.

We characterize simple systems if the spaces on which the relation is defined
both are Polish:

Theorem 1. Consider these statements for the Polish object K

(a). K is simple.
(b). Each smooth 2-bisimulation on K is trivial.
(c). Each weak 2-bisimulation on K is trivial.
(d). Let f1, f2 : M → K be morphisms, where M is a Polish object, then f1 = f2.
(e). Each congruence on K is trivial.

Then

1. These implications hold always: (a) ⇔ (b)⇔ (c)⇔ (e)⇐ (d).
2. Let in (d) fi = (φi, ψi). If both �(#φ1‖φ2,) and �(#ψ1‖ψ2,) are smooth, then

(e)⇒ (d) holds as well.

A visual overview is provided through Figure 1 in the Introduction. The
proof for Theorem 1 is broken into several pieces:

“(e) ⇒ (a)” Let f : K → L be a morphism, then f can be factored through
K/ker (f) as f = f′ ◦ ηker(f) with an isomorphism f′ [4, Corollary 3]. ker (f) is a
congruence which is trivial by assumption. Thus f is an isomorphism.

“(a) ⇒ (e)” If c is a congruence on K, then ηc : K → K/c is a morphism.
“(b) ⇔ (e)” This is a special case of Proposition 2.
“(d) ⇒ (b)” Let M := (A, B, M) be a smooth bisimulation on K, then

(π1,X , π1,Y), (π2,X , π2,Y) : M → K

are morphisms which are equal by assumption.
This settles the proof of part 1. Turning to the proof of part 2, assume that

(e) holds in addition to (�(#φ1‖φ2,), �(#ψ1‖ψ2,)) being smooth. We note from the
proof of Lemma 3 that a �(#ψ1‖ψ2,)-invariant Borel set D ⊆ Y has the property
that ψ−1

1 [D] = ψ−1
2 [D] holds, hence that D is an event common to ψ1 and ψ2.

Now define the equivalence relation RD := {〈x1, x2〉 | K(x1)(D) = K(x2)(D)},
then #ψ1‖ψ2, ⊆ RD follows from f1, f2 : M → K being morphisms: suppose
〈x1, x2〉 = 〈φ1(a), φ2(a)〉, and E = ψ−1

1 [D] = ψ−1
2 [D] , we obtain

K(x1)(D) = (K ◦ φ1)(a)(D) = M(a)(E) = K(x2)(D).

138 E.-E. Doberkat

Since RD is an equivalence relation for each D, and �(#φ1‖φ2,) is the smallest
equivalence relation containing #φ1‖φ2,, this implies

�(#φ1‖φ2,) ⊆
⋂
{RD | D ∈ I (B(Y), �(T))}

which in turn yields that (�(#φ1‖φ2,), �(#ψ1‖ψ2,)) is a congruence on K. This
congruence is trivial by assumption, yielding f1 = f2, as desired.

Turning to the analytic case, we will reduce this case to the one to the Polish
one, and we have seen that we can move smooth equivalence relations along
arrows (albeit reversing the direction) in Lemma 2. This will be used now to
move congruences.

Proposition 3. Let K = (X, Y, K) be a Polish object, L = (A, B, L) be an
analytic object, assume that f = (φ, ψ) : K → L is a morphism, and that c =
(α, β) is a congruence on L. Then cf := (αφ, βψ), is a congruence on K.

For a characterization of simple stochastic relations analogous to Theorem 1
we fix an analytic object K = (X, Y, K) together with Polish spaces X0, Y0 and
surjective Borel maps f : X0 → X and g : Y0 → Y which define the analytic
structure on X resp. Y . We establish for K the following property:

Proposition 4. These conditions are equivalent for K:

1. Each weak 2-bisimulation on K is trivial.
2. Each congruence on K is trivial.

Proof. 0. Since each weak 2-bisimulation is defined on a congruence, the implica-
tion 2 ⇒ 1 is obvious from Lemma 4. In order to establish the other implication,
we will construct from a given congruence c = (α, β) on K together with the
derived pair cf,g := (αf , βg) a stochastic relation K0 := (X0, Y0, K0) on which
cf,g is a congruence, then construct a smooth 2-bisimulation M0 = (αf , βg, M0)
on K0, and use this for constructing a weak 2-bisimulation M = (α, β, M) on K.

1. The relations αf and βg are smooth equivalence relations on X0 resp.
Y0. Define for E ∈ I (B(Y), β) and x0 ∈ X0 K ′

0(x0)(g−1 [E]) := K(f(x0))(E),
then we see from Lemma 2 that K ′

0 : (X0,B(X0)) � (Y0, I (B(Y0), βg)) is a
stochastic relation, so by [6, Proposition 6] we can find a stochastic relation
K0 : (X0,B(X0)) � (Y0,B(Y0)) extending K ′

0. Then cf,g is a congruence on
K0: let 〈x0, x1〉 ∈ αf , and E0 ∈ I (B(Y0), βg) be an invariant Borel set in Y0.
We know then that 〈f(x0), f(x1)〉 ∈ α, and that E0 = g−1 [g [E0]] with g [E0] ∈
I (B(Y), β) . This yields K0(x0)(E0) = K0(x0)(g−1 [g [E0]]) = K0(x1)(E0). From
Proposition 2 we get a smooth 2-bisimulation M0 = (αf , βg, M0) on K0. We show
that this implies M0(x0, x1)((P ×Y0)∩βg) = M0(x′

0, x
′
1)((P ×Y0)∩βg), provided

P ∈ I (B(Y0), βg) is a βg-invariant Borel set in Y0, and 〈x0, x1〉, 〈x′
0, x

′
1〉 ∈ αf

with f(x0) = f(x′
0) or f(x1) = f(x′

1) using the bisimulation property for M0:
assume that f(x0) = f(x′

0), then

M0(x0, x1)((P × Y0) ∩ βg) = K0(x0)(P)
(∗)
= K0(x′

0)(P)
= M0(x′

0, x
′
1)((P × Y0) ∩ βg)

Look: Simple Stochastic Relations Are Just, Well, Simple 139

Eq. (∗) follows from the observation that f(x0) = f(x′
0) implies 〈x0, x

′
0〉 ∈ αf

(note that x1, x
′
1 are used to make sure that the respective arguments lie in the

domain of M0).
Now introduce the stochastic relation M = ((α,B(α)), (β,⊗ [Y, β]), M) by

defining for 〈a, a′〉 = 〈f(x0), f(x′
0)〉 ∈ α and for B ∈ I (B(Y), β) the subproba-

bility
M(a, a′)((B × Y) ∩ β) := M0(x0, x

′
0)(

(
g−1 [B]× Y0

)
∩ βg).

Then the discussion above shows that M is well defined, provided we can estab-
lish that (g−1 [B] × Y0) ∩ βg ∈ ⊗ [Y0, βg] is true. But we know that g−1 [B] ∈
I (B(Y0), βg) holds.

2. It remains to show that M is indeed a weak 2-bisimulation. Let 〈a, a′〉 ∈ α
with a = f(x0), a′ = f(x′

0), and take a β-invariant Borel set E ⊆ Y . Then
π−1

1,Y [E] = (E × Y) ∩ β, thus putting all this together, we obtain

M(a, a′)(π−1
1,Y [E]) = M0(x0, x

′
0)((g

−1 [E]× Y) ∩ βg)

= K0(x0)(g−1 [E])
= K(a)(E)

We obtain as a consequence the analogue to Theorem 1 for analytic objects,
Figure 2 in the Introduction provides a pictorial summary.

Theorem 2. Consider these statements for the analytic object K

(a). K is simple.
(b). Each smooth 2-bisimulation on K is trivial.
(c). Each weak 2-bisimulation on K is trivial.
(d). Let f1, f2 : M → K be morphisms, where M is an analytic object, then f1 = f2.
(e). Each congruence on K is trivial.

Then these implications hold: (d)⇒ (a)⇔ (e)⇒ (b)⇒ (c)⇐ (e).

We are now in a position to characterize simple systems over analytic spaces
completely. Let 1l := {∗} be the one-element space with the discrete topology
(which is Polish) and P (1l) as its Borel sets. This space plays a distinguished rôle:

Proposition 5. The analytic objects (X, 1l, K) such that x → K(x)(1l) is in-
jective are exactly the simple analytic objects.

Thus the simple objects in the category of stochastic relations over analytic
spaces are in one-to-one correspondence with the injective Borel maps from
analytic spaces to the unit interval.

Call finally an object F final iff given another object M there exists exactly one
morphism f : M→ F. In view of Theorem 1, a final object is simple. The category
of stochastic relations does not have final objects: Being simple, a final object
would have the shape F = (X, 1l, F) according to Proposition 5. But X cannot
have more than one element, thus F = (1l, 1l, F) with F (∗)(1l) = r for some

140 E.-E. Doberkat

r, 0 ≤ r ≤ 1. But then there would be a unique morphism (1l, 1l, K)→ (1l, 1l, K ′)
with K ′(∗)(1l) = r′ �= r. This is evidently impossible.

We have, however, the following positive result:

Corollary 1. The full subcategory of stochastic relations (X, Y, K) such that
K(x)(Y) = 1 holds for all x ∈ X has a final object (1l, 1l, F).

6 Conclusion

We have identified simple stochastic relations over analytic spaces by providing
a complete characterization for them: they are essentially the injective Borel
maps from the space to the unit interval. It turns out that, save the case of
truly probabilistic systems, there does not exist a final system. Essential tools
are bisimulations in various forms. We develop the idea of a bisimulation along
the lines originally proposed by Milner and later taken up e.g. by Rutten [9]:
bisimulations are based there on set-theoretic relations, and these relations can
be restricted further, e.g. to be an equivalence relation. In this way we get a
hierarchy of bisimulations: those that are general and are based on the notion
of a morphism, those that are based on projections, and finally those that are
based on equivalence relations. A result that may be of independent interest is
the observation that a congruence on a stochastic relation may be extended to a
bisimulation, provided the stage for this relation is made up from Polish spaces.

The characterization of simple systems through bisimulations and congru-
ences has been undertaken by Rutten for coalgebras under the assumption that
the functor on which the coalgebra is based preserves weak pullbacks [9]. We
know, however, that the probability functor does not have this appealing prop-
erty [3, 6], so that a recourse to the coalgebraic methods employed by Rutten is
not possible.

We show how a characterization of simple systems can be used for the av-
erage case analysis of algorithms. This is — again — somewhat similar to the
coalgebraic case, but the non-existence of final systems limits the applicability
of this method severely. In this case we show that simple systems can be used
for obtaining a new result for counting heaps.

Some further work should be done here, for example it may be interesting
to see whether other structures based on probabilistic relations (like stochastic
Petri nets, for example) offer themselves for a similar treatment by exploiting
fully the power of bisimulations for a version of these systems that are based on
stochastic relations. It could be shown in [7] that stochastic relations and their
congruences are a helpful tool in the investigation of problems related to model
checking [1].

References

[1] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Koert. Model-checking algorithms
for continuous time Markov chains. IEEE Trans. Softw. Eng., 29(6):524 – 541,
June 2003.

Look: Simple Stochastic Relations Are Just, Well, Simple 141

[2] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation of labelled Markov-
processes. Information and Computation, 179(2):163 – 193, 2002.

[3] E.-E. Doberkat. Semi-pullbacks and bisimulations in categories of stochastic re-
lations. In Proc. ICALP’03, volume 2719 of Lecture Notes in Computer Science,
pages 996 – 1007, Berlin, 2003. Springer-Verlag.

[4] E.-E. Doberkat. Factoring stochastic relations. Information Processing Letters,
90(4):161 – 166, May 2004.

[5] E.-E. Doberkat. Look: simple stochastic relations are just, well, simple. Technical
Report 152, Chair for Software Technology, University of Dortmund, November
2004.

[6] E.-E. Doberkat. Semi-pullbacks for stochastic relations over analytic spaces. Math.
Struct. Comp. Sci., 2005. (in print).

[7] E.-E. Doberkat. Zeno paths, congruences and bisimulations for continuous-time
stochastic logic. Technical Report 155, Chair for Software Technology, University
of Dortmund, March 2005.

[8] S. Lang. Algebra. Addison-Wesley, Reading, Mass., 1965.
[9] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Com-

puter Science, 249(1):3 – 80, 2000. Special issue on modern algebra and its appli-
cations.

[10] J. J. M. M. Rutten. Bisimulation in enumerative combinatorics. ENTCS, 65(1):1 –
19, October 2002.

[11] J. J. M. M. Rutten. Behavioral differential equations: a coinductive calculus of
streams, automata and power series. Theor. Comp. Sci., (308):1 – 53, 2003.

[12] S. M. Srivastava. A Course on Borel Sets. Graduate Texts in Mathematics.
Springer-Verlag, Berlin, 1998.

[13] D. H. Wagner. A survey of measurable selection theorems. SIAM J. Control
Optim., 15(5):859 – 903, August 1977.

Gianluigi Ferrari1, Ugo Montanari1, Emilio Tuosto1,
Björn Victor2, and Kidane Yemane2

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Dept. of Information Technology, Uppsala University, Sweden

Abstract. We propose a coalgebraic model of the Fusion calculus based on HD-
automata. The main advantage of the approach is that the partition refinement
algorithm designed for HD-automata is easily adapted to handle Fusion calcu-
lus processes. Hence, the transition systems of Fusion calculus processes can be
minimised according to the notion of observational semantics of the calculus.
As a beneficial side effect, this also provides a bisimulation checker for Fusion
calculus.

1 Introduction

Nominal calculi, process calculi with primitive mechanisms for local name generation,
name exchange and scoping rules, have been successfully applied to specify and ver-
ify properties of global computing systems. Names provide a suitable abstraction to
describe a variety of different computational phenomena such as mobility, localities,
distributed object systems, security keys, session identifiers and so on. For instance, the
p-calculus has been exploited for modelling and verifying a finite instance of the Han-
dover protocol of the Public Land Mobile Network [19]. Several properties of crypto-
graphic protocols have been naturally expressed through spi-calculus specifications [1].
Nominal calculi also provide a basic programming model that has been incorporated in
novel programming languages (see e.g. [6, 2]) and workflow languages for Web Service
coordination [4, 15].
Verification via semantic equivalence provides a well established framework to rea-

son about the behaviour of systems specified using nominal calculi. In this approach,
checking behavioural properties is reduced to the problem of contrasting two system
abstractions in order to determine whether their behaviours coincide with respect to a
suitable notion of semantic equivalence. However, in the case of nominal calculi ver-
ification via semantic equivalence is intrinsically difficult. Indeed, when an unbound
number of new names can be generated during execution, models of nominal calculi
(e.g. labelled transition systems) tend to be infinite even in the simplest cases unless
explicit mechanisms are introduced to deal with names.
Symbolic semantics [14, 3, 16] is a well established approach to finite state verifi-

cation of nominal calculi. Symbolic semantics takes a syntax-based approach and gen-
eralises standard operational semantics by keeping track of equalities among names:
transitions are derived in the context of such constraints. The main advantage of the
� Work supported by the PROFUNDIS FET-GC project.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 142–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modelling Fusion Calculus Using HD-Automata�

symbolic semantics is that it yields a smaller transition system. The idea of symbolic
semantics has been exploited to provide a convenient characterisation of open bisim-
ilarity [24] and in the design of the corresponding bisimulation checker, the Mobility
WorkBench (MWB) [26].
An alternative class of models for nominal calculi are the so-called syntax-freemod-

els where names are explicitly dealt with regardless of the syntactic structure of the cal-
culi. Indexed LTSs [5] andHistory Dependent automata (HD-automata in brief) [17, 21,
18] are examples of syntax-free models of nominal calculi developed following the ap-
proach based on name permutations. HD-automata have an added value with respect to
indexed LTS because they are equipped with powerful verification techniques. Here we
focus on HD-automata, which encompass the main features of nominal calculi, namely
creation and deallocation of names, and accounts for a compact representation of pro-
cess behaviour by collapsing states differing only for the renaming of local names.
Basically, the “history” of the names appearing in the computation is explicitly repre-
sented so that it is possible to reconstruct the associations that have led to a given state.
Clearly, if a state is reached in two different computations, different histories are as-
signed to its names [17, 21]. In [18], states of HD-automata have been equipped with
name symmetries which further reduces the size of the automata and guarantee the ex-
istence of the minimal realization. The computation of the minimal automata is derived
by exploiting a coalgebraic presentation of the partition refinement algorithm [7]. The
minimisation algorithm for the early semantics of p-calculus has been implemented in
the Mihda toolkit [10]. Since Mihda does not rely on a symbolic semantics, the number
of states of the minimal HD-automaton is unnecessarily large due to the existence of
different input transitions for different instantiations of the input variable. Hence, the
integration of symbolic techniques and syntax-free models would provide more power-
ful verification methods. Notice that minimisation algorithms for syntax-based models
have been already developed (e.g., for the open semantics of the p-calculus[22]).
In this paper we introduce a novel symbolic semantics for the Fusion calculus [20].

The Fusion calculus is a nominal calculus which extends the p-calculus with the capa-
bility of fusing names. When two names are fused then they can be used interchange-
ably. The Fusion calculus has been introduced as a simplification and generalisation of
the p-calculus. Apart from the theoretical interest Fusion calculus seem to arise natu-
rally in the implementation of distributed systems, e.g. workflow languages for service
coordination [23].
The main technical contribution of this paper is the development of a coalgebraic

framework for the Fusion calculus equipped with the symbolic semantics. We remark
that this is the first coalgebraic semantics for Fusion calculus. Moreover, our results
allows the minimisation algorithm for finite HD-automata to be smoothly extended to
the Fusion calculus. The coalgebraic semantics behaves in accordance with the sym-
bolic semantics of Fusion calculus, e.g. bisimilar processes are mapped together by the
morphisms yielding the minimal HD-automaton. Finally, this provides an algorithm for
checking hyperbisimulation of finitary Fusion calculus agents.
The paper is structuredas follows:In section 2wedescribeHD-automataasa coalgebra

over a category of named sets and the minimisation procedure for the HD-automata
and, in Section 3, we provide a brief overview of Fusion calculus together with a new

Modelling Fusion Calculus Using HD-Automata 143

symbolic semantics. This will be followed by the HD-automata for Fusion calculus
and how minimisation works for Fusion calculus HD-automata in Section 4, and we
conclude in Section 5 with some conclusion, related work and some ideas for future
work.

2 History Dependent Automata

Verification of concurrent and mobile systems specified using nominal calculi is intrin-
sically difficult since the state space can easily become extremely large or even infinite.
History Dependent automata (HD-automata in brief) [21, 17, 18, 7] are an operational
model for nominal calculi designed to address finite state verification. HD-automata can
be seen as automata enriched by equipping states and transition with names. This per-
mits to model name creation/deallocation or name extrusion which are typical linguistic
mechanisms of nominal calculi.
A noteworthy fact is that names in states of HD-automata have local meaning, hence

a compact representation of agent behaviour can be achieved by collapsing states that
differ only for renaming of local names. Following [10], we provide a formal definition
of HD-automata which basically differs from definitions of [10] in avoiding usage of
dependent types. Indeed, the presentation in [10] aims at showing how the formal defini-
tion of the partition refinement algorithm for HD-automata guides and corresponds to its
implementation Mihda [8]. Here, we build named sets on top of permutation algebras,
namely we give a more abstract definition which focuses on the main mathematical
ingredients necessary to describe the coalgebraic model and the related minimisation
algorithm for Fusion calculus without taking into account implementation details.
Before giving the formal definitions, it is worth to collect some notations.
We consider a set N � made of a countable set of names N and a distinguished

element � �∈ N . We let Aut(N) be the set of bijective endofunctions on N , i.e., the
permutations of N . Given a permutation r such that dom(r) ⊂ N (where dom(r) is
the domain of r), r is the automorphism on N � obtained by extending r on N � so
that r(x) = x for any x ∈ N � \ dom(r). The application of a function on names g to an
element e is written as eg and, when e is a set, it stands for the point-wise application of
g to the elements of e.

Definition 1 (Permutation algebras). Apermutation algebra isanalgebra〈S,O〉,where
S is the carrier of the algebra and the set of operations O contains unary operators
{r̂ | r ∈Aut(N)} such that the following axioms hold.

∀x ∈ S. xîd = x, ∀x ∈ S∀r1,r2 ∈ Aut(N). xr̂1;r2 = (xr̂1)r̂2.

Given a finite set of namesN, sym(N) is the set defined as sym(N)= {r∈Aut(N) | ∀x �∈
N.r(x) = x}. Notice that sym(N) is a subgroup of Aut(N).
Following [18], we can see the Fusion calculus as a permutation algebra: the carrier

is the set of processes of Fusion calculus (up to structural congruence) and the opera-
tions are name permutations interpreted as substitutions.
We introduce the notions of named sets and named functions which form the cate-

gory NS of named sets, in terms of permutation algebras. Then we study the structure
of NS.

144 G. Ferrari et al.

Definition 2 (Named sets). A named set (ns) is a pair 〈Q,g〉 where;
1. Q is a permutation algebra;
2. g : Q→

S
N∈ fîn(N)

{sym(N)} assigns to any q ∈ Q a group of permutations g(q)
over a finite set of names such that q = qr̂, for any r ∈ g(q). The names of q,
written as |q|, are defined as the domain of the permutations r ∈ g(q) while ||q|| is
the cardinality of |q|.

We let D, E , F range over nss and, given D= 〈Q,g〉, we write QD (resp. gD) to denote
Q (resp. g).

Definition 3 (Isomorphism of named sets). Two nss D and E are isomorphic if there
exists an isomorphism between D and E, namely a bijective function s : QD → QE
such that, for any d ∈ QD there is a bijective correspondence n : |d| → |s(d)| such that
gD(d) = gE(s(d));n.
Therefore, we consider nss up-to isomorphism so that two nss are considered equal
whenever they have the same “structure” despite of having different underlying sets
and different names associated to each element. It only matters the number of names
and the symmetry associated to eachelement,namely, names are local to elements of nss.
Named functions basically are functions that preserve the structure of nss.

Definition 4 (Named functions). Given two named sets D and E, a named function
(nf) H :D→ E is a pair 〈h,S〉 where h :QD →QE and S :QD → fîn(QE ×N �

N
) are

such that, for all q ∈ QD and (e,s) ∈ S(q),
1. s is injective, s(|e|) ⊆ |q|∪{�} and s(x) = x, for any x ∈ N \ |e|;
2. s;gD(q)⊆ S2(q), where S2(q) =

S
(e,s)∈S(q){s} and the permutations in gD(q) are

all meant to act as the identity on �;
3. gE(h(q));s= S2(q).
Named functions are ranged over by H, K and J. We write hH and SH for denoting
the first and the second components of H. The intuition behind conditions 1, 2 and 3
naturally emerges when nfs are exploited to describe the transitions out of a certain
state. Intuitively, elements in hH(q) are the transitions out of q and SH(q) contains
the mappings of names of target states of those transitions to names of q. Condition 1
ensures that any name in |q| has a unique “meaning” along each transition in hH(q)
(injectivity of s) and establishes that names in target states are either mapped on names
of the source state or to �, the distinguished name representing the generation of a new
name along a transition. Condition 2 states that the group of the starting state q does
not generate transitions which are not in SH(q). Finally, condition 3 states that any
permutation is in the symmetry of hH(q) iff, when applied to any s mapping names of
the transitions to those of q, it yields a map in SH(q).

Definition 5 (Composition of named functions). The composition H;K of two nfs
H : D→ E and K : E → F is 〈hH ;hK ,SH ;SK〉 where SH ;SK : QD → fîn(QF ×N �

N
)

is such that

SH ;SK : q �→
[

(e,s)∈SH (q)
{(f ,s;s′) | (f ,s′) ∈ SK(hH(q))}.

Modelling Fusion Calculus Using HD-Automata 145

Proposition 1. In Definition 5, H;K is a nf. Composition of nfs is associative and has
identities.

Proof. The proof proceeds as the corresponding proof in [9]. �

Definition 6 (Category of named sets). The categoryNS has nss as objects and nfs as
morphisms.

The basic characteristics of NS are collected in Proposition 2.

Proposition 2 (Structure of NS). The category NS has an initial object, a terminal
object, and finite powerset functor defined as follows:

1. the initial object is given by ⊥ = 〈 /0, /0〉;
2. the terminal object is given by I = 〈{∗},∗ �→ /0〉;
3. the powerset functor on NS is obtained by lifting the covariant powerset func-
tor fîn() on Set, namely fîn(D) = 〈̂ fin(DQ),g〉, where, given Q ⊆ QD, g(Q) =
{r | r is a permutation over

S
q∈Q |q|}∧Qr= Q.

Definition 7 (Pairing of named sets). Given two nss D and E, the pairing D⊗E of D
and E is defined as D⊗E = 〈QD×QE ,g〉 where

– g : QD ×QE →
S
N,M∈ fîn(N)

{sym(N)+ sym(M)} is such that g(d,e) = {r1 +

r2 | r1 ∈ gD(d)∧r2 ∈ gE(e)}.

Formally, D⊗E is not a ns because the range of gD⊗E is not the union of symmetries
over a finite set of names. However, observing that for any (d,e)∈QD×QE , g(d,e) is a
symmetry on |d|+ |e|, we can find a ns whose group function maps (d,e) to a symmetry
over as many names as in |d|+ |e| and whose permutations correspond bijectively to the
permutations in g(d,e). Notice that, since nss are considered up-to isomorphism, it does
not matter which set of names is chosen for any pair (d,e).

Definition 8 (HD-automata).Fixed a ns of labels L, aHD-automaton over L is a coal-
gebra for TL(D) = fîn(L⊗D).

We emphasise that nfs provide the formal mean to describe a generic step of the
iterative minimisation algorithm. Intuitively, nfs map states of the automaton in equiv-
alence classes containing those states considered equivalent.

Definition 9 (Kernel of named functions). The kernel of a nf H : E → F (written as
kerH) is the ns D such that:

1. QD = kerhH considered as permutation algebra where for all A ∈ QD and r ∈
Aut(N), Ar is the element-wise application of r to A;

2. the group of A ∈ kerhH is gF(hH(a)), for a ∈ A.

In [7, 10] the normalisation functor for the early semantics of p-calculus has been
introduced. In this context, the concept of redundancy relies on the concept of active
names because of the presence of freshly generated names. We generalise this concept
by means of redundant transitions. Generally, redundant transitions are transitions de-
scribing behaviours that can be matched by other transitions in the bisimulation game.

146 G. Ferrari et al.

Redundant transitions occur when HD-automata are built out of a nominal calculus.
During this phase, it is not possible to decide which are the redundant transitions1.
Therefore, all the transitions are taken when HD-automata are built and redundant
ones are removed during the minimisation. This is achieved by means of normalisa-
tion which basically gets rid of redundant transitions.

Definition 10 (Normalisation functor). A normalisation functor N is any functor such
that N(D) is isomorphic to a subset of D.

The minimisation algorithm on a TL coalgebra (D,K : D→ TL(D)) is specified by
the equations 1 and 2 below.

H(0)
def
= 〈q �→ ⊥,q �→ /0〉, where dom(H(0)) = D (1)

H(i+1)
def
= K;N(T (H(i))), (2)

where N is a normalisation functor and T : NS→ NS is the functor defined as

T (D) =

{
TL(D) D ∈ obj(NS)
〈h,S〉 D= 〈hD,SD〉 ∈NS(E,F) for E,F ∈ obj(NS)

where, given B ∈ fîn(L⊗E),

h(B) = {〈l,hD(q)〉 | 〈l,q〉 ∈ B}
S(B) = {〈l,hD(q),s;s′〉 | 〈l,q,s′〉 ∈ B∧〈l,q′,s′〉 ∈ SD(q)}.

All the states of automaton K are initially considered equivalent, indeed, kerH0 gives
rise to a single equivalence class containing the whole dom(K). At the generic (i+1)-
th iteration, as specified in (2), the image through H(i) of the i-th iteration is composed
with K as stated by the definition of functor T , then the normalisation functor removes
the redundant transitions. The algorithm builds the minimal realisation H̄ of (finite)
HD-automata by constructing (an approximation of) the final coalgebra morphism. The
kernel of H̄ yields the equivalence classes where equivalent states are grouped in the
same class.
The proof of the convergence of the algorithm is based on the observation that T is

a monotonic functor over finite chains. In order to establish this, we must give a way of
saying when two nfs are the same.

Definition 11 (Equivalence of named functions). Two nfs H : D→ E and K : D′ →
E ′ are equivalent when kerH is isomorphic to kerK via the bijections n and s (see
Definition 3) and for all q ∈ D, gE(hH(q));n= gE ′(hK(s(q))).

Definition 12 (Order of named functions). Let H :D→ E and K :D→ F be two nfs,
H is less than or equal to K (written as H � K) if, and only if,

– QkerH is coarser than QkerK and ∀A ∈ QkerH .∀B ∈ QkerK . B ⊆ A⇒ gkerH(A) ⊆
gkerK(B).

– ∀A ∈ QkerH .∀B ∈ QkerK . ∀q ∈ A∩B.SH(q) ⊆ SK(q).
1 In general, to decide redundancy is as difficult as deciding bisimilarity.

Modelling Fusion Calculus Using HD-Automata 147

Proposition 3. Relation� isapreorderand H�K∧K�H impliesH andK equivalent.

Proof. The first condition of Definition 12 and H � K ∧K � H imply that kerH is
isomorphic to kerK. It remains to prove that the hypothesis implies the last condi-
tion of Definition 11. Assume that there is q ∈ dom(H) such that gcod(H)(hH(q)) �=
gcod(K)(hK(q)). Then, for all s ∈ SH(q),

gcod(H)(hH(q));s �= gcod(K)(hK(q));s. (3)

By Definition 12, SH(q) = SK(q) since H � K ∧K � H. Moreover, conditions on nfs
(Definition 4) imply that gcod(H)(hH(q));s = ShH (q) and gcod(K)(hK(q));s = ShK (q)
that contradicts (3). �

Monotonicity is preserved by composition of named functions:

Lemma 1. Let H andK be two nfs such that H �K. For any ns J, if cod(J)= dom(H)=
dom(K) then J;H � J;K.

Finally, we can prove the convergence of the iterative algorithm:

Theorem 1 (Convergence). If the normalisation functor N is monotone on nfs then the
iterative algorithm described by (1) and (2) converges on finite state HD-automata.

Proof. By construction, fîn() is monotone, hence T is monotone because it is the
composition of two monotone functors. By monotonicity of T and Lemma 1, map M :
H �→ K;T (H) is monotone and finite. Finally, all nfs chains having finite domain are
finite, hence, the algorithm in (1) and (2) converges to the maximal fix-point of M . �

The proof of Theorem 1 mimics that in [10]. The only difference is that the theorem
in [10] is proved only for the case of the early semantics of p-calculus, while here, the
result is extended to the general case of finite HD-automata, with the only additional
assumption that the normalisation functor is monotone.

3

We briefly recollect the syntax and operational semantics of the Fusion calculus refer-
ring the reader to [20] for further details. In Section 3.1 we present a new canonical
symbolic semantics.

Definition 13 (Fusion calculus syntax). The free actions ranged over by a, fusion ac-
tion ranged over by j, actions ranged over by g, and the agents ranged over by P,Q, . . .,
are defined by
a ::= ux̃

∣∣ ux̃
g ::= a

∣∣ j
P ::= 0

∣∣ g .Q
∣∣ Q+R

∣∣ Q | R∣∣ (x)Q
∣∣ [x= y]Q

∣∣ A〈x̃〉,

where x, y, u, v . . . range over N and represent communication channels, which are also
the values transmitted. An input action ux̃ means “input objects along the port u and
replace x̃ with these objects”. Note that input does not entail binding. The output action

148 G. Ferrari et al.

Syntax and Semantics of the Fusion Calculus

PREF
−

a .P a
−→ P

SUM
P g
−→ P′

P+Q g
−→ P′

P g
−→ P′

P | Q g
−→ P′ | Q

PAR

COM
P ux̃
−→ P′, Q uỹ

−→ Q′, |x̃| = |ỹ|
P | Q {x̃=ỹ}

−−−−→ P′ | Q′

P j
−→ P′, zjx, z �= x
(z)P j\z

−−→ P′{x/z}
SCOPE

PASS
P g
−→ P′, z �∈ n(g)
(z)P g

−→ (z)P′
P (ỹ)ax̃
−−−→ P′, z ∈ x̃− ỹ, a �∈ {z,z}

(z)P (zỹ)ax̃
−−−−→ P′

OPEN

MATCH
P g
−→ P′

[x= x]P g
−→ P′

P≡ P′ P g
−→ Q Q≡Q′

P′ g
−→ Q′

STRUCT

Table 1. Transition rules for the Fusion calculus

ux̃ means “output the objects x̃ along the port u”. A fusion action {x̃ = ỹ} represents
an obligation to make x̃ and ỹ equal everywhere, limited by the scope of the names
involved.
A Fusion calculus process is either the void process 0, or a process prefixed by an

action g .P that is ready to perform g and continue as P, or non-deterministic choice
P+Q, or the parallel composition of two processes Q | R, or a process with a restricted
name (x)Q, or a process preceded by a check for the equality of names [x= y]Q, or
else the invocation of a process definition A〈x̃〉, where A is a process identifier and we
assume that for each process identifier there is a single defining equation A〈x̃〉def=P such
that all the names in fn(P) appear in x̃.

Definition 14 (Fusion calculus semantics). The labelled transition system of Fusion
calculus is the least relation satisfying the inference rules in Table 1.

Use of the SCOPE rule entails a substitution of the scoped name z for a nondeter-
ministically chosen name x related to it by j. For the purpose of the equivalence defined
below it will not matter which such x replaces z. The only rule dealing with bound ac-
tions is OPEN. Using structural congruence, pulling the relevant scope to top level, we
can still infer e.g. P | (x)ayx .Q (x)ayx

−−−→ P |Q using PREF and OPEN (provided x �∈ fn(P),
otherwise an alpha-conversion is necessary).

Definition 15 (Hyperbisimulation [20]). A fusion bisimulation is a binary symmetric
relation S between agents such that (P,Q) ∈ S implies:
If P g

−→ P′ with bn(g)∩ fn(Q) = /0, then Q g
−→ Q′ and (P′sg,Q′sg) ∈ S . Agents P and

Q are fusion bisimilar, written P .∼ Q, if (P,Q) ∈ S for some fusion bisimulation S . A
hyperbisimulation is a substitution closed fusion bisimulation.

The interesting point in this definition is the treatment of fusion actions. Indeed, if g is
a fusion action, it only makes sense to relate P′ and Q′ when a substitution sg, induced
by g, has been performed. For instance, a fusion {x= y} induces a substitution s{x=y},
i.e. {y/x} or {x/y}.

Theorem 2. [20] Hyperequivalence is the largest congruence in fusion bisimilarity.

Modelling Fusion Calculus Using HD-Automata 149

PREF
−

a .P /0,a
�−−→ Psa

SUM
P M,g
�−−→ P′

P+Q M,g
�−−→ P′

P M,g
�−−→ P′

P | Q M,g
�−−→ P′ | QsMsg

PAR

SCOPE
P M,j
�−−→ P′, zjx, z �= x, z �∈ n(M)

(z)P M,j\z
�−−−→ P′{x/z}

P M,g
�−−→ P′ M′ =M[x= y]
[x= y]P M′ ,gs[x=y]�−−−−−→ P′sM′

MATCH

PASS
P M,g
�−−→ P′, z �∈ n(M,g)

(z)P M,g
�−−→ (z)P′

P M,(ỹ)ax̃
�−−−−→ P′, z ∈ x̃− ỹ, a �∈ {z,z}, z �∈ n(M)

(z)P M,(zỹ)ax̃
�−−−−−→ P′

OPEN

COM
P M,ux̃
�−−−→ P′, Q N,vỹ

�−−→Q′, |x̃| = |ỹ|, L=MN[u= v], j= {x̃ = ỹ}sL
P | Q L,j

�−−→ (P′ | Q′)sLsj

Table 2. Canonical symbolic transition system for the Fusion calculus

3.1

Having briefly presented Fusion calculus syntax together with its concrete semantics,
we provide a new symbolic semantics of Fusion calculus which lend itself to coal-
gebraic modelling through HD-automata. The canonical symbolic semantics for the
Fusion calculus is defined along the lines of symbolic semantics for the p-calculus [24,
22]. Symbolic semantics are often used to give efficient characterisations of bisimula-
tion equivalences for value-passing calculi.
In Table 2 we present the symbolic transition system where structurally equivalent

agents are considered the same. Like in [24] a symbolic transition is of the form P M,g
�−−→

Q, where M is the enabling condition of the action g in the sense that M represents
the equalities a minimal substitution sM must make true in order for PsM to perform
the corresponding action in the original labelled transition system. sM is the substitutive
effect ofM: an idempotent substitution s.t. sM(x) =sM(y) iffM⇒ x= y. We generalise
substitutive effects to actions, where sa is the identity substitution.
In Table 2 we writeMN for denoting the concatenation ofM and N. Following Pis-

tore and Sangiorgi’s work [22], our transition rules apply substitutions to the continua-
tion of a transition: like [22], a substitution sM , making the condition for the transition
true, and in addition a substitution sg, the substitutive effect of the action, is applied to
the right-hand side of the transition. The motivation for this is to make the definition
of bisimulation simpler and more in line with the algorithms used in the HD frame-
work (see Section 4). We show later in this section that bisimulation using the symbolic
semantics coincides with the original non-symbolic version.
Using canonical substitutions gives us pleasant properties like the following:

Lemma 2. If P M,g
�−−→ P′, then g= gsM and P′ = P′sM = P′sg = P′sMsg.

150 G. Ferrari et al.

Canonical Symbolic Semantics of Fusion Calculus

The definition of symbolic hyperbisimulation is similar to that of symbolic open
bisimulation [24, 22], but does not have the complication of distinctions.

Definition 16 (Symbolic hyperbisimulation). A binary symmetric process relation S
is a symbolic hyperbisimulation if (P,Q) ∈ S implies:
If P M,g

�−−→ P′ with bn(g)∩ fn(Q) = /0 then Q N,g′
�−−→ Q′ such that

M⇒ N, g= g′sM, (note g= gsM)
and (P′,Q′sM) ∈ S (note P′ = P′sM).

P is symbolically hyperequivalent to Q, written P� Q, if (P,Q) ∈ S for some symbolic
hyperbisimulation S .

Since the symbolic semantics applies the substitutive effects, we can leave most of
that out of the bisimulation definition. It is still necessary to apply substitution corre-
sponding to the stronger condition, sM , to the label and continuation of the transition
of Q. (Note that Q′sM = Q′sMsg.)

Theorem 3. P∼ Q iff P� Q

Proof. See appendix.

4

This section describes how agents of Fusion calculus can be mapped onto HD-automata
and what normalisation means for the HD-automata for Fusion calculus. We first intro-
duce labels and transitions and then define the normalisation functor for Fusion calcu-
lus. Let us remark that the monotonicity of this functor guarantees the convergence of
the minimisation algorithm on finite HD-automata that correspond to Fusion calculus
agents. We conclude the section with an informal discussion on the correspondence be-
tween hyperequivalence and minimisation. In order to keep the coalgebraic presentation
as simple as possible, we limit to a monadic version of Fusion calculus where tuples in
communication actions carry a single name.
Though not increasing the expressiveness of the calculus, polyadicitywould obscure

the main picture of the coalgebraic presentation with cumbersome technical details. (A
mapping of the polyadic Fusion calculus to HD-automata is given in [25].)
The labels of the canonical symbolic semantics of Fusion calculus consists of en-

abling conditions and actions; both of them can be represented as nss.
Let M be the ns 〈{•},g〉 where g = {idx,y,exchx,y}, namely, g contains the identity

and the exchanging permutation on the two names inM i.e, |•| = {x,y}.

Definition 17 (Matching named set). A matching named set is a ns of the form M =
M⊗ . . .⊗︸ ︷︷ ︸

n≥0

M, also written as Mn (recall, that pairing treats names in a component as

distinguished from those in other components; Mi is the i-th component of M).
Given a name substitution s ∈ N �

N , the interpretation of M in s is [[M]]s and is
defined as

s(x1) = s(y1)∧·· ·∧s(xn) = s(yn),

where, for any i= 1, . . . ,n, {xi,yi} are the names in Mi.

Modelling Fusion Calculus Using HD-Automata 151

From Fusion Calculus to HD-Automata

As notation,M0 is the ns 〈{•},• �→ /0〉 namely, the singleton ns where |•|= /0. Basically,
enabling conditions are represented by tupling matching nss each representing a fusion
of two names. The interpretation of M under s is the statement constraining the names
xi and yi of any component Mi to be identified once they are interpreted through s.
Notice that the interpretation of M0 under any substitution always holds and, indeed, it
represents the trivial condition [x = x]. (Any substitution s such that [[M]]s holds true is
said to be compatible with M.)
Definition 18 (Labels for Fusion calculus). Let M be a matching ns and Lab be the
set {tau, in, out, fuse}. The nss of labels for Fusion calculus are the nss M⊗〈Lab,g〉
where g : Lab→ N � is such that

||tau|| = 0
||fuse|| = 2∧g(fuse) has the identity and the exchanging permutations
||in||, ||out|| ≤ 2∧g(in), g(out) have only the identity permutation.

M is called the enabling part and g is called the action part of labels for Fusion calculus.
Hereafter, L stands for the ns of labels for Fusion calculus and K : D→ TL(D) is an
HD-automaton. (Roughly, L represents labels of transitions of the canonical symbolic
semantics of Fusion calculus.)
Let P be a Fusion calculus agent, K[P] denotes the coalgebraic specification of the

HD-automaton associated to P, namely a TL-coalgebra such that dom(K[P]) =D[P] and
cod(K[P]) = TNS(D[P]).
Let QD[P] denote the set of Fusion calculus processes reachable from P, namely

QD[P]
def
= {P} ∪

[

P
M,g
�−−→P′

{P′}∪QD[P′].

It is trivial to equip QD[P] with a named set structure. Indeed, for any q ∈QD[P], the
group component gD[P](q) is the identity on fn(q).
Function hK[P] associates, to each state, its outgoing transitions and is defined as

hK[P](q) = {〈l,q′,s〉 | q M,g
�−−→ q′ ∧ l corresponds toM,g}

where, for any 〈l,q′,s〉 ∈ hK[P](q) s maps the names in fn(q′) that correspond to those
in fn(q) and names generated in the transition to � (and similarly for the names of
l). Recall, indeed, that the names in q′ and l are local, hence, even though they are
syntactically equal in the Fusion calculus transition system, they must be considered
different in HD-automata states.
The HD-automaton obtained by this definition is a TL-coalgebra by construction.

Observe that infinite HD-automata can be obtained using the construction above, how-
ever, there are interesting classes of Fusion calculus agents that generate finite HD-
automata: this is the case of finitary agents. The degree of parallelism deg(P) of a
Fusion calculus agent P is defined as follows:

deg(0) = 0 deg(a .P) = 1
deg((x)P) = deg(P) deg(P | Q) = deg(P)+deg(Q)

deg([x= y]P) = deg(P) deg(P+Q) = max(deg(P),deg(Q))

deg(A〈y1, . . . ,yn〉) = deg(P[y1,...,yn/x1,...,xn]), if A(x1, . . . ,xn)
def
=P

152 G. Ferrari et al.

Agent P is finitary if max{deg(P′)
∣∣ P M1,g1�−−−→ ·· ·

Mi ,gi�−−→P′}<¥. In [18, 21] the following
result has been proved:

Theorem 4 (Theorem 47 of [18]). Let P be a finitary agent. Then the HD-automaton
K[P] is finite.

The class of finitary agents is expressive enough for non-trivial specification, as wit-
nessed by e.g. the Handover protocol [19] in p-calculus, which can trivially be specified
also in the finitary Fusion calculus.
Let us now define the normalisation functor for Fusion calculus.

Definition 19 (Redundancy of labels). Let 〈l,q,s〉 and 〈l′,q,s′〉 be two hdt of K. As-
suming that the matching ns of l (resp. l′) is M (resp. M′), l is redundant wrt l′ iff l and l′
have the same action part and [[M]]s logically implies [[M′]]s′ but not vice versa.

Definition 20 (Redundant transitions). Let q ∈ QD be a state of K, an hdt 〈l1,q1,s1〉
is redundant (abbreviated as rhdt) for q if there is 〈l2,q1,s2〉 in SK(q) such that l1 is
redundant wrt l2 and, for a substitution s accomplishing with the interpretation of the
enabling part of l1, s2;s= s1.

The intuition is that t = 〈l1,q1,s1〉 is dominated by another transition t ′ = 〈l2,q1,s2〉
reaching the same target state as t and with the same label but having

– enabling conditions weaker than those of t and,
– under the conditions of t, the names associated to the label of t ′ are the same as
those of t.

Definition 21 (Normalisation functor for Fusion calculus). The normalisation func-
tor for Fusion calculus denoted by N : NS→ NS, is defined as follows:

N(D) =

{
〈h,S〉 D= 〈hD,SD〉 ∈ NS(̂ fin(L⊗E), fîn(L⊗F)) for E,F ∈ obj(NS)
D otherwise.

where, for B ∈ fîn(L⊗E),

h(B) = {〈l,q〉 | � ∃〈l,q,s〉 rhdt in S(B)}
S(B) = {〈l,q,s〉 ∈ B | 〈l,q,s〉 not rhdt in }

Basically, N filters those transitions out of a given state q that are redundant because of
the presence of another transition having weaker conditions on names.

Proposition 4. The functor N is monotonic on nfs.

Theorem 5. The minimisation algorithm described in Section 2 converges on finite
HD-automata for Fusion calculus.

Proof. By the monotonicity of T and N and Theorem 1.

Let us remark that normalisation through NH is based on Definition 16 of symbolic
hyperbisimulation. Indeed, redundancy conditions for Fusion calculus simply are the
conditions in Definition 16 relating the enabling part and the action part of bisimilar
transitions. Hence, a tight relationship can be established between Fusion calculus hy-
perbisimulation and the outcome of the minimisation algorithm.

Modelling Fusion Calculus Using HD-Automata 153

Theorem 6 (Minimisation and hyperbisimulation). Two finitary Fusion calculus pro-
cesses are hyperbisimilar iff they have the same minimal realisation.

Proof. (Sketch.) On the one hand, given two bisimilar Fusion calculus agents P and
Q, if corresponding HD-automata K[P] and K[Q] are finite, their minimal realisations,
say K̄[P] and K̄[Q], achieved by the minimisation algorithm are equivalent. Namely,
kerK̄[P] = kerK̄[Q] which implies that their corresponding classes have the same sym-
metries. On the other hand, if K[P] and K[Q] are finite and they both have the same
minimal realisation, say K̄, then P and Q are bisimilar. Basically, this is due to the fact
that the transitions out of a state in K[P] (resp. K[Q]) have a corresponding transition in
the behaviour of P (resp. Q). By construction of K̄ all the possible transitions of P have
a matching non rhdt in H̄, hence can be matched by Q as well and vice versa. �

5 Conclusions

Related ork. This work is related to the work of Ferrari et al [7, 8, 10], and Cattani
and Sewell [5] which both follow syntax-independentmodel approach to the operational
semantics of process calculi. The former goes further to introduce a minimisation pro-
cedure of transition systems for nominal calculi in a coalgebraic setting but only treated
an early semantics of p-calculus. Another related work worth noting is the work of
Fiore and Staton [11], and Gadducci et al [12] where they provide a formal comparison
of several operational semantics of nominal calculi.
In this paper we take the approach of Ferrari et al [7, 8, 10] further in order to give

the same functionality for the Fusion calculus. Hyperbisimulation in Fusion calculus
is more sophisticated than early bisimulation of p-calculus which was studied in the
above mentioned work because of the closure under all substitution required by hyper-
bisimulation. We solve these technical challenges by providing a new symbolic seman-
tics of Fusion calculus and conservatively extending HD-automata. The presentation
of the minimisation algorithm given in Section 2 differs from those [7, 10] because we
neatly distinguish between two phases. The first phase takes the initial HD-automaton
to the current iteration of the algorithm, while the second phase applies a suitable nor-
malisation functor for removing redundant transitions.
In the future we wish to take this research further and to deal with open semantics of

p-calculus. Open semantics of p-calculus is complicated because extruded names need
to be recorded and kept distinct from all other names under renaming. On the theoretical
side, it would be interesting to study how this work is related to a presheaf model of
open semantics of p-calculus as in [13] and other approaches as in [11, 12].

References

1. M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Infor-
mation and Computation, 148(1):1–70, January 1999.

2. N. Benton, L. Cardelli, and C. Fournet. Modern Concurrency Abstractions for C#. ACM
Transactions on Programming Languages and Systems, 26(5):269–304, Sept. 2004.

3. M. Boreale and R. De Nicola. A Symbolic Semantics for the p-calculus. Information and
Computation, 126(1):34–52, April 1996.

154 G. Ferrari et al.

W

4. R. Bruni, H. Melgratti, and U. Montanari. Theoretical Foundations for Compensations in
Flow Composition Languages. In Annual Symposium on Principles of Programming Lan-
guages POPL, pages 209–220, New York, NY, USA, 2005. ACM Press.

5. G. L. Cattani and P. Sewell. Models for Name-Passing Processes: Interleaving and Causal
(Extended Abstract). In Proceedings of the Fifteenth Annual IEEE Symposium on Logic in
Computer Science, LICS 2000, pages 322–333. IEEE Computer Society Press, 2000.

6. S. Conchon and F. Le Fessant. Jocaml: Mobile Agents for Objective-Caml. In International
Symposium on Agent Systems and Applications, pages 22–29, Palm Springs, California, Oct.
1999.

7. G. Ferrari, U. Montanari, and M. Pistore. Minimizing Transition Systems for Name Passing
Calculi: A Co-algebraic Formulation. In M. Nielsen and U. Engberg, editors, Foundations of
Software Science and Computation Structures, volume 2303 of Lecture Notes in Computer
Science, pages 129–143. Springer-Verlag, 2002.

8. G. Ferrari, U. Montanari, and E. Tuosto. From Co-algebraic Specifications to Implementa-
tion: The Mihda toolkit. In F. de Boer, M. Bonsangue, S. Graf, and W. de Roever, editors,
Symposium on Formal Methods for Components and Objects, volume 2852 of Lecture Notes
in Computer Science, pages 319 – 338. Springer-Verlag, November 2002.

9. G. Ferrari, U. Montanari, and E. Tuosto. Modular Verification of Systems via Service Co-
ordination. In Monterey Workshop 2004, October 2004. To appear on the workshop post-
proceedings.

10. G. Ferrari, U. Montanari, and E. Tuosto. Coalgebraic Minimisation of HD-automata for
the p-Calculus in a Polymorphic l-Calculus. Theoretical Computer Science, 331:325–365,
2005.

11. M. Fiore and S. Staton. Comparing Operational Models of Name-Passing Process Calculi.
In J. Adamek, editor, Proc. CMCS’04, ENTCS. Elsevier, 2004.

12. F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras and sheaves (and
named sets, too!). Technical Report UDMI/26/2003/RR, Department of Mathematics and
Computer Science, University of Udine, 2003.

13. N. Ghani, B. Victor, and K. Yemane. Relationally Staged Computation in the p-calculus. In
Procedings of CMCS 2004, number 106, 11 in ENTCS, pages 105–120, 2004.

14. M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Computer Science,
138(2):353–389, February 1995.

15. C. Laneve and G. Zavattaro. Foundations of Web Transactions. In Foundations of Software
Science and Computation Structures, Lecture Notes in Computer Science, 2005. To appear.

16. H. Lin. Complete Inference Systems for Weak Bisimulation Equivalences in the p-Calculus.
Information and Computation, 180(1):1–29, January 2003.

17. U. Montanari and M. Pistore. History Dependent Automata. Technical report, Computer
Science Department, Università di Pisa, 1998. TR-11-98.

18. U. Montanari and M. Pistore. p-Calculus, Structured Coalgebras, and Minimal HD-
Automata. In M. Nielsen and B. Roman, editors, Mathematical Foundations of Computer
Science, volume 1983 of Lecture Notes in Computer Science, pages 569–578. Springer-
Verlag, 2000. An extended version will be published on Theoretical Computer Science.

19. F. Orava and J. Parrow. An Algebraic Verification of a Mobile Network. Formal Aspects of
Computing, 4(5):497–543, 1992.

20. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. In Proceedings of LICS ’98, pages 176–185. IEEE, Computer Society Press, July
1998.

21. M. Pistore. History Dependent Automata. PhD thesis, Computer Science Department, Uni-
versità di Pisa, 1999.

22. M. Pistore and D. Sangiorgi. A Partition Refinement Algorithm for the p-Calculus. Infor-
mation and Computation, 164(2):467–509, 2001.

Modelling Fusion Calculus Using HD-Automata 155

23. U. Roxburgh. BizTalk Orchestration: Transactions, Exceptions, and Debugging,
2001. Microsoft Corporation. Available at http://msdn.microsoft.com/library/en-
us/dnbiz/html/bizorchestr.asp.

24. D. Sangiorgi. A Theory of Bisimulation for the p-Calculus. Acta Informatica, 33(1):69–97,
1996.

25. E. Tuosto, B. Victor, and K. Yemane. Polyadic History-Dependent Automata for the Fu-
sion Calculus. Technical Report 2003-62, Department of Information Technology, Uppsala,
Sweden, December 2003. Available at http://www.it.uu.se/research/reports/.

26. B. Victor and F. Moller. The Mobility Workbench — A Tool for the p-Calculus. In D. Dill,
editor, Computer Aided Verification, volume 818 of Lecture Notes in Computer Science,
pages 428–440. Springer-Verlag, 1994.

A Proof ketches for Section 3

Lemma 3. For any Fusion calculus agent P, if P g
−→ P′, then Ps gs

−→ P′s, for any
substitution s.

In the remainder of this section we establish the correspondence between symbolic
hyperequivalence (Definition 16) and the standard hyperequivalence (Definition 15) by
proving Theorem 3: P∼ Q iff P� Q.

Lemma 4.

1. ssRs = sRr, for any substitution s and some r, where R is an equivalence relation.
2. If M⇒ N then for any substitution s, Ms = Nsr, for some substitution r.
3. sRsSsR = sSsR, where R and S are equivalence relations.

Lemma 5.

1. If P M,g
�−−→ P′, then Ps Ms,gs

�−−−→ P′ssMssgs.
2. if Ps N,g′

�−−→ P′, then P M,g
�−−→ P′′ with Ms⇔ N, gs= g′, and P′ = P′′ssNsg′ .

Proof. By transition induction, using Lemma 4. �

Lemma 6. P� Q implies Ps� Qs, for any substitution s.

Proof. Straightforward diagram chasing, using Lemmas 4 and 5. �

Lemma 7.

1. If P M,g
�−−→ P′, then PsM

g
−→ P′′ s.t. P′ = P′′sg;

2. if M⇒ N and PsM
g

−→ P′, then P N,g′
�−−→ P′′ such that g= g′sM and P′sg = P′′sM.

Proof. Again by transition induction, using Lemmas 4 and 3. �

Proof of Theorem 3:

⇒: by showing S = {(P,Q) :P∼Q} is a symbolic hyperbisimulation, using Lemmas 7
and 4. �

⇐: We already have closure under substitution (Lemma 6), and show that S = {(P,Q) :
P� Q} is a fusion bisimulation using Lemmas 7 and 4. �

156 G. Ferrari et al.

S

An Algebraic Framework for Verifying the
Correctness of Hardware with Input and

Output: A Formalization in HOL

Anthony Fox

Computer Laboratory, University of Cambridge

Abstract. The hol-4 proof system has been used to implement an al-
gebraic framework for verifying the correctness of hardware with input
and output. Implementations and specifications are modelled as iterated
maps, with input and output modelled using streams. The correctness
model supports three types of abstraction: temporal abstraction (with
immersions), data abstraction, and stream abstraction.

This work has been used to formally verify the ARM6 microprocessor.
This paper discusses this processor’s input and output behaviour and
shows how this has been modelled and verified in hol. The verification
is believed to be the first complete formal verification of a commercial
off-the-shelf (COTS) processor. The definition of correctness given here
is new – it is suited to verifying ARM’s block data transfer instructions,
these load and store sets of registers.

1 Introduction

This paper describes an algebraic framework for the specification and verification
of hardware with input and output. The framework is based on an approach
developed by Harman and Tucker [10,11], which was later refined and extended
by Fox [5]. This work addresses the following questions:

How suited is the hol-4 proof system to formalizing the approach of
Harman, Tucker and Fox?

Can the approach be used to formally verify a commercial processor de-
sign?

Does the approach need to be modified in order to handle the input and
output behaviour of the ARM6?

The correctness framework is formalized in Section 2, and Section 3 intro-
duces some one-step theorems, which provide a mechanism to formally verify
correctness. The input and output behaviour of the ARM6 is briefly described
in Section 4. Although the formalization presented here derives from a major
case study (the mechanical verification of commercial pipelined processor), the
concepts are generic and applicable in a wide variety of settings, both in terms

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 157–174, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 A. Fox

of the tools used and the system under consideration. By not using an overly
bespoke model of correctness, one can: (i) make objective comparisons between
different verifications; (ii) benefit from using an established method for struc-
turing specifications and proofs; and (iii) avoid introducing bugs when defining
correctness.

Consider the device shown in Figure 1: it has an

state
outputinput

Fig. 1. A device with IO

internal state, which evolves over time; input is ac-
cepted from the environment; and output is sent
to the environment. Input and output are mod-
elled using streams ; these are maps of the form
{0, 1, . . .} → D, where D is a set of data values.
The state space and rate of state evolution deter-
mines the level of abstraction for the device’s model. The correctness of a (con-
crete) model with respect to a more abstract model is established with the use
of abstraction maps; there are maps for: time, state, input, and output.

The hol-4 proof system has been used to:

1. formalize the correctness framework;
2. model the ARM instruction set architecture (ISA) and ARM6 processor; and
3. formally verify the correctness of the processor model.

Initially, a closed-system version of the processor was verified i.e. there was no
input and output. Later, a more realistic processor model was verified: this covers
the exception and memory interface behaviour. The processor:

– accepts signals for resets, memory aborts and interrupts (fast and slow);
– receives input and sends output along a data bus; and
– communicates with a memory unit using a set of flags and an address bus.

The memory for the ARM6 was originally treated as part of the processor’s
internal state i.e. the memory was a map (from 30-bit addresses to 32-bit words),
capable of being updated on each clock cycle. This had the advantage that data
transfer instructions (memory loads and stores) could be verified in the same
way as all of the other instructions. However, this is a näıve model. Processor
cores are paired with different memory units; these are complex devices and they
may vary in behaviour e.g. they may differ through caching, aborts and update
latencies. In order to model and verify the ARM6, modifications were required
to the correctness model of [5] – these changes will be discussed in this paper.

1.1 Background and Related Work

The hol-4 system (hol.sf.net) has its origins in the LCF system of Milner [9],
which formed the basis for the higher-order logic of Gordon [8].

This work derives from research carried out at Swansea on the algebraic
specification of hardware and software. A correctness model for microprocessors
was developed by Harman and Tucker [10]: an important part of their approach
was in the treatment of temporal abstraction, with the explicit use of clocks and
retiming maps. This work forms part of the more general subject of synchronous

An Algebraic Framework for Verifying the Correctness of Hardware 159

concurrent algorithms (SCAs) [16] and stream processing [17,15]. The current
hol formalization builds on a version without input and output [6].

Many notions of correctness have been used in processor verifications; for ex-
ample, Aagaard et. al [1] classify a selection of definitions that have been used to
verify processors with out-of-order execution. The model of correctness presented
here is not suited to verifying out-of-order designs, nor is it based on the flushing
correctness model of Burch and Dill [2]. Manolios [12] identifies some problems
with the Burch and Dill model (it does not exclude trivial implementations),
and he provides a better definition of correctness.

One approach that has been used in verifying pipelined designs is to check
a set of safety and liveness properties e.g. prove that there are no deadlocks,
and that control and data hazards are correctly handled. This approach is not
explicitly used in verifying the ARM6 – instead the correctness definition is in the
form of a commuting equation – this is sufficient (but perhaps not necessary)
to ensure that the usual pipeline correctness properties hold. Ideally, a set of
liveness and safety properties should be sufficient with respect to the correctness
definition presented here, but this is not necessarily the case (one might just rule
out particular classes of bugs).

The work presented here is unique with respect to its treatment of input and
output. Processor verifications are usually carried out in the absence of external
interrupts, and the main memory is usually considered to be part of the state
space. A notable exception to this is the work of Sawada and Hunt [13]. They
use an instruction set that is much simpler than that of the ARM architecture
(e.g. there are no block data transfers), but the FM9801’s micro-architecture
is significantly more complex than the ARM6’s. The processor’s complexity has
meant that their top-level correctness definition does not guarantee the complete
correctness of their implementation.

The ARM6 verification is believed to be the first complete formal verifica-
tion of a COTS processor. In earlier work, either the processor was not a widely
available commercial product (in many cases designed with verification in mind)
or the verification has been in some respect incomplete i.e. not verifying inter-
rupts/exceptions or the entire instruction set. ARM processors are prevalent in
embedded (and, in particular, low power) systems. Documentation on the ARM
architecture can be found in [7] and [14].

2 Algebraic Models

Section 2.1 introduces iterated map state-output functions; these are used to
model hardware with input and output. In Section 2.3, correctness is defined,
using abstraction maps, which are discussed in Section 2.2. Some important
stream operations are provided in Section 2.4. In Section 2.5 this work is placed
in the context of algebraic specification.

To aid readability, the symbols listed in Table 1 will be used when writing
hol code (which will be in typewriter font).

160 A. Fox

Table 1. Symbols used in hol

Symbol ASCII Use

�def, � |- proof turnstile
α,β,. . . ’a,’b,. . . type variables

→ -> function type constructor
× # tuple type constructor
∀ ! for all
∃ ? there exists
λ \ lambda abstraction

Symbol ASCII Use

¬ ~ logical negation
∧ /\ conjunction
∨ \/ disjunction
⇒ => implication
∈ IN set membership
〈| <| record opening parenthesis
|〉 |> record closing parenthesis

2.1 State-Output Functions and Iterated Maps

State-output functions are used to model hardware with input and output; in [5]
these are maps of the form:

f : N×A× [N → B]→ A× C

where A is a set of states (the state space), [N → B] is a set of input streams (i.e.
time indexed data values) and C is a set of output values. Each set is required
to be non-empty. Time is modelled using the natural numbers. Given an initial
state a and input stream i, if f(t, a, i) = (b, c) then the state at time t is b and
the output is c.

In hol, the following record datatypes are used:

state_inp = 〈| state : α; inp : num → β |〉
state_out = 〈| state : α; out : β |〉

A state-output function is any function of the form:

f : num → (α,β) state_inp → (α,γ) state_out .

The state space is represented by the type variable α, the input space has type
num → β and the output has type γ. (It is more convenient to use curried func-
tions in hol.) The hol-4 system ensures that all types have at least one member,
therefore, these type variables can be freely instantiated with any concrete type.
For clarity and convenience, records are used instead of tuples (pairs) – the hol-4
system automatically defines projection and update functions for record types
e.g. state out inp x is the input component of record x (this can be written
as x.inp), and one can also write x with inp := y. The notation name:= exp
is used to assign a value to a named component.

Iterated map state-output functions are characterised by the predicate IMAP:

�def IMAP f init next out =
(∀ x. (f 0 x).state = init x.state) ∧
(∀ t x. (f (t + 1) x).state = next (f t x).state (x.inp t)) ∧
∀ t x. (f t x).out = out (f t x).state

�def IS_IMAP f = ∃ init next out. IMAP f init next out

�def IS_IMAP_INIT f init = ∃ next out. IMAP f init next out

An Algebraic Framework for Verifying the Correctness of Hardware 161

In an iterated map specification, the state at time zero is a function (init:α→α)
of the pre-initial state x.state. Each successive state, at time t+1, is a function
(next:α→β→α) of the state at time t and the stream input x.inp at time t.
For example, the state at cycle three is:

next (next (next (init x.state) (x.inp 0)) (x.inp 1)) (x.inp 2) .

The output is always a function (out:α→γ) of the current state.
The predicate IS IMAP asserts that f is an iterated map i.e. that f can be

defined with initialisation, next state and output functions. If such functions
exist then they will be unique, however, for convenience, hol-4’s quantifier for
unique existence is not used here. The predicate IS IMAP INIT is used to assert
that f has a particular initialisation function.

Example 1. Assume � IMAP f I (λa i. a + i) (λa. ODD a), where I is the
identity map and ODD n is true if, and only if, the natural number n is odd. Let
x = 〈|state := 4; inp := (λt. t MOD 3)|〉. The iterated map f evaluates as
follows:

� f 0 x = 〈|state := 4; out := F|〉 � f 3 x = 〈|state := 7; out := T|〉
� f 1 x = 〈|state := 4; out := F|〉 � f 4 x = 〈|state := 7; out := T|〉
� f 2 x = 〈|state := 5; out := T|〉 � f 5 x = 〈|state := 8; out := F|〉 .

Example 2. Let x = 〈|state := 0; inp := (λt. 1)|〉, and let the functions f
and g evaluate as follows:

� f 0 x = 〈|state := 0; out := F|〉 � g 0 x = 〈|state := 0; out := F|〉
� f 1 x = 〈|state := 0; out := F|〉 � g 1 x = 〈|state := 0; out := T|〉
� f 2 x = 〈|state := 1; out := F|〉 .

It is clear that � ¬IS IMAP f ∧ ¬IS IMAP g. The function g is not an iterated
map because the output is not a function of the state; f is not an iterated map
because the next state cannot be a function of the previous state and input i.e.
the state at cycle three differs from that at cycle two, even though the previous
state and input values are the same.

2.2 Data, Temporal and Stream Abstraction

State-output functions are used to model systems at different levels of abstrac-
tion. When comparing an implementation with a specification, four abstractions
are used, these are for: time, state, input and output.

A data abstraction maps the states of an implementation to the states of
a specification. The following property is used to assert the validity of a data
abstraction:

�def DATA_ABSTRACTION abs initi inits = SURJ abs (RANGE initi) (RANGE inits)

�def SURJ f s t = (∀ x. x ∈ s ⇒ f x ∈ t) ∧ ∀ y. y ∈ t ⇒ ∃ x. x ∈ s ∧ (f x = y)

A data abstraction is valid provided that it is a surjective mapping between
the initial state spaces i.e. all initial states of the implementation must map
to an initial state of the specification, and all initial states of the specification

162 A. Fox

must be mapped to by some initial state of the implementation. When used in
Section 2.3, this condition ensures that the implementation captures all of the
behaviour of a specification.

Temporal abstraction is achieved with the use of an immersion:

�def IMMERSION imm = ∀ (x :(α,β) state_inp). FREE_IMMERSION (imm x)

�def FREE_IMMERSION f = (f 0 = 0) ∧ ∀ t1 t2. t1 < t2 ⇒ f t1 < f t2

A free immersion is any monotonic

f

0 1 2 3 4 5 6 7 8

0 1 2 3

f f f

Fig. 2. A free immersion

increasing map (over the natural num-
bers) with identity at cycle zero e.g.
see Figure 2. Free immersions map ab-
stract cycles at the specification level to
concrete cycles at the implementation
level. A state- and input-dependent im-

mersion (or just, an immersion) is any map from a state-input record to a free
immersion. Thus, the temporal abstraction is a function of the implementation’s
pre-initial state and input.

The validity of a stream abstraction is asserted with the following predicate:

�def STREAM_ABSTRACTION smpl sstrm istrm =
(∃ i. i ∈ istrm) ∧ ∀ x. x.inp ∈ istrm ⇒ smpl x ∈ sstrm

Here sstrm and istrm are the sets of all valid input streams at the specification
and implementation levels respectively.1 The stream abstraction property is not
as strong as the data abstraction property i.e. it is not necessary to cover all of
the valid input streams at the specification level. This weaker condition is needed
in the context of the ARM6 verification – the set of valid exception sequences
depends on the state of the processor’s core.

2.3 Correctness

The correctness of an implementation with respect to a specification is asserted
with the following predicate:

�def CORRECT spec impl imm abs osmpl ismpl sstrm istrm =
IMMERSION imm ∧
DATA_ABSTRACTION abs (state_out_state ◦ impl 0) (state_out_state ◦ spec 0) ∧
STREAM_ABSTRACTION ismpl sstrm istrm ∧
∀ x. x.inp ∈ istrm ⇒
(let y = 〈|state := abs x.state; inp := ismpl x|〉 in

(∀ t. (spec t y).state = abs (impl (imm x t) x).state) ∧
(OUTPUT spec y = osmpl (x,OUTPUT impl x)))

�def OUTPUT g x t = (g t x).out

1 In hol-4, predicate sub-typing is not built into the logic, which is why predicates
are needed to specify the domains of the input stream. Initialisation functions are
used to restrict the domain of the state space.

An Algebraic Framework for Verifying the Correctness of Hardware 163

The state-output functions are spec and impl, and the corresponding input
stream spaces are sstrm and istrm. There are four abstractions: a data abstrac-
tion abs; an immersion imm; an input stream abstraction ismpl; and an output
stream abstraction osmpl. The predicates from Section 2.2 are used to ensure
these maps have the required properties.2 The function OUTPUT gives the output
stream for a state-output function.

Two equations are used: one asserts that the states of the two systems cor-
respond with respect to the abstractions; and the other asserts that the output
streams correspond through abstraction. The equations must hold for all cycles
at the specification level, states at the implementation level, and for all input
streams that are in istrm. Thus, all of the states produced by the specification
spec can be obtained (in the same temporal order) through abstraction, using
the implementation impl. Likewise, the output of the specification is a function
of the output of the implementation. In the context of pipelined processors, this
means that if the processor fails to resolve a hazard (a data or control depen-
dency) or if the processor deadlocks (when, at the specification level, the state
continues to evolve) then correctness will not hold because it will be impossible
to satisfy the commutativity equation.

The output stream abstraction, osmpl, takes two arguments: the state-input
record and the output from the implementation. The output alone does not pro-
vide enough context for the abstraction; for example, the free immersion imm x
is needed to relate the timing of the two streams. With the ARM6 verification,
the stream abstraction was not a simple function (i.e. sampling) of the output.

Example 3. All state-output functions are correct implementations of them-
selves; that is:

� ∀ f strm. ∃ i. i ∈ strm ⇒ CORRECT f f (λx t. t) I SND state_inp_inp strm strm .

Here, SND gives the second value of a pair. For the STREAM ABSTRACTION property
to hold, there must be at least one member of the set strm.

The correctness definition has been proved to be transitive:

CORRECT_TRANS:
� ∀ f1 f2 f3 imm1 imm2 abs1 abs2 osmpl1 osmpl2 ismpl1 ismpl2 strm1 strm2 strm3.

CORRECT f1 f2 imm1 abs1 osmpl1 ismpl1 strm1 strm2 ∧
CORRECT f2 f3 imm2 abs2 osmpl2 ismpl2 strm2 strm3 ⇒
CORRECT f1 f3
(λx. imm2 x ◦ imm1 〈|state := abs2 x.state; inp := ismpl2 x|〉) (abs1 ◦ abs2)
(λ(x,stm). osmpl1

(〈|state := abs2 x.state; inp := ismpl2 x|〉,osmpl2 (x,stm)))
(λx. ismpl1 〈|state := abs2 x.state; inp := ismpl2 x|〉) strm1 strm3

This theorem shows that if f2 implements f1, and f3 implements f2, then f3
implements f1. Figure 3 gives a commuting diagram view for this theorem.
The constraints places upon the abstractions (Section 2.2) ensure that they can
be successfully composed. Therefore, it is possible to verify multiple levels of
2 In hol, ◦ is used for function composition; therefore, state out state ◦ f 0 is the

initialisation function for the state-output function f.

164 A. Fox

〈|State1, InputStrm1|〉 〈|State1, Output1|〉 State1

〈|State2, InputStrm2|〉 〈|State2, Output2|〉 State2

〈|State3, InputStrm3|〉 〈|State3, Output3|〉 State3

abstract state and
input stream

abstract state and
input stream

run f1 for t
cycles

run f2 using
first immersion

run f3 using
second

immersion

project
state

project
state

project
state

abstract state

abstract state

(a) State.

〈|State1, InputStrm1|〉 OutputStrm1

〈|State2, InputStrm2|〉 〈|State2, InputStrm2|〉 × OutputStrm2

〈|State3, InputStrm3|〉 〈|State3, InputStrm3|〉 × OutputStrm3

abstract state and
input stream

abstract state and
input stream

output from f1

pair state and
input stream
with output

from f2

pair state and
input stream
with output

from f3

abstract output
stream

pair abstracted state and
input stream with

abstracted output stream

(b) Output.

Fig. 3. A commuting diagram view of correctness under transitivity. An informal pre-
sentation is shown i.e. the hol types and abstraction maps are not used.

abstraction and prove that the most concrete level implements the most abstract
level within a hierarchy. In computer architecture, this enables gate-level models
to be related to high level languages, with micro-architecture and programmer’s
model levels in-between.

The correctness definition above differs from that in [5]; in particular, the
treatment of output is different. In [5], correctness was expressed using a single
equation of the form:

f(t, a, i) = ψ(g(s, b, j)) ,

where ψ : A×B → C×D abstracts the state and output of the implementation.
This old definition is not suited to the verification of the ARM6 because the out-
put from the implementation is checked only at the times given by the immersion

An Algebraic Framework for Verifying the Correctness of Hardware 165

i.e. at instruction boundaries. However, with ARM’s block data transfer instruc-
tions, data and signals are sent to the memory unit over a number of cycles, so
the entire output stream must be abstracted. The new correctness definition can
be seen as a generalisation of the old definition i.e. it now covers a wider range
of systems.

2.4 Stream Operations

Various stream operations have been defined in hol. One basic operation is to
advance a stream in time:

�def ADVANCE t1 s t2 = s (t1 + t2)

Example 4. If �def strm t = t + 4 then � ADVANCE 1 strm = λt. t + 5.

The function PACK takes a stream of type num → α and bundles values to-
gether to give a stream of type num → (α list); this is done with respect to
a free immersion:
�def PACK imm strm t = GENLIST (λs. strm (imm t + s)) (IMM_LEN imm t)

�def IMM_LEN imm t = imm (t + 1) - imm t

GENLIST f n creates the list [f 0; f 1;...; f (n - 1)]. Packing is a lossless
stream sampling operation.

Example 5. Let �def strm t = t + 4 and let �def imm t = 4 * t i.e. imm is a
linear immersion in which each abstract cycle corresponds with four concrete
cycles. Let �def pstrm = PACK imm strm. This stream evaluates as follows:
� pstrm 0 = [4; 5; 6; 7] � pstrm 1 = [8; 9; 10; 11] � pstrm 2 = [12; 13; 14; 15] .

The function SERIALIZE is the inverse of PACK:
�def SERIALIZE imm strm s = EL (s - IMM_START imm s) (strm (IMM_RET imm s))

�def IMM_RET imm s = LEAST t. s < imm (t + 1)

�def IMM_START imm = imm ◦ IMM_RET imm

Here, IMM RET imm is the retiming corresponding with the free immersion imm;
see [5]. The function EL n picks the nth element from a list.

Example 6. Given strm, pstrm and imm from Example 5, the following theorem
holds: � SERIALIZE pstrm imm = strm.

The following theorem shows the relationship between PACK and SERIALIZE:

PACK_SERIALIZE:
� ∀ f. FREE_IMMERSION f ⇒

(∀ strm. PACKED_STRM f strm ⇒
(PACK f (SERIALIZE f strm) = strm)) ∧

∀ strm. SERIALIZE f (PACK f strm) = strm

�def ∀ f strm. PACKED_STRM f strm = ∀ t. LENGTH (strm t) = IMM_LEN f t

Serializing works when the length of the list at each time t is greater than or
equal to the number of cycles in the interval t to t + 1 (as specified by the
free immersion). When these lengths are equal, packing a serialized stream is an
identity operation.

166 A. Fox

2.5 Algebraic Specification Framework

The work in this paper has its origins in algebraic specification [18,4]. Although
hol-4 is not based on equation or rewriting logic (cf. Maude [3]), it is useful
to consider the modular structure of the specifications. For example, one can
consider algebraic structures for:

1. Time:
(N | 0, 1,Suc : N → N, + : N× N → N)

2. Streams:

(N, A, S = [N → A] | Eval : N× S → A,Advance : N× S → S, . . .)

3. The top-level semantics:

(N, A, [N → B], C | f : N×A× [N → B]→ A× C)

4. The next state semantics:

(A, B, C | init : A → A,next : A×B → A, out : A→ C)

5. The machine semantics: this contains the operations used to define the next
state semantics e.g. functions over vectors of n-bit words.

Each algebra has carrier sets and operations (constants are operations of arity
zero). In hol-4, specifications are split into theory files. For example, there are
theories for natural number arithmetic, n-bit words and the top-level (state-
output function) semantics of the ARM instruction set and the ARM6 processor.

3 One-Step Approach

Section 2.1 provides a definition of correctness for state systems with input
and output. This section describes an approach to verifying correctness that is
based on using time-consistent state-output functions and uniform abstractions.
The one-step theorems of Section 3.4 show that, under certain circumstances,
the correctness condition can be reformulated: producing a set of sub-goals in
which the abstract clock is instantiated with values t = 0 and t = 1. With the
ARM6, time t = 1 corresponds with the execution of a single machine code
instruction: symbolic execution (term rewriting) is used to evaluate the state of
the processor for each class of instruction and type of exception. However, the
block data transfer and multiply instructions did require special treatment i.e.
to verify these instructions, invariants were manually defined (at the processor
level) and checked with an induction on time.

An Algebraic Framework for Verifying the Correctness of Hardware 167

3.1 Uniform Immersions

An immersion is uniform if, and only if, it can be defined using a duration func-
tion, which computes the number of implementation cycles needed to complete
one state transition at the specification level. The duration must be a function
of the implementation’s current state and of the stream of future input values;
this is formalized in hol as follows:

�def UIMMERSION imm f dur =
(∀ x. 0 < dur x) ∧
(∀ x. imm x 0 = 0) ∧
∀ x t. imm x (t + 1) =
dur 〈|state := (f (imm x t) x).state; inp := ADVANCE (imm x t) x.inp|〉 + imm x t

�def UNIFORM imm f = ∃ dur. UIMMERSION imm f dur

For imm to be a free immersion, the duration must always be non-zero. The
predicate UNIFORM asserts that a duration function exists that is consistent with
the immersion and state-output function.

With the ARM6, the duration function examines the processor’s state to
determine which instruction is to be executed, and the input stream indicates
whether an interrupt is going to occur. If the implementation is time-consistent
(see below) then all possible timings (durations) can be deduced at cycle zero.

Example 7. Assume f satisfies � IMAP f init next out and imm is the uniform
immersion satisfying � UIMMERSION imm f dur, where the initialisation, next
state and duration functions are defined as follows:

�def dur x = x.state + x.inp 1 + 1
�def init a = a MOD 4
�def next a i = (a + i) MOD 4 .

Let x = 〈|state:=7; inp := λt. t|〉. The uniform immersion imm evaluates as
follows:

� imm x 0 = 0
� imm x 1 = (3 + 1 + 1) + 0 = 5
� imm x 2 = (1 + 6 + 1) + 5 = 13
� imm x 3 = (1 + 14 + 1) + 13 = 29 .

3.2 Time-Consistency

A state-output function is time-consistent if, and only if, it can be composed in
time with respect to an immersion; this is defined in hol as follows:

�def TCON_IMMERSION f imm strm =
let g t x = 〈|state := (f t x).state; inp := ADVANCE t x.inp|〉 in

∀ t1 t2 x. x.inp ∈ strm ⇒
let s2 = imm x t2 in
let s1 = imm (g s2 x) t1 in

ADVANCE s2 x.inp ∈ strm ∧
(g (s1 + s2) x = (g s1 ◦ g s2) x)

�def TCON f strm = TCON_IMMERSION f (λx t. t) strm

168 A. Fox

Advancing the input stream must be safe with respect to the set of valid streams
strm. The function g, which computes the state and advances the input stream,
must be composable i.e. it should not matter whether the state-output function
is executed for s1 + s2 cycles, or for s2 cycles followed by s1 cycles.

The input component is always time-consistent3 because there is not an input
stream initialisation function and

� ∀ t1 t2. ADVANCE (t1 + t2) = ADVANCE t1 ◦ ADVANCE t2 .

The property TCON asserts that f is time-consistent at all times i.e. the times
given by the identity immersion. The one-step theorem in Section 3.4 will show
that the time-consistency of an iterated map depends upon the definition of the
initialisation function.

Example 8. If � IMAP INIT f I then f is time-consistent with respect to all
immersions.

Example 9. If � IMAP f (λx. 0) (λx. x + 1) out then the function f is not
time-consistent with respect to any immersion because, if g is defined as above,
then

� ∀ d x. ((g (d + d) x).state = d + d) ∧ (((g d ◦ g d) x).state = d) .

Example 10. The function �def f t x = x.inp is time-consistent with respect
to all immersions. However, f is not an iterated map because the initial state is
not a function of the pre-initial state.

3.3 Time-Consistent and Uniform Sampling

An abstraction map for input streams is time-consistent if, and only if, advancing
the abstract stream is the same as advancing the concrete stream by the time
given by the immersion; this is defined in hol as follows:

�def TCON_SMPL smpl imm f strm =
∀ t x. x.inp ∈ strm ⇒
(smpl 〈|state := (f (imm x t) x).state;

inp := ADVANCE (imm x t) x.inp|〉 = ADVANCE t (smpl x))

In practice, this property is verified by using the fact that the state-output
function is time-consistent and that the immersion is uniform. However, the exact
proof obligations will vary depending on how one has defined the abstraction.

The function OSMPL constructs an output stream abstraction:

�def OSMPL f impl imm (x,strm) t =
f 〈|state := (impl (imm x t) x).state;

inp := ADVANCE (imm x t) x.inp|〉 (PACK (imm x) strm t)

3 It is sufficient to have (g (s1 + s2) x).state = ((g s1 ◦ g s2) x).state.

An Algebraic Framework for Verifying the Correctness of Hardware 169

The abstract output is some function of the implementation’s state, input and
packed output, at times given by the immersion. This form of abstraction has
the advantage that, for correctness, one need only consider the output at time
t = 0.

Example 11. If imm x is the free immersion from Figure 2, then the first three
output values of OSMPL f impl (x, strm) are:

f 〈|state := (impl 0 x).state; inp := x.inp|〉 [strm 0; strm 1; strm 2]
f 〈|state := (impl 3 x).state; inp := ADVANCE 3 x.inp|〉 [strm 3]
f 〈|state := (impl 4 x).state; inp := ADVANCE 4 x.inp|〉 [strm 4; strm 5; strm 6] .

In correctness statements: � ∀ t. strm t = (impl t x).out .

3.4 One-Step Theorems

The one-step theorem for time-consistency is as follows:

TCON_IMMERSION_ONE_STEP_THM:
� ∀ strm f init out imm.

IS_IMAP_INIT f init ∧ UNIFORM imm f ⇒
(TCON_IMMERSION f imm strm =
∀ x. x.inp ∈ strm ⇒

(init (f (imm x 0) x).state = (f (imm x 0) x).state) ∧
(init (f (imm x 1) x).state = (f (imm x 1) x).state) ∧
ADVANCE (imm x 1) x.inp ∈ strm)

If the state-output function f is an iterated map and the immersion is uniform
then f is time-consistent if, and only if, the initialisation function init is an
identity map for the states at time t = 0 and t = 1, and the stream starting at
t = 1 is in strm. Note that, init need not be an identity map for the intermedi-
ate states i.e. at cycles greater than zero and less than imm x 1. This one-step
theorem shows that time-consistency can be viewed as a closure property on the
set of initial states. With the ARM6 model, the initialisation function constructs
all processor states that correspond with an instruction boundary.

The one-step theorem for correctness is as follows:

ONE_STEP_THM:
� ∀ sstrm istrm spec impl imm abs osmpl ismpl f.

IS_IMAP spec ∧ IS_IMAP impl ∧ UNIFORM imm impl ∧
DATA_ABSTRACTION abs (state_out_state ◦ impl 0) (state_out_state ◦ spec 0) ∧
STREAM_ABSTRACTION ismpl sstrm istrm ∧ TCON spec sstrm ∧
TCON_IMMERSION impl imm istrm ∧ TCON_SMPL ismpl imm impl istrm ∧
(osmpl = OSMPL f impl imm) ∧
(∀ x. x.inp ∈ istrm ⇒

(let y = 〈|state := abs x.state; inp := ismpl x|〉 in
((spec 0 y).state = abs (impl (imm x 0) x).state) ∧
((spec 1 y).state = abs (impl (imm x 1) x).state) ∧
(OUTPUT spec y 0 = osmpl (x,OUTPUT impl x) 0))) ⇒

CORRECT spec impl imm abs osmpl ismpl sstrm istrm

This theorem can be used when the state-output functions are time-consistent
iterated maps, the immersion is uniform, and when the input stream abstraction
is time-consistent. It is assumed that the output stream abstraction is of the form
given by OSMPL.

170 A. Fox

The two one-step theorems provide a mechanism through which correctness
can be verified. Many of the properties are going to be straightforward to check.
There are three main goals: time-consistency at cycle one; correctness at cycle
one; and comparing the output at cycle zero. With the ARM6 verification, these
goals are proved by case splitting (principally on the instruction class) followed
by contextual term-rewriting with the simplifier. To verify the output, one must
reason about lists of output values – some work is required to do this efficiently.
Block data transfer and multiply instructions iterate an execute cycle until a
termination condition is met – taking up to twenty and seventeen cycles to exe-
cute respectively. Here, brute force case splitting is not an option – invariants are
defined and proved to hold by induction on time. In total, there is approximately
eight thousand lines of hol script: two thousand for formalizing the framework,
four thousand for the verification, and the specifications are a thousand lines
each. At present, the verification takes about fifteen minutes to run.

4 Formal Verification of the ARM6

This section provides an overview of the ARM6’s input and output behaviour.
The intent is to simply give a flavour of how the framework has been applied in
practice.

A functional view of the ARM6 is shown in Figure 4. Some of the IO is not
significant from a formal specification standpoint e.g. the clock, power, JTAG
and chip test signals. Other signals have not been modelled for the formal ver-
ification, but may be added later e.g. LOCK, SEQ and the bus controls. The
signals that are of significance are those for interrupts, resets and the memory
unit (which includes the address bus, data bus and memory control signals).
The correctness framework presented in this paper allows one to model these
signals and show that they are correct with respect to an abstract, instruction
set model.

The state-output function for the ISA (instruction set) model is:

ARM_SPEC:num →
(state_arm_ex, interrupts option × word32 × word32 list) state_inp →
(state_arm_ex, memop list) state_out

α option = NONE | SOME of α
interrupts = Reset of state_arm | Prefetch | Dabort of num | Fiq | Irq
memop = MemRead of word32 | MemWrite of bool⇒word32⇒word32

In hol, one can use ML style union types. The state space state arm ex consists
of the ISA registers, together with the current instruction’s op-code and the
exception status.

The input is a triple (irpt,ireg,data). The word ireg is for an instruction
fetch. Load instructions use the list of words, data. If irpt matches SOME i then
an interrupt has occurred, with the type encoded by i. When a reset occurs the
ARM6 processor immediately stops executing the current instruction, therefore,
at the ISA level, a reset is parameterised by a value – this is used to set the

An Algebraic Framework for Verifying the Correctness of Hardware 171

A[31:0]

ARM610

SnA

FCLK

MCLK

nWAIT

ABE

DBE

ALE

MSE

VDD

VSS

nIRQ

nFIQ

nRESET

TDI

TDO

TMS

NTRST

TCK

nRW

nBW

LOCK

D[31:0]

nMREQ

SEQ

ABORT

TESTOUT[2:0]

TESTIN[16:0]

Clocks

Interrupts

Bus
Controls

Power

JTAG
Test

Address
Bus

Data
Bus

Control
Bus

Memory
Interface

Chip
Test

Fig. 4. Functional diagram for the ARM6 processor

registers after the reset. The data abort is parameterised by a number – this
indicates how many loads were performed before there was an abort.

The output is a list of memory read/write requests: a memory read (load) is
parameterised by an address; and a write (store) is parameterised by a byte/word
flag, an address and a data word.

The state-output function for the ARM6 model is:

ARM6_SPEC:num →
(state_arm6, bool × bool × bool × bool × word32) state_inp →
(state_arm6, word32 × bool × bool × bool × bool × word32) state_out

The output is vector (data,nMREQ,nOPC,nRW,nBW,areg). The flag nMREQ is set
when there is not a memory request; nRW and nBW indicate whether a memory
request is a read or write for a byte or a 32-bit word. An additional output has
been added, nOPC – this value is part of the processor’s control logic and indi-
cates when the next memory operation is not an op-code fetch. This enables the
output stream abstraction to hide all the instruction fetch memory operations:
instruction fetching is very processor dependent, and it is best not to model this
at the ISA level. The input vector is (nRESET,ABORT,nFIQ,nIRQ,DATA). There
are four interrupt signals and a word from the data bus.

Figure 5 shows how the ARM6’s pipeline executes a sequence of instructions.
At the ISA level, the output is: [MemWrite F #512 #1; MemWrite F #516 #2]
and [MemRead #512; MemRead #516]. This output corresponds with the four
cycles in which nOPC is true. The data input to the processor at cycles seven and
eight should be #1 and #2, but the actual values will depend on the memory
unit. The data output for the store occurs at cycles five and six, this is one
cycle after the address and control signals are sent – this complicates the output
stream abstraction function – the last data output is not in the list of packed
output values, and so it must be computed using the state-input record. The

172 A. Fox

MOV r1, #1
MOV r2, #2
MOV r0, #512
STMIA r0!, {r1, r2}
LDMDB r0, {r3, r4}

(a) The program.

cycle data nMREQ nOPC nRW nBW areg

(STMIA 0) 3 - F F F T pc
(1) 4 - F T T T #512
(2) 5 #1 F T T T #516

(LDMDB 0) 6 #2 F F F T pc + #16
(1) 7 - F T F T #512
(2) 8 - F T F T #516
(3) 9 - T F F T pc + #20

(b) The output.

execute MOV

decode MOV execute

fetch MOV

fetch STMIA

decode execute

fetch LDMDB

decode execute
calc. address 1st store 2nd store

decode execute
calc. address mem. read 1st load 2nd load

0 1 2 3 4 5 6 7 8 9 10

(c) ARM6’s multi-cycle 3-stage pipeline.

Fig. 5. The execution of a simple ARM program

state-input record is also used to construct the output in the case when there is
a reset signal.

5 Conclusions

This paper has demonstrated that the hol-4 system is well-suited to reasoning
about the correctness of hardware with input and output, one can:

– define an abstract model of correctness;
– reason about correctness for hierarchies of abstraction levels; and
– prove the one-step theorem, which enables one to verify designs with respect

to the top-level correctness definition.

Section 2.4 shows that it is easy to reason about stream transforming maps using
higher-order logic. On the downside, hol-4 does not fully support the algebraic
specification style e.g. there is no support for declaring algebraic structures in a
modular style, with suitable interfaces. Instead, the logic is essentially flat, with
the meta language ML simply providing a mechanism for organising theories.

The approach described in this paper could be implemented in other systems
(including first-order tools). However, higher-order logics do provide a natural
mechanism for reasoning about correctness per se e.g. verifying and applying
the one-step theorems and proving that the correctness definition is transitive.
Other tools could be used; for example, one could make use of model checkers
in verifying certain lemmas. However, verifying an entire processor design with

An Algebraic Framework for Verifying the Correctness of Hardware 173

model checking is not yet tractable; for example, with the ARM6 verification,
the proof that the processor performs 32-bit multiplication is non-trivial.

The original framework of Harman, Tucker and Fox has been generalised
to deal with the IO behaviour of the ARM6 processor, but both the approach,
and the hol-4 system, have coped well when tested by the verification of a
commercial processor design.

The ARM models will be used in future work. Konrad Slind, in Utah, has
plans to use the ISA model as the target for a simple compiler, to be implemented
in hol. This would provide a means to verify software running on the ARM6.
There are also plans to model and verify ARM’s coprocessor instructions.

References

1. M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones. A framework for micro-
processor correctness statements. In CHARME 2001, volume 2144 of LNCS, pages
433–448. Springer, 2001.

2. J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor
control. In D. L. Dill, editor, Proceedings of the 6th International Conference,
CAV ’94: Computer Aided Verification, volume 818 of Lecture Notes in Computer
Science, pages 68–80, Berlin, 1994. Springer-Verlag.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and programming in rewrite logic. Technical report,
Computer Science Laboratory, SRI International, 1999.

4. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and
Initial Semantics. EATCS Monograph vol. 6, Springer-Verlag, 1985.

5. A. C. J. Fox. Algebraic Models for Advanced Microprocessors. PhD thesis, Univer-
sity of Wales Swansea, 1998.

6. A. C. J. Fox. An algebraic framework for modelling and verifying microprocessors
using hol. Technical Report 512, University of Cambridge, Computer Laboratory,
2001.

7. S. Furber. ARM: system-on-chip architecture. Addison-Wesley, second edition,
2000.

8. M. J. C. Gordon. HOL: A machine oriented formulation of higher order logic.
Technical Report 42, University of Cambridge Computer Laboratory, 1995.

9. M. J. C. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh lcf: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

10. N. A. Harman and J. V. Tucker. Algebraic models and the correctness of micro-
processors. In L. P. G Milne, editor, Correct Hardware Design and Verification
Methods. Lecture Notes in Computer Science 683, Springer-Verlag, 1993.

11. N. A. Harman and J. V. Tucker. Algebraic models of microprocessors: Architecture
and organisation. Acta Informatica, 33(5):421–456, 1996.

12. P. Manolios. Correctness of pipelined machines. In W. A. Hunt, Jr. and S. D.
Johnson, editors, Formal Methods in Computer-Aided Design, FMCAD 2000, vol-
ume 1954 of Lecture Notes in Computer Science, pages 161–178. Springer-Verlag,
2000.

13. J. Sawada and W. A. Hunt, Jr. Verification of FM9801: An out-of-order model
with speculative execution, exceptions, and program-modifying capability. Formal
Methods in System Design, 20(2):187–222, 2002.

174 A. Fox

14. D. Seal, editor. ARM Architectural Reference Manual. Addison-Wesley, second
edition, 2001.

15. R. Stephens. Algebraic Stream Processing. PhD thesis, Department of Computer
Science, University College of Swansea, 1994.

16. B. C. Thompson. A Mathematical Theory of Synchronous Concurrent Algorithms.
PhD thesis, Department of Computer Studies, University of Leeds, 1987.

17. J. V. Tucker and J. I. Zucker. Theory of computability over stream algebras and its
application to the mathematical foundations of computer science. In I. M. Havel
and V. Konbek, editors, 17th International Colloquium, Prague, pages 62 – 80.
Lecture Notes in Computer Science 629, Springer-Verlag, 1992.

18. M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics, pages 675 –
788. Elsevier, 1990.

Using Proofs by Coinduction to Find
“Traditional” Proofs

Clemens Grabmayer

Department of Computer Science, Vrije Universiteit Amsterdam,
de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

clemens@cs.vu.nl
http://www.cs.vu.nl/~clemens

Abstract. In the specific situation of formal reasoning concerned with
“regular expression equivalence” we address instances of more general
questions such as: how can coinductive argumentation be formalised log-
ically and be applied effectively, as well as how is it linked to traditional
forms of proof. For statements expressing that two regular expressions
are language equivalent, we demonstrate that proofs by coinduction can
be formulated in a proof system based on equational logic, where effec-
tive proof-search is possible. And we describe a proof-theoretic method
for translating derivations in this proof system into a “traditional” axiom
system: namely, into a “reverse form” of the axiomatisation of “regular
expression equivalence” due to Salomaa. Hereby we obtain a coinductive
completeness proof for the traditional proof system.

1 Introduction

Coalgebraic methods have been applied with much success in many areas of
mathematics and computer science, contributing important new concepts as well
as introducing fresh viewpoints at established theories. This has frequently led
to the discovery of elegant new proofs of known results. Contrasting with the
interest in applications, much less attention has been directed to formalising
coalgebraic concepts, such as coinduction and corecursion, by using the tools of
logic, and to relating these techniques with traditional methods, such as induc-
tion and recursion. This concerns also more specific questions such as whether
proofs by coinduction that are formalised in an appropriate logical framework
can be translated into formalised “conventional” proofs.

In this paper we consider the concrete example of a coinduction principle
for proving that two regular expressions are language equivalent. We reformu-
late such a principle into one that can be used to decide equivalence of regular
expressions effectively, and we give a logical formalisation. Furthermore, we de-
scribe a method that allows to translate proofs based on the coinduction prin-
ciple into derivations in a “traditional” axiom system close to the well-known
axiomatisation F1 of “the algebra of regular events” due to Salomaa in [7].

In [6] Rutten formulates a coinduction principle for showing equality of formal
languages: to show that two languages L1 and L2 are equal, it suffices to prove

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 175–193, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

176 C. Grabmayer

that L1 and L2 are bisimilar in the “automaton of formal languages”. Based on
the differential calculus for regular expressions due to Brzozowski in [2], Rutten
applies this principle to give coinductive demonstrations for a number of iden-
tities between regular expressions, and stresses the generality of this method.
However, Rutten’s proofs for exemplary identities use set-theoretical concepts
in an essential way and do not lend themselves directly towards a formalisation
in a proof system of equational logic comparable to Salomaa’s axiomatisations.
And to the author of the present paper some details have not been clear about
why such a principle does in fact yield a generally applicable decision procedure.

Here we first introduce, by following and refining Rutten’s approach, a “fini-
tary” coinduction principle for “regular expression equivalence”: to show that
two regular expressions E and F are equivalent, prove that they are related
by a finite bisimulation in a certain automaton on regular expressions whose
transition function is based on the “Brzozowski derivative”. We show that this
principle is effective and lends itself to being mechanised. Next we introduce a
natural-deduction style proof system cREG0 of equational logic with the prop-
erty that derivations in cREG0 formalise, and correspond to, arguments by the
finitary coinduction principle. It turns out that cREG0 is sound and complete
with respect to regular expression equivalence. Finally, we describe an effective
proof-theoretic transformation from derivations in cREG0 into derivations in a
variant system REG of Salomaa’s F1, where REG is the result of reversing all
multiplicative parts of regular expressions in the axioms and in the rules of F1.

The proof system cREG0 we introduce is analogous in kind to an axioma-
tisation of “recursive type equality” introduced by Brandt and Henglein in [1]
(together with its coinductive foundations) and to a system for “bisimilarity of
normed recursive BPA-processes” due to Stirling given in [4] (without a coin-
ductive motivation). All of these systems (and a number of similar, more recent
ones) have in common the presence of inference rules that formalise “cyclic”
forms of reasoning. Applications of such rules allow, roughly speaking, to de-
tect that a bisimulation-building process that is formalised by a derivation has
reached a subtask which it has already solved before. The transformation be-
tween cREG0-derivations and REG-derivations that we develop here was in-
spired by a transformation given in [5, Ch.8, Sect.8.1], where proof-theoretic
relations between proof systems for “recursive type equality” are investigated.

We give a short overview of the paper: In Section 2 we define basic notions
concerning regular expressions and finite automata (such as the relation “regular
expression equivalence” and the notion of bisimulation). Then in Section 3 we
formulate the mentioned variant system REG of Salomaa’s axiomatisation F1
and define three weaker systems. In Section 4, we review the most basic notions
of the “differential calculus” for formal languages and of that for regular expres-
sions; and we relate the coinduction principle due to Rutten. Subsequently in
Section 5, we formulate and prove our “finitary” version of a conduction princi-
ple for regular expression equivalence, and argue that it can be used effectively.
As a formalisation of this principle, we introduce the proof system cREG0 in
Section 6 and show that it is sound and complete. Finally in Section 7 we de-

Using Proofs by Coinduction to Find “Traditional” Proofs 177

scribe an effective proof-theoretic transformation. from cREG0-derivations into
REG-derivations. In the Conclusion, Section 8, we summarise our findings and
explain how similar results can be obtained that apply directly to Salomaa’s F1.

The proofs in this paper are generally only hinted or sketched, and the meth-
ods used are instantiated in supporting examples. However, the most important
proofs can be found in a technical appendix that is contained in the electronic
version of this paper which is available at http://www.cs.vu.nl/~clemens/
coind2tradproofs.pdf .

2 Regular Expressions and Deterministic Automata

Let Σ be a finite nonempty set, called alphabet ; elements of Σ are called letters .
By Σ∗ we denote the set of (finite) words over Σ. The empty word is designated
by ε. Concatenation of words w and w′ is denoted multiplicatively as w.w′ . A
language over Σ is any subset of Σ∗. By L(Σ) we denote the set of languages
over Σ. On L(Σ) we define the regular operators + (sum), . (product), and ∗

(star), where + and . are binary, and ∗ is unary: for all L1, L2 ∈ L(Σ) we let

L1 + L2 =def L1 ∪ L2 , L1.L2 =def {w1.w2 | w1 ∈ L1, w2 ∈ L2} ,

L∗ =def

⋃
n∈ω

Ln , where L0 =def {ε} , and

Li+1 =def L.Li (for all i ∈ ω)

(by ω we denote, here and below, the natural numbers including zero).
Let Σ = {a1, . . . , an} be an alphabet (from now on, such a description is

generally assumed for alphabets Σ). The set R(Σ) of regular expressions over Σ
is defined as the set of those words over Σ that are generated by the grammar

E ::= 0 | a1 | . . . | an | E + E | E.E | E∗

We designate the regular expression 0∗ by the symbol 1. By ≡ we denote the
binary relation “syntactical equality” between regular expressions. By

∑n
i=1 Ei

we denote, for all n ∈ ω\{0} and E1, . . . , En ∈ R(Σ) , the regular expression
E1 + (E2 + . . . + (En+1 + En)) . By a context C over R(Σ) we mean the result
of replacing a single letter in a regular expression by a hole [] ; by C[E] we
denote the result of hole-filling in C with the regular expression E. Every regular
expression E denotes a language L(E) via the function L : R(Σ)→ L(Σ) that
is inductively defined by

L(0) = ∅ ,

L(E + F) = L(E) ∪ L(F) ,

L(ai) = {ai} (1 ≤ i ≤ n) ,

L(E.F) = L(E).L(F) L(E∗) = L(E)∗ .

(for all E, F ∈ R(Σ)). Two regular expressions E, F ∈ R(Σ) are called equiv-
alent (denoted by E =L F) if and only if E and F denote the same formal
language, i.e. iff L(E) = L(F). In accordance with the notation just stipulated,
we define a binary relation =L on R(Σ) , called regular expression equivalence,
by =L =def {〈E, F 〉 ∈ R(Σ)×R(Σ) | L(E) = L(F)} .

178 C. Grabmayer

Let A be a (possibly) infinite set of input symbols. A (deterministic) automa-
ton with input alphabet A is a triple S = 〈S, o, t〉 consisting of a set S of states ,
an output function o : S → 2, and a transition function t : S → SA , where SA

denotes the set of all functions from A to S, and 2 = {0, 1} (in this set 0 and
1 are usually numbers, but for convenience1 we agree to consider them as regu-
lar expressions here). The output function o indicates whether a state s is S is
accepting (if o(s) = 1) or not (if o(s) = 0). The transition function t assigns to
a state s a function t(s) : A → S which defines the state t(s)(a) that is reached
by S after reading input symbol a. Sometimes we write s↓ for o(s) = 1, s↑ for
o(s) = 0, and s

a→ s′ for t(s)(a) = s′ .
Let S = 〈S, o, t〉 and S′ = 〈S, o′, t′〉 be automata. A homomorphism between

S and S′ is a function f : S → S′ such that, for all s ∈ S and a ∈ A , o(s) =
= o′(f(s)) and f(t(s)(a)) = t′(f(s))(a) holds. A bisimulation between S and S′

is a nonempty relation R ⊆ S × S′ such that for all s ∈ S , s′ ∈ S′ , and a ∈ A

s R s′ =⇒ o(s) = o′(s) and t(s)(a) R t′(s′)(a)

holds. For s ∈ S and s′ ∈ S′ we write s ∼ s′ if there exists a bisimulation R
with sRs′ ; if there exists a finite bisimulation R with sRs′ , we write s ∼fin s′ .

3 The Axiom System REG

The first complete axiomatisations of regular expression equivalence were given
by Salomaa in [7]. Here, our investigations will be based on Salomaa’s first
system F1. However, we introduce a variant system REG that arises from F1

essentially2 by reversing all multiplicative expressions in axioms and rules. The
reason is that, while having analogous properties as F1, the system REG will
turn out to lend itself much better to establish a connection with the differential
calculus for regular expressions in its usual form (as described in Section 4).

Let Σ be an alphabet. The axiom system REG(Σ) is defined as follows: its
formulas are equations E = F between regular expression E and F on Σ; its
axioms are the formulas that belong to one of the schemes (B1)–(B11) listed in
Figure 1; and its inference rules are the four rules SYMM, TRANS, CTXT, and
FIX whose applications are schematically defined in Figure 1 (reflexivity axioms
are not used in this definition as they can easily be recognised to be derivable).

Derivations in REG(Σ) are prooftrees, that is, finite upwards-growing la-
beled trees such that: all nodes are labeled by formulas of REG(Σ), the leaves
at the top carry axioms of REG(Σ), and each internal node ν is labeled by
a formula that is the conclusion of an application of a REG(Σ)-rule with the
formula(s) that label(s) the immediate successor(s) of ν as premises; the bottom-
most formula of a prooftree is called its conclusion. For E, F ∈ R(Σ), we denote
by �REG(Σ) E = F the statement that there exists a derivation in REG(Σ)

1 We want to be able to view outcomes of output functions as regular expressions.
2 A less important change consists in dropping the substitution rule R2 specific to F1

in favour of the symmetry, transitivity, and context rules of equational logic.

Using Proofs by Coinduction to Find “Traditional” Proofs 179

The axioms of REG(Σ) :

(B1) E + (F + G) = (E + F) + G (B7) E.1 = E

(B2) (E.F).G = E.(F.G) (B8) E.0 = 0

(B3) E + F = F + E (B9) E + 0 = E

(B4) (E + F).G = E.G + F.G (B10) E∗ = 1 + E.E∗

(B5) E.(F + G) = E.F + E.G (B11) E∗ = (1 + E)∗

(B6) E + E = E

The inference rules of REG(Σ) :

E = F SYMM
F = E

E = F CTXT
C[E] = C[F]

E = G G = F TRANS
E = F

E = F.E + G FIX (if o(F) = 0
[cf. Sect. 4])E = F ∗.G

Fig. 1. The axiom system REG(Σ) for regular expression equivalence, which results
from Salomaa’s system F1 by reversing multiplicative expressions

with conclusion E = F . (We sometimes write REG in place of REG(Σ).)
The following theorem can be proved analogously to Salomaa’s result for F1.

Theorem 1. The system REG(Σ) is sound and complete with respect to regular
expression equivalence. More formally, it holds:

for all E, F ∈ R(Σ) :
[
�REG(Σ) E = F ⇐⇒ E =L F

]
. (1)

For later use, we define three systems that are weaker than REG(Σ), but
closely related: by REG−(Σ) we designate the axiom system that results from
REG(Σ) by excluding the rule FIX; by ACI(Σ) we denote the subsystem of
REG−(Σ) that contains only the axioms (B1), (B3), and (B6) for associativity,
commutativity, and idempotency of +; and by ACI+(Σ) we denote the extension
of ACI(Σ) that contains of all the axioms (B1)–(B9) and furthermore

(B7)R 1.E = E and (B8)R 0.E = 0 ,

but that does not contain the rule FIX. For each of these three systems, we define
binary relations on R(Σ) that denote “equality is derivable” in the respective
system: for instance, we stipulate, for all E, F ∈ R(Σ) ,

E ≡ACI+ F ⇐⇒def �ACI+(Σ) E = F ; (2)

the relations ≡ACI and ≡REG− are defined analogously. It is easy to verify
that all three relations are congruence relations on R(Σ). For all E ∈ R(Σ), we
respectively denote by [E]ACI, [E]ACI+ , and [E]REG− the ≡ACI-, ≡ACI+ - and
≡REG− -equivalence classes of E. And byR(Σ)ACI,R(Σ)ACI+ , andR(Σ)REG−

we denote by factor sets of R(Σ) with respect to ≡ACI, ≡ACI+ , and ≡REG− .

180 C. Grabmayer

4 The Differential Calculus for Regular Expressions

In this section we review the basic notions of a differential calculus for formal
languages, as for example described by Conway [3, Ch.5], and for regular expres-
sions, due to Brzozowski in [2]. We also state two coinduction principles.

Let Σ be an alphabet, and L ∈ L(Σ) . For all words w ∈ Σ∗ , the w-derivative
of L is Lw =def {v ∈ Σ∗ | w.v ∈ L} . In the special case of letters a ∈ Σ the
a-derivative La can be used to turn the set L(Σ) of languages over Σ into an
automaton 〈L(Σ), oL, tL〉 by defining, for all L ∈ L(Σ) and a ∈ Σ ,

oL(L) =def

{
1 . . . ε ∈ L

0 . . . ε /∈ L
and tL(L)(a) =def La .

In [6, Section 4] Rutten shows the coinduction principle for proving equality
of formal languages that is stated by the following proposition.

Proposition 1. For all L1, L2 ∈ L(Σ) it holds:

L1 ∼ L2 in L(Σ) =⇒ L1 = L2 . (3)

That is: to show L1 = L2 for two languages L1 and L2 over Σ, it suffices to
demonstrate that L1 and L2 are bisimilar in the automaton L(Σ).

From Proposition 1 a similar proof principle for showing equivalence of reg-
ular expressions can be extracted by using the “Brzozowski derivative”. This
concept, here just called “derivative”, allows to mimic language derivatives on
regular expressions. Let again Σ be an alphabet. For all a ∈ Σ , and G ∈ R(Σ),
the a-derivative Ga of a regular expression G over Σ is defined inductively by

0a =def 0 , (E + F)a =def Ea + Fa , (E∗)a =def Ea.E∗ ,

ba =def

{
1 . . . b = a

0 . . . b �= a
(E.F)a =def

{
Ea.F + Fa . . . o(E) = 1
Ea.F . . . o(E) = 0

(for all b ∈ Σ and E, F ∈ R(Σ)). In a similar way, the function o : R(Σ)→ 2
is inductively defined by (for all b ∈ Σ and E, F ∈ R(Σ))

o(0) =def 0 , o(b) =def 0 , o(E + F) =def

{
0 . . . o(E) = o(F) = 0
1 . . . else

o(E.F) =def

{
1 . . . o(E) = o(F) = 1
0 . . . else ,

o(E∗) =def 1 .

We also define, for all w ∈ Σ and E ∈ R(Σ) , the w-derivative of E inductively:
we let Eε =def E , and, for all w0 ∈ Σ∗ and a ∈ Σ , Ew0.a =def (Ew0)a .

Now an automaton R(Σ) = 〈R(Σ), o, t〉 can be formed by letting o as above
and t : R(Σ)→R(Σ)Σ be defined by t(E)(a) =def Ea for all a ∈ Σ , E ∈ R(Σ).
The function L is a homomorphism from R(Σ) to L(Σ) because, for E ∈ R(Σ)
and a ∈ Σ , L(Ea) = (L(E))a and o(E) = oL(L(E)) hold (as is simple to prove).
Due to this, the following statement is an easy consequence of Proposition 1.

Using Proofs by Coinduction to Find “Traditional” Proofs 181

Proposition 2. The following coinduction principle holds for proving equiva-
lence of regular expressions: for all E, F ∈ R(Σ) it holds

E ∼ F in R(Σ) =⇒ E =L F (4)

Although this principle can often be applied successfully in an informal man-
ner (cf. the examples in [6, Section 6]), it does not itself define a general mecha-
nisable method for deciding whether two regular expressions are equivalent. The
reason is that the set of iterated derivatives of a regular expression is frequently
infinite3, and that therefore bisimulations in R(Σ) can be infinite.

5 A Finitary Coinduction Principle for =L

One possible way of adopting the coinduction principle in Proposition 2 for
deciding regular expression equivalence consists in refining it into a statement
that only refers to finite bisimulations. As mentioned above, Proposition 2 relies
on infinite bisimulations in an essential way since the number of derivatives of a
regular expression may be infinite. However, it turns out that already “modulo”
provability in the system ACI the number of derivatives of a regular expression
is finite. This is stated by the second of the following two lemmas.

Lemma 1. Let Σ be an alphabet, and let ≡S be one of the relations ≡ACI or
≡ACI+ on R(Σ). Then for all E, F ∈ R(Σ) and for all a ∈ Σ it holds:

E ≡S F =⇒
(
o(E) = o(F) & Ea ≡S Fa

)
. (5)

Proof (Sketch). In a first step, it can be verified in a straightforward way that
(5) holds for all a ∈ Σ , and for all E, F ∈ R(Σ) such that E = F is an axiom
of ACI or ACI+. The statement obtained hereby can then be “lifted” to apply
to all E, F ∈ R(Σ) such that E = F is a theorem of ACI, or of ACI+, by
using induction on the depth of derivations in ACI, or respectively, in ACI+.

Lemma 2. For all E ∈ R(Σ) , the set
{
[Ew]ACI

∣∣ w ∈ Σ∗} is finite. As a con-
sequence, also

{
[Ew]ACI+

∣∣ w ∈ Σ∗} is finite for arbitrary E ∈ R(Σ) .4

Proof (Hint). The lemma can be shown by induction on the syntactical structure
of regular expressions inR(Σ), using representation statements for w-derivatives
of composite expressions like, in the case of an outermost product,

(∀w ∈ Σ∗) (∃V ⊆ Suff(w))
[
(F.G)w ≡ACI Fw.G +

∑
v∈V

Gv

]
(for all F, G ∈ R(Σ)), where Suff(w) means the set of all suffixes of w.
3 For instance, by starting from a∗ and computing the a-derivative repeatedly one is

led to 1.a∗ , 0.a∗ + 1.a∗ , . . . , 0.a∗ + . . . (0.a∗ + 1.a∗) ,
4 The part of Lemma 2 referring to ACI is comparable to Theorem 5.3 by Brzozowski

in [2], which statement, however, is wrong (as Salomaa rightly points out in [7]).
But the reason can easily be recognised in the fact that the derivative for multi-
plicative expressions is defined differently in [2] than in Section 4 here: there, for all
E, F ∈ R(Σ) and a ∈ Σ , (E.F)a = Ea.F + o(E).Fa is stipulated.

182 C. Grabmayer

We have formulated these lemmas also with respect to ACI+, on which sys-
tem we base ourselves from now on, because it seems natural to apply also other
identities than those of ACI to simplify derivatives.5 Relying on Lemma 1, we
can now define the “factor automaton”R(Σ)ACI+ =〈R(Σ)ACI+ , oACI+ , tACI+〉
of R(Σ) with respect to ≡ACI+ by letting

oACI+ : R(Σ)ACI+ → 2, tACI+ : R(Σ)ACI+ → (R(Σ)ACI+)Σ

[E]ACI+ → o(E) , [E]ACI+ → (a → [Ea]ACI+) .

And we are finally able to formulate the following finitary coinduction principle
for proving or disproving that two given regular expressions are equivalent.

Theorem 2. For all E, F ∈ R(Σ) it holds:

[E]ACI+ ∼fin [F]ACI+ in R(Σ)ACI+ ⇐⇒ E =L F . (6)

Proof (Sketch). Let E, F ∈ R(Σ) . The implication “⇒” in (6) is a consequence
of Proposition 1 in view of the fact that the function L∗ : R(Σ)ACI+ → L(Σ)
which is defined by L∗([G]ACI+) → L(G) is a homomorphism. For the implica-
tion “⇐” in (6), assume E =L F . Then

{
〈[Ew]ACI+ , [Fw]ACI+〉 | w ∈ Σ∗} is a

bisimulation between [E]ACI+ and [F]ACI+ in R(Σ)ACI+ (as is not difficult to
verify); this bisimulation can easily be recognised to be finite by using Lemma 2.

As running example in this paper we consider (a + b)∗ = (a∗b)∗a∗ , a simple
instance of the axiom scheme “sumstar” in a system due to Conway in [3, p.25].
We let E∗ ≡ (a + b)∗ , F1 ≡ (a∗b)∗a∗ , and F2 ≡ ((a∗b)(a∗b))∗a∗ + a∗ . We find

(F1)a ≡ (((1.a∗).b + 0).(a.b)∗).a∗ + 1.a∗ ≡ACI+ F2 ,

and in a similar way, the other entries in the following tables can be verified:

[(·)a]ACI+ [(·)b]ACI+ oACI+(·)
E [E]ACI+ [E]ACI+ ↓

[(·)a]ACI+ [(·)b]ACI+ oACI+(·)
F1 [F2]ACI+ [F1]ACI+ ↓
F2 [F2]ACI+ [F1]ACI+ ↓

From this it follows that R = {〈[E]ACI+ , [F1]ACI+〉, 〈[E]ACI+ , [F2]ACI+〉} is a
finite bisimulation in R(Σ)ACI+ between [E]ACI+ and [F1]ACI+ . Using Theo-
rem 2, this demonstrates (a + b)∗ =L (a∗b)∗a∗ .

Based on the next lemma it is possible to extract an effective decision proce-
dure for regular expression equivalence from our finitary coinduction principle.

Lemma 3. For all alphabets Σ, the relation ≡ACI is decidable in R(Σ).

5 There is some arbitrariness in choosing a system of “basic” identities that one wants
to have available for simplifying derivations. For instance, REG− could be used as
well. ACI+ has been chosen here partly because of the running example we employ.

Using Proofs by Coinduction to Find “Traditional” Proofs 183

Proof (Hint). Equations between ≡ACI-equivalent sums of regular expressions
can be decomposed into equations between ≡ACI-equivalent parts of the sums.
For example, for all E1, E2, F1, F2, F3 ∈ R(Σ) that are not additive expressions,

E1 + E2 ≡ACI (F1 + F2) + F3 ⇐⇒
⇐⇒ (∃f : {1, 2} → {1, 2, 3}) (∃g : {1, 2, 3} → {1, 2})

(∀i ∈ {1, 2}) (∀j ∈ {1, 2, 3}) [Ei ≡ACI Ff(i) & Eg(j) ≡ACI Fj]

holds. An obvious generalisation of this statement can be shown by structural in-
duction on ACI(Σ)-derivations, and it can be used to construct an effective (but
clearly not efficient) search-algorithm that decides whether or not E ≡ACI F
holds for given regular expressions E, F ∈ R(Σ) .

Corollary 1. Let Σ be an alphabet. Regular expression equivalence on R(Σ) can
be decided by checking for the existence of finite bisimulations in R(Σ)ACI+ .

Proof (Sketch). Let E, F ∈ R(Σ) be arbitrary. It is an easy consequence of
Proposition 2 that E =L F holds iff R =def

{
〈[Ew]ACI+ , [Fw]ACI+〉 | w ∈ Σ∗}

is a bisimulation. Lemma 2 entails that R is always finite and that it can be deter-
mined effectively whether R is a bisimulation: for all pairs 〈Ew, Fw〉 with w ∈ Σ∗

and w=b1 . . . bm such that the list 〈[E]ACI+ , [F]ACI+〉, 〈[Eb1]ACI+ , [Fb1]ACI+〉,
〈[Eb1b2]ACI+ , [Fb2b2]ACI+〉, . . . , 〈[Ew]ACI+ , [Fw]ACI+〉 does not contain a loop
(this can be decided due to Lemma 3) check whether oACI+([Ew]ACI+) =
= o(Ew) = o(Fw) = oACI+([Fw]ACI+) holds. Because of Lemma 2 and König’s
lemma namely only finitely many such checks have to be performed. If one such
check detects a mismatch, then R is not a bisimulation, and E �=L F holds; if
no mismatch is found, then R is a (finite) bisimulation and E =L F follows.

6 The Coinductively Motivated Proof System cREG0

Now we introduce a natural-deduction style proof system cREG0(Σ) based on
equational logic that allows to formalise arguments using the finitary coinduction
principle for regular expression equivalence as finite derivations.

For the definition of cREG0(Σ), we assume a countably infinite set Δ of
assumption markers such that Σ ∩Δ = ∅ , and refer to the schemata listed in
Figure 2: the formulas of cREG0(Σ) are the equations between regular expres-
sions over Σ; possible assumptions are formulas that have an assumption marker
from the set Δ attached to them; and the rules of cREG0(Σ) are the four rules
ApprAxACI+ , ApplAxACI+ , COMP, and COMP/FIX that are schematically de-
fined in Figure 2. Applications of the rule COMP/FIX have the special feature
that at least one inhabited class of open assumptions is discharged (the marker
of the assumptions belonging to this class is attached to the application).

Displaying this characteristic feature of proofs formalised in the format of
natural-deduction systems (cf. the description of “N-systems” in [8]), namely
the use of assumptions that may be “closed” (discharged) at a later stage in a
deduction, derivations in cREG0(Σ) are prooftrees such that: the leaves at the

184 C. Grabmayer

Fig. 2. A coinductively motivated, natural-deduction style proof system cREG0(Σ)
for regular expression equivalence, given that Σ = {a1, . . . , an}

top are labeled by assumptions such that different markers are attached to differ-
ent formulas6; assumptions may be open (undischarged) or closed (discharged);
formulas at an internal node ν arise through applications of cREG0(Σ)-rules
from the formulas in the immediate successors of ν, whereby in the case of
COMP/FIX-applications some open assumptions are discharged; the bottom-
most formula is called the conclusion. Hereby an occurrence of an assumption
(E = F)d at the top of a derivation D is called open iff on the path down to the
conclusion of D there does not exist an application of COMP/FIX at which this
assumption is discharged; otherwise the occurrence of (E = F)d is called closed .
Assumptions in a derivation that are occurrences of the same formula with the
same marker together form an assumption class .

For all E, F ∈ R(Σ), we denote by �cREG0(Σ) E = F the statement that
there exists a derivation D in cREG0(Σ) without open assumptions such that D
has conclusion E = F (i.e. that E = F is a theorem of cREG0(Σ)). (Sometimes
we write cREG0 instead of cREG0(Σ).)

Unlike as this is the case for the system REG, the basic axioms and rules of
equational logic (the reflexivity axioms and the rules SYMM, TRANS, CTXT)
are neither present nor in fact derivable in cREG0.7 However, it turns out that
these additional axioms rules are admissible in cREG0 in the following sense:

6 The main reason for this proviso is that it is important for establishing a smooth
proof-theoretical relationship (stated by Lemma 4 below) between cREG0(Σ) and
its annotated version ann-cREG0(Σ, Δ) defined in Section 7.

7 In Remark 1, we comment on an extension of cREG0 with these axioms and rules.

Possible assumptions in cREG0(Σ) and the inference rules of cREG0(Σ) :

(Assm) (E = F)d (with d ∈ Δ)

D1

C[Ẽ] = F
ApplAx

ACI+

C[F̃] = F

D1

E = C[Ẽ]
ApprAx

ACI+

E = C[F̃]
(if Ẽ = F̃ or F̃ = Ẽ is an axiom of ACI+)

D1

Ea1 = Fa1 . . .
Dn

Ean = Fan COMP (if o(E) = o(F))
E = F

[E = F]d

D1

Ea1 = Fa1 . . .

[E = F]d

Dn

Ean = Fan COMP/FIX, d (if o(E) = o(F))
E = F

Using Proofs by Coinduction to Find “Traditional” Proofs 185

if their use is limited to situations in which subderivations do not contain open
assumptions, then no more theorems (than those of cREG0) become derivable.8

This is an easy consequence of the fact, which is stated formally below, that the
theorems of cREG0 are precisely the identities of regular expression equivalence.

Theorem 3. The proof system cREG0(Σ) is sound and complete with respect
to regular expression equivalence; more formally, for all E, F ∈ R(Σ) it holds:

�cREG0(Σ) E = F ⇐⇒ E =L F . (7)

Proof (Sketch). Let E, F ∈ R(Σ) be arbitrary. For the direction “⇒” in (7), let
D be a derivation in cREG0(Σ) without open assumptions and with conclusion
E = F . Then

{
〈[Ẽ]ACI+ , [F̃]ACI+〉 | Ẽ = F̃ is formula in D

}
is a finite bisim-

ulation between E and F in R(Σ)ACI+ . Hence Theorem 2 entails E =L F . For
the direction “⇐” in (7), suppose E =L F . Then, again by Theorem 2, there
exists a finite bisimulation between E and F in R(Σ)ACI+ . From such a finite
bisimulation a derivation in cREG0(Σ) without open assumptions and with
conclusion E = F can be extracted in a rather straightforward way.

We consider again our running example E ≡ (a + b)∗ =L (a∗b)∗a ≡ F1 . From
the finite bisimulation given in Section 5, it is easy to extract the following deriva-
tion in cREG0({a, b}) that does not contain open assumptions (double lines
indicate multiple successive applications of ApplAxACI+ and/or ApprAxACI+):

(E = F2)e

Ea = (F2)a

(E = F1)d

Eb = (F2)bCOMP/FIX, e
E = F2

Ea = (F1)a

(E = F1)d

Eb = (F1)bCOMP/FIX, d
E = F1

(8)

Remark 1. The fact that the system cREG0 does not contain the characteristic
rules of equational logic is not absolutely necessary for showing a soundness
and completeness theorem comparable to Theorem 3. In fact, for all alphabets
Σ, the extension cREG(Σ) of cREG0(Σ) by adding reflexivity axioms and the
rules SYMM, TRANS, and CTXT is also sound and complete with respect to =L

(but the soundness part requires a rather more involved proof, cf. the comparable
situation treated in [1]). However, cREG(Σ) lacks a nice property of the system
cREG0(Σ): derivations in cREG0(Σ) without open assumptions correspond,
as reflected in the proof of Theorem 3, to finite bisimulations in R(Σ)ACI+ ; this
is not the case for derivations in cREG(Σ) (due to, above all, the presence of
the transitivity rule). Hence the system cREG0 is much more directly related to
the finitary coinduction principle than the system cREG. But there is a second
8 Note that admissibility in this sense does not demonstrate the soundness with respect

to =L of the extension of cREG0 with the mentioned equational axioms and rules.

186 C. Grabmayer

D̂(2)

F = G

D̂(1)

E = G

Combination StepExtraction StepAnnotation Step

REG-derivations
without

assumptions

ann-cREG0-deriva-
tion without open

assumptions
REG-derivation (D̂)′

without assumptions

cREG0-derivation
without open
assumptions

D
E = F

D̂(1)

E = G

D̂(2)

F = G
SYMM

G = F
TRANS

E = F

D̂
G : E = F

Fig. 3. Illustration of the three main steps in the transformation from an arbitrary
derivation D in cREG0 without open assumptions into a derivation (D̂)′ in REG with
the same conclusion and without assumptions as D

(although connected) reason for why we base ourselves on the system cREG0

here: it turns out that cREG0-derivations lend themselves much better to being
transformed into REG-derivations than cREG0-derivations.9

7 A Transformation of cREG0- into REG-Derivations

In this section we sketch a proof-theoretic transformation of derivations in the
coinductively motivated system cREG0(Σ) into derivations in the variant sys-
tem REG(Σ) of Salomaa’s axiomatisation F1. The three steps of this transfor-
mation are the annotation step, the extraction step, and the combination step
that are illustrated together in Figure 3 and that are described below separately.

7.1 The Annotation Step

In the annotation step, a given derivation D in cREG0(Σ) is “analysed” by
assigning to each formula a regular expression as an annotation. In this way a
derivation D̂ in an annotated version ann-cREG0(Σ, Δ) of cREG0(Σ) is built.

For an alphabet Σ and an infinite set Δ of assumption markers such that
Σ ∩ Δ = ∅ holds, the system ann-cREG0(Σ, Δ) is defined as follows: the
formulas of ann-cREG0(Σ, Δ) are expressions of the form G : E = F with
E, F ∈ R(Σ) and G ∈ R(Σ ∪Δ); possible assumptions in ann-cREG0(Σ, Δ)
are of the form (d : E = F)d with E, F ∈ R(Σ) and d ∈Δ ; and the rules of
ann-cREG0(Σ, Δ) are the four rules ApprAxACI+ , ApplAxACI+ , COMP, and
COMP/FIX that are schematically defined in Figure 4; for both of the appli-
cations of COMP and COMP/FIX shown in Figure 4,

⋃n
i=1 Ji = {1, . . . , m} is

9 A possibility for extending the transformation from cREG0- into REG-deriva-
tions that is described in the next section to a transformation from cREG- into
REG-derivations consists in the use of an elimination method for basic equational
rules similar to one that is developed in [5, Ch.8].

Using Proofs by Coinduction to Find “Traditional” Proofs 187

Possible assumptions and the inference rules in ann-cREG0(Σ, Δ) :

(Assm) (1.d : E = F)d (with d ∈ Δ ; it is assumed: Σ ∩ Δ = ∅)

D1

G : C[Ẽ] = F
ApplAx

ACI+

G : C[F̃] = E

D1

G : E = C[Ẽ]
ApprAx

ACI+

G : E = C[F̃]

(given that Ẽ = F̃ or F̃ = Ẽ is an axiom of ACI+)

D1

(G10+)
j∈J1

G1j .dj : Ea1 = Fa1 . . .

Dn

(Gn0+)
j∈Jn

Gnj .dj : Ean = Fan

COMP
(if o(E) = o(F))

o(E) +
n

i=1, Gi0 occurs

Gi0 +
m

j=1

n

i=1, j∈Ji

ai.Gij .dj : E = F

[1.dl : E = F]dl

D1

(G10+)
j∈J1

G1j .dj : Ea1 = Fa1 . . .

[1.dl : E = F]dl

Dn

(Gn0+)
j∈Jn

Gnj .dj : Ean = Fan

COMP/FIX, dl

(if o(E) = o(F))
here: 1 ≤ l ≤ m

n

i=1, l∈Ji

ai.Gil

∗
. o(E) +

n

i=1 ,Gi0 occurs

ai.Gi0 +

+
m

j=1, j �=l

n

i=1, l∈Ji

ai.Gil

∗
.

n

i=1, j∈Ji

ai.Gij .dj : E = F

Fig. 4. The annotated version ann-cREG0(Σ, Δ) of cREG0(Σ)

assumed as well as that Gij ∈ R(Σ) holds (i.e. that the Gij do not contain letters
from Δ), for all i ∈ {1, . . . , n} and j ∈ Ji ∪ {0}. (We comment on the motiva-
tion for the specific way how the annotations have been chosen for the rules of
the system ann-cREG0(Σ, Δ) in Remark 2 at the end of this subsection.)

As in the system cREG0(Σ), every application of the rule COMP/FIX dis-
charges precisely one inhabited class of open assumptions (and the marker of
this assumption class is attached to the application). Derivations in the system
ann-cREG0(Σ, Δ) are defined analogously as in cREG0(Σ), and a similar
proviso on the use of assumption markers is stipulated: in assumptions distinct
equations must be annotated by distinct letters from Δ, i.e. if in a derivation the
assumptions (d1 : E1 = F1)d1 and (d2 : E2 = F2)d2 occur, then d1 = d2 must
entail E1 ≡ E2 and F1 ≡ F2 .10

The following lemma states the basic proof-theoretic relationship between
the systems cREG0(Σ) and ann-cREG0(Σ, Δ).

10 This condition is necessary for the extraction step (i.p. for the proof of Lemma 6).

188 C. Grabmayer

ˇ̃D =

{[Ei = Fi]di}i=1,...,m

D
E = F

(̂·)�−→←− �
(̌·)

{[1.di : Ei = Fi]di}i=1,...,m

D̃
(G0+) m

j=1 Gj .dj : E = F

= D̂

cREG0(Σ)-derivation ann-cREG0(Σ, Δ)-derivation

Fig. 5. Proof-theoretic relation betw. cREG0(Σ) and ann-cREG0(Σ, Δ)

Lemma 4. Every derivation D in ann-cREG0(Σ, Δ) is of the form of the right
derivation in Figure 5, for some m ∈ ω , E, F, G0 ∈ R(Σ) , Ei, Fi, Gi ∈ R(Σ)
for all i ∈ {1, . . . , m} , and distinct d1, . . . , dn ∈ Δ ; the expression at the top of
this derivation denotes the family of all open assumption classes in D.

Every derivation in cREG0(Σ) that is of the form left in Figure 5 (for
some E, F, E1, F1, . . . , Em, Fm ∈ R(Σ), d1, . . . , dm ∈ Δ) can effectively be trans-
formed, by assigning an appropriate annotating regular expression in R(Σ∪Δ) to
each formula in D, into a derivation D̂ in ann-cREG0(Σ, Δ) that is, for some
G0, . . . , Gm ∈ R(Σ) , of the form of the derivation D̃ on the right in Figure 5.

And vice versa, every derivation D̃ in ann-cREG0(Σ, Δ) that is of the form
on the right in Figure 5 can be transformed, by stripping annotated formulas in
D̃ of the annotating regular expressions, into a derivation ˇ̃D that is of the form
of the left derivation in Figure 5.

Proof (Hint). All three statements of the lemma can be shown by straightforward
induction on the structure (or the depth) of derivations in ann-cREG0(Σ, Δ),
and respectively, by induction on the structure of derivations in cREG0(Σ).

It is easy to verify that the result of annotating the cREG0({a, b})-derivation
D in (8) for our running example is the following ann-cREG0({a, b}, Δ)-deriva-
tion D̂ without open assumptions (a number of annotations appear simplified):

(1.e : E = F2)e

1.e : Ea = (F2)a

(1.d : E = F1)d

1.d : Eb = (F2)bCOMP/FIX, e
a∗ + a∗b.d : E = F2

a∗ + a∗b.d : Ea = (F1)a

(1.d : E = F1)d

1.d : Eb = (F1)bCOMP/FIX, d
(aa∗b + b)∗(1 + aa∗) : E = F1

(9)

Remark 2. Informally, the principal idea underlying the system ann-cREG0

and its relation with cREG0 is the following: annotating a cREG0(Σ)-deriva-
tion D with conclusion E = F and without open assumptions into a derivation
D̂ in ann-cREG0(Σ, Δ) with conclusion G : E = F amounts to extracting
from D a description as the regular expression G of the bisimulation between
[E]ACI+ and [F]ACI+ in the automaton R(Σ)ACI+ that is formalised by D
(cf. the proof of Theorem 3). For this regular expression G ∈ R(Σ) , [G]ACI+ is
bisimilar in R(Σ)ACI+ to both [E]ACI+ and [F]ACI+ ; moreover, the “generated

Using Proofs by Coinduction to Find “Traditional” Proofs 189

subautomaton” of [G]ACI+ in R(Σ)ACI+ is a “common unfolding” of the subau-
tomata in R(Σ)ACI+ that are generated by [E]ACI+ and [F]ACI+ , respectively.
These facts form the deeper reasons for why the extraction step (described in
Subsection 7.2) of our transformation from cREG0(Σ) to REG(Σ) is possible.

However, in the conclusion G : E = F of an ann-cREG0(Σ, Δ)-derivation
D̃ with open assumptions, the annotation G ∈ R(Σ ∪Δ) only describes what
could be called a “partial bisimulation” in R(Σ)ACI+ between [E]ACI+ and
[F]ACI+ . But nevertheless, and slightly apart from this, the annotation G in the
conclusion of such a derivation D̃ also specifies the common structure of a pair
of “valid” equations that link the regular expressions on either side of “=” in
the conclusion of D̃ with the regular expressions on respectively the same side
of “=” in the open assumptions of D̃. More precisely, if D̃ is a derivation in
ann-cREG0(Σ, Δ) of the form

{[1.di : Ei = Fi]di}i=1,...,m

D̃
(G0+)

∑m
j=1 Gj .dj : E = F

(10)

for some m ∈ ω , E, F, E1, F1, . . . , Em, Fm, G0, . . . , Gm ∈ R(Σ), d1, . . . , dm ∈ Δ,
and with the expression at the top denoting the family of all inhabited open
assumptions classes of D̃ (due to Lemma 4 all ann-cREG0(Σ, Δ)-derivations
can be represented in this way), then the equations E = (G0+)

∑m
j=1 Gj .Ej and

F = (G0+)
∑m

j=1 Gj .Fj are valid with respect to =L, i.e. it holds:

E =L (G0+)
∑m

j=1 Gj .Ej and F =L (G0+)
∑m

j=1 Gj .Fj . (11)

This property of ann-cREG0-derivations is essential for the extraction step. The
annotations in the rules of ann-cREG0(Σ, Δ) have been chosen accordingly for
this purpose, utilising the fundamental relation between regular expressions and
their single-letter derivatives as formulated in Lemma 5 below.

7.2 The Extraction Step

In the extraction step, from a given derivation D̃ in ann-cREG0 with conclusion
G : E = F two derivations D̃(1) and D̃(2) are constructed that, in case that D̃
does not contain open assumptions, demonstrate respectively that E and F are
equivalent with the annotating regular expression G. This is justified by Lemma 6
below; the proof of this lemma depends on Lemma 5, a version appropriate for
regular expressions of the sometimes so called “fundamental theorem of formal
languages” (due to the analogy with the “fundamental theorem of calculus”).

Lemma 5. For all E ∈ R(Σ) , E ≡REG− o(E) +
∑n

i=1 ai.Eai holds. What is
more, for every given E ∈ R(Σ) , a derivation D(E) in REG−(Σ) with conclu-
sion E = o(E) +

∑n
i=1 ai.Eai can effectively be constructed.

190 C. Grabmayer

Proof (Hint). The lemma can be shown by induction on the syntactical structure
of regular expressions in R(Σ). For the treatment of the case E = F ∗ in the
induction step (for E, F ∈ R(Σ)) the axioms (B10), (B11) of REG− are needed.

Lemma 6. From every derivation D̃ in ann-cREG0(Σ, Δ) of the form (10),
where m ∈ ω , d1, . . . , dm ∈ Δ distinct markers, E, F, G0 ∈ R(Σ) , and, for all
i ∈ {1, . . . , m}, Ei, Fi, Gi ∈ R(Σ) , it is possible to construct effectively deriva-
tions in REG(Σ) of the respective forms

D̃(1)

E = (G0+)
∑m

j=1 Gj .Ej ,
and D̃(2)

F = (G0+)
∑m

j=1 Gj .Fj .
(12)

Proof (Hint). The lemma can be demonstrated by defining an effective extrac-
tion procedure of the two derivations D̃(1) and D̃(2) in REG(Σ) with the re-
spective forms in (12) from an arbitrary derivation D̃ in ann-cREG0(Σ, Δ)
of the form (10), where m ∈ ω , E, F, G0 ∈ R(Σ) , Ei, Fi, Gi ∈ R(Σ) for all
i ∈ {1, . . . , m} , and d1, . . . , dm ∈ Δ are distinct. Such a procedure can be built
by using induction on the structure (or on the depth) of the derivation D̃.

Let us demonstrate the induction step for the extraction of the derivation
D̂(1) from the annotated derivation D̂ in (9) relating to our running example.
D̂(1) can be written as of the form

[1.d : E = F1]d

D̂1

a∗ + a∗b.d : Ea = (F1)a

[1.d : E = F1]d

D̂2

1.d : Eb = (F1)b COMP/FIX
(aa∗b + b)∗(1 + aa∗) : E = F1

with D̂1 and D̂2 being the immediate left and right subderivations of D̂ ; to
increase readability in this example, we suppress some “.”-signs and brackets.
We want to construct a derivation D̂(1) in REG({a, b}) with conclusion E = (aa∗

b + b)∗(1 + aa∗) . By the induction hypothesis there exist derivations D̂(1)
1 and

D̂(1)
2 in REG({a, b}) with the conclusions Ea = a∗ + a∗b.E and Eb = E . By

temporarily using additional rules, from D̂(1)
1 and D̂(1)

2 the derivation D̂(1)
0,ar

D̂(1)
1

Ea = a∗ + a∗b.E
CTXT

a.Ea = a.(a∗ + a∗b.E)

D̂(1)
2

Eb = E
CTXT

b.Eb = b.E
+

a.Ea + b.Eb = a.(a∗ + a∗b.E) + b.E
CTXT

1 + a.Ea + b.Eb = 1 + a.(a∗ + a∗b.E) + b.E
ApprAx

ACI+

1 + a.Ea + b.Eb = (aa∗b + b).E + (1 + aa∗)

can be constructed. This derivation can be extended, by using the fixed-point
rule FIX in REG({a, b}) in an essential way, into the derivation D̂(1)

ar

D(E)
ar

E = o(E) + a.Ea + b.Eb

D̂(1)
0,ar

1 + a.Ea + b.Eb = (aa∗b + b).E + (1 + aa∗)
TRANS

E = (aa∗b + b).E + (1 + aa∗)
FIX

E = (aa∗b + b)∗(1 + aa∗)

Using Proofs by Coinduction to Find “Traditional” Proofs 191

D(E)

E = 1 + a.Ea + b.Eb

D(E)

E = 1 + a.Ea + b.Eb

REFL, ApprAx
ACI+

E = 1.EApplAx
ACI+

Ea = E
CTXT

a.Ea = a.E

REFL, ApprAx
ACI+

E = 1.E ApplAx
ACI+

Eb = E
CTXT

b.Eb = b.E
+

a.Ea + b.Eb = a.E + b.E
CTXT

1 + a.Ea + b.Eb = 1 + a.E + b.E
TRANS

E = 1 + a.E + b.E
ApprAx

ACI+

E = a.E + (1 + b.E)
FIX

E = a∗(1 + b.E)
Appl/rAx

ACI+

Ea = a∗ + a∗b.E
CTXT

a.Ea = a.(a∗ + a∗b.E)

REFL, ApprAx
ACI+E = 1.E ApplAx

ACI+
Eb = E

CTXT
b.Eb = b.E

+
a.Ea + b.Eb = a.(a∗ + a∗b.E) + b.E

CTXT
1 + a.Ea + b.Eb = 1 + a.(a∗ + a∗b.E) + b.E

ApprAx
ACI+1 + a.Ea + b.Eb = (aa∗b + b).E + (1 + aa∗)

TRANS
E = (aa∗b + b).E + (1 + aa∗)

FIX
E = (aa∗b + b)∗(1 + aa∗)

Fig. 6. Abbreviated result D̂(1)
ar of extracting the REG({a, b})-derivation D̂(1) from

the ann-cREG0-deriv. D̂ in (9) (some REG-derivable rules are used)

where the derivation D(E)
ar is guaranteed by Lemma 5 and can be chosen as

(B10)

(a + b)∗ = 1 + (a + b)(a + b)∗
ApplAx

ACI+

(a + b)∗ = 1 + a(a + b)∗ + b(a + b)∗
ApplAx

ACI+

E = 1 + a (1 + 0)(a + b)∗︸ ︷︷ ︸
Ea

+ b (0 + 1)(a + b)∗︸ ︷︷ ︸
Eb

The desired derivation D̂(1) in REG({a, b}) can then be found as the result of
eliminating from D̂(1)

ar all applications of the additional rules “+”, ApplAxACI+ ,
and ApprAxACI+ , which can easily be recognised to be derivable in REG({a, b}).

The result of the entire extraction process of D̂(1) from D̂ is displayed in
Figure 6 as the derivation D̂(1)

ar in which applications of additional rules occur
and the derivation D(E) is abbreviated. In an analogous way, also the derivation
D̂(2) in REG({a, b}) with conclusion F = (aa∗b + b)∗(1 + aa∗) can be extracted
from D̂; similar to D̂(1)

ar , it is given as the abbreviated derivation D̂(2)
ar in Figure 7.

7.3 The Combination Step

The last step of the transformation is easy and consists in combining the two
REG(Σ)-derivations D̂(1) and D̂(2), which were extracted from the annotated
version D̂ of a cREG0-derivation D on which the transformation was started.
Building from D̂(1) and D̂(2) a REG(Σ)-derivation (D̂)′ with the same conclu-
sion as D only requires the use of each an application of SYMM and TRANS, as

192 C. Grabmayer

D(F1)

F1 = 1 + a.(F1)a + b.(F1)b

D(F2)

F2 = 1 + a.(F2)a + b.(F2)b

REFL, ApprAx
ACI+

F2 = 1.F2ApplAx
ACI+

(F2)a = F2
CTXT

a.(F2)a = a.F2

REFL, ApprAx
ACI+F1 = 1.F1 ApplAx

ACI+

(F1)b = F1
CTXT

b.(F1)b = b.F1
+

a.(F2)a + b.(F2)b = a.F2 + b.F1
CTXT

1 + a.(F2)a + b.(F2)b = 1 + a.F2 + b.F1
TRANS

F2 = 1 + a.F2 + b.F1 ApprAx
ACI+

F2 = a.F2 + (1 + b.F1)
FIX

F2 = a∗(1 + b.F1)
Appl/rAx

ACI+

(F1)a = a∗ + a∗b.F1
CTXT

a.(F1)a = a.(a∗ + a∗b.F1)

REFL, ApprAx
ACI+

F1 = 1.F1 ApplAx
ACI+

(F1)b = F1
CTXT

b.(F1)b = b.F1
+

a.(F1)a + b.(F1)b = a.(a∗ + a∗b.F1) + b.F1
CTXT

1 + a.(F1)a + b.(F1)b = 1 + a.(a∗ + a∗b.F1) + b.F1
TRANS

F1 = 1 + a.(a∗ + a∗b.F1) + b.F1
ApprAx

ACI+

F1 = (aa∗b + b).F1 + (1 + aa∗)
FIX

F1 = (aa∗b + b)∗(1 + aa∗)

Fig. 7. Abbreviated result D̂(2)
ar of extracting the REG({a, b})-derivation D̂(2) from

the ann-cREG0-deriv. D̂ in (9) (some REG-derivable rules are used)

illustrated in Figure 3. Due to this, Lemma 4 and Lemma 6 together yield the
transformation theorem below. In view of Theorem 3, this theorem facilitates
an alternative completeness proof for REG and therefore entails the subsequent
corollary, which is a restatement of the completeness part of Theorem 1.

Theorem 4. Every derivation D in cREG0(Σ) without open assumptions can
effectively be transformed into a derivation D′ in REG(Σ) with the same con-
clusion as D.

Corollary 2. REG(Σ) is complete with respect to =L.

8 Conclusion

Using a coinduction principle for language equality given by Rutten in [6], we
introduced a “finitary” coinduction principle for proving equivalence of regular
expressions: for showing that two regular expressions E and F are equivalent,
prove that, up to applying laws including associativity, commutativity and idem-
potency of +, E and F are bisimilar in an automaton of regular expressions whose
transition function is based on the “Brzozowski derivative”. We recognised that
this principle can be used to decide regular expression equivalence in an effective
way, and hence, that it can be implemented in principle (further considerations
lead us to the belief that this is indeed a practical possibility).

Subsequently we introduced a proof system cREG0 of equational logic that
formalises proofs using the finitary coinduction principle as finite derivations:

Using Proofs by Coinduction to Find “Traditional” Proofs 193

its soundness and completeness proof directly reflects the fact that a deriva-
tion in cREG0 (without open assumptions) corresponds to a finite bisimulation
between the regular expressions in its conclusion. Finally, we showed that deriva-
tions in cREG0 can be transformed into derivations in a variant system REG
of Salomaa’s axiomatisation F1 in a very straightforward and “natural” way.
Hereby we obtained a coinductive completeness proof for the system REG.

Our constructions, and in particular the transformation we sketched, can
be adapted to yield also a coinductive completeness proof for Salomaa’s F1.
This is because an alternative differential calculus for formal languages and
regular expressions can be introduced, in which derivatives take away letters
from the end of words: one can define, for letters a, the language derivative
(·)′a : L(Σ)→ L(Σ) by L → (L)′a =def {v | v.a ∈ L} . Based on corresponding
versions of derivatives for regular expressions, one can formulate an effective fini-
tary coinduction principle analogous to Theorem 2, a sound and complete proof
system cREG′

0 for =L analogous to cREG0, and an effective transformation
of cREG′

0-derivations into F1-derivations analogous to the one described here.
An effective completeness proof for F1 can directly be based on these elements.

Acknowledgement. The proof-transformation described in this paper was con-
ceived after a talk by Jan Rutten in which 1+a(a+ b)∗ +(a+ b)∗aa(a+ b)∗ =L

=L ((b∗a)∗ab)∗ was shown by coinduction and the “homework” was assigned of
giving an alternative proof by a deduction in Salomaa’s axiomatisation of =L.
Also, I want to thank Jan Rutten for calling it to my attention that Lemma 2
already holds w.r.t. ACI (and not only w.r.t. REG− as I had used previously).
Furthermore, I would like to convey my thanks to the anonymous referees for
their remarks, observations, questions, and stimulating comments. Last, but not
least thanks are due to Mihály Petreczky for a couple of useful discussions, and
to Helle Hansen for suggesting a formulation concerning the name of Lemma 5.

References

1. Brandt, M., Henglein, F.: “Coinductive axiomatization of recursive type equality
and subtyping”, Fundamenta Informaticae 33 (1998) 1–30.

2. Brzozowski, J.A.: “Derivatives of regular expressions”, Journal of the ACM 11
(1964) 481–494.

3. Conway, J.H.: Regular Algebra and Finite Machines, Chapman and Hall (1971).
4. Hüttel, H., Stirling, C.: “Actions Speak Louder Than Words: Proving Bisimilarity

for Context-Free Processes”, Journ. of Logic and Computation 8:4 (1998) 485–509.
5. Grabmayer, C.: Relating Proof Systems for Recursive Types, PhD thesis, Vrije Uni-

versiteit Amsterdam (2005) http://www.cs.vu.nl/~clemens/proefschrift.pdf .
6. Rutten, J.J.M.M.: “Automata and Coinduction (an Exercise in Coinduction)”, Pro-

ceedings of CONCUR ’98 , LNCS 1466, Springer (1998) 194–218.
7. Salomaa, A.: “Two complete axiom systems for the algebra of regular events”, Jour-

nal of the ACM 13:1 (1966) 158–169.
8. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory , Cambridge University

Press (1996, 2000).

From T -Coalgebras to Filter Structures
and Transition Systems

H. Peter Gumm

Philipps-Universität Marburg,
35032 Marburg, Germany

gumm@mathematik.uni-marburg.de

Abstract. For any set-endofunctor T : Set → Set there exists a largest
sub-cartesian transformation μ to the filter functor F : Set → Set. Thus
we can associate with every T -coalgebra A a certain filter-coalgebra AF.

Precisely, when T (weakly) preserves preimages, μ is natural, and
when T (weakly) preserves intersections, μ factors through the covariant
powerset functor P, thus providing for every T -coalgebra A a Kripke
structure AP.

We characterize preservation of preimages, preservation of intersec-
tions, and preservation of both preimages and intersections via the ex-
istence of natural, sub-cartesian or cartesian transformations from T to
either F or P.

Moreover, we define for arbitrary T -coalgebras A a next-time operator
©A with associated modal operators � and � and relate their properties
to weak limit preservation properties of T . In particular, for any T -
coalgebra A there is a transition system K with ©A = ©K if and only
if T preserves intersections.

1 Introduction

The importance of weak preservation properties of coalgebraic type functors has
been clear since the seminal work of Rutten [Rut00]. Many of the results in
the original 1996 preprint-version of his work assumed that the coalgebraic type
functor weakly preserves pullbacks, or even arbitrary intersections.

In joint works with T. Schröder, we have subsequently shown that weak
preservation of pullbacks decomposes into two more basic preservation prop-
erties, namely preservation of preimages and weak preservation of kernels. We
have given numerous (co-)algebraic properties that correspond, in a one-to-one
fashion, to these preservation properties of the type functor.

The current paper studies a transformation μ between an arbitrary Set-
endofunctor T and the filter functor that associates with a set X the set F(X)
of all filters on a set X .

The basic idea is to capture the notion of successors of a point a, which
plays a central role in Kripke Structures, and make it available for coalgebras of
arbitrary type T .

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 194–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From T -Coalgebras to Filter Structures and Transition Systems 195

It turns out that, unless T preserves intersections, one cannot speak of a sin-
gle set of successors, but must consider a family of successor sets. Fortunately,
however, the successor sets form a filter. Therefore, one can construct a trans-
formation μ between T (X) and F(X), for arbitrary Set-endofunctors T . Even
though μ is not a natural transformation in general, it is enough to observe that
it is always sub-natural and sub-cartesian, these terms are defined below. In
fact, μ is the largest sub-cartesian transformation from T to F. Now T (weakly)
preserves preimages if and only if μ is a natural transformation.

Similarly, we always obtain a largest sub-natural transformation τ from T
to the powerset functor P. We show that τ is sub-cartesian iff T (weakly) pre-
serves intersections and τ is cartesian iff T (weakly) preserves preimages and
intersection.

For arbitrary T -coalgebras A this has the consequence that one always can
define a filter-coalgebra on its base set which has the same subcoalgebras as A.
Closer connections between A and its associated filter-coalgebra or its associated
Kripke structures correspond to the mentioned preservation properties of T .

Taking a logical viewpoint, one may generalize the nexttime operator© from
Kripke structures, which associates to a subset S of a Kripke structure A the
set of all points whose successors are all contained in S. We show how © can be
defined for coalgebras of arbitrary type - even on base categories other than Set.
Preservation properties of the type functor T become very suggestive: T preserves
preimages iff © commutes with homomorphic preimages, i.e. ϕ−©Q = ©ϕ−Q,
and T preserves intersections iff © commutes with forming intersections, i.e.
©

⋂
i∈I Pi =

⋂
i∈I ©Pi for all subsets P, Pi ⊆ A and homomorphisms ϕ.

2 Categorical Notions

We need only basic category theoretic notions and facts as found in the first few
chapters of any textbook, such as e.g. [AHS90].

A functor F : C → D is said to preserve monos, if Ff is mono, whenever
f was. When monos are left-invertible, as e.g. in the category of nonempty sets
and mappings, they are, of course, automatically preserved.

Pullbacks are limits of two morphisms f : A → C and g : B → C with
common codomain. Thus, the pullback of f and g is an object P with morphisms
p1 : P → A and p2 : P → B, so that f ◦ p1 = g ◦ p2, and for any other object
Q with morphisms p1 : P → A and p2 : Q → B satisfying f ◦ q1 = g ◦ q2 there
exists a unique ”mediating” morphism d : Q → P with pi ◦ d = qi, for i = 1, 2.

A
f �� C

P

p1

��

p2 �� B

g
��

Q

p1

��

�
�

�
� �

∃!d
��

p2

��

� � 	
 �
�

196 H.P. Gumm

Weak pullbacks are the corresponding weak limits, i.e. where the uniqueness
requirement for the mediating morphism is dropped.

Preimages are pullbacks where g is mono. Observe, that in this case, p1 will
automatically be mono, too. This is not necessarily the case for weak preimages.
However, a weak pullback, in which one of p1, p2 is mono, is already a pullback.

Wide pullbacks are limits of infinite families (fi : Ai → A)i∈I with com-
mon codomain, and intersections (weak intersections) are limits (weak limits)
of families of monomorphisms (fi : Ai � A)i∈I with common codomain.

A functor F : C → D is said to weakly preserve pullbacks, if it transforms every
pullback diagram in C into a weak pullback diagram in D. If pullbacks always
exist in C, then F weakly preserves pullbacks iff F preserves weak pullbacks, i.e.
F transforms weak pullback diagrams into weak pullback diagrams.

Correspondingly, we say that F weakly preserves preimages, if it transforms
each preimage diagram into a weak pullback diagram.

We say that F weakly preserves intersections, if F transforms every intersec-
tion diagram into a weak limit diagram.

If F preserves monos, as will often be the case, weak preservation of preimages
(resp. intersections) is the same as preservation of preimages (resp. intersections).

3 Sub-natural and Sub-cartesian Transformations

Given categories C, D and functors F, G : C → D, a transformation ν : F → G
is just a family of D-morphisms νA : FA → GA for every object A in C. It is
called a natural transformation, if for every C-morphism f : A → B the diagram

FB
νB �� GB

FA

Ff

��

νA �� GA

Gf

��

commutes, and it is called cartesian, if the same diagram is a pullback.
We shall need to work with transformations, which are neither natural nor

cartesian, but satisfy a weaker property:

Definition 1. A transformation ν : F → G will be called sub-natural if the
above diagram commutes for every monomorphism f . It is called sub-cartesian,
if the diagram is a weak pullback for every monomorphism f .

The following observation will become important in later sections:

Theorem 1. Assume that F preserves monos, and let ν : F → G be a sub-
cartesian transformation. Then

(i) if G weakly preserves intersections then so does F ,
(ii) if ν is natural and G weakly preserves preimages, then F preserves preimages.

From T -Coalgebras to Filter Structures and Transition Systems 197

Proof. To show (i), start with a family of monomorphisms (ei : Ai ↪→ A)i∈I and
its limit M with morphisms fi : M ↪→ Ai, satisfying ei◦fi = ek◦fk for all i, k ∈ I.
Applying F and G and inserting the transformation morphisms, we obtain the
following diagram, where the top row is a weak limit by the assumption on G.
Since ν is subcartesian and the ei and fi are monos, the squares commute.

GM
Gfi �� GAi

Gei �� GA

FM

νA

��

� � Ffi �� FAi
� � Fei ��

νAi

��

FA

νA

��

Q

e

��

�
�
�
�
�
�

di

��

qi

		

� � 	 � �
�

�

To show that the bottom row is a weak limit, too, let Q be a competitor
with morphisms qi : Q → FAi satisfying Fei ◦ qi = Fek ◦ qk for all i, k ∈ I.
Then Q with morphisms νAi ◦ qi becomes a competitor to the weak limit GM ,
yielding a morphism e : Q → GM with νAi ◦ qi = Gfi ◦ e for all i ∈ I. Since
ν is sub-cartesian, we obtain morphisms di : Q → FM for each i ∈ I with
Ffi ◦ di = qi. We need to show that all the di are equal to a single morphism
d. A diagram chase, utilizing Fei ◦ qi = Fek ◦ qk and ek ◦ fk = ei ◦ fi, yields
Fei ◦Ffi ◦di = Fei ◦Ffi ◦dk. Since F preserves monos, we can cancel Fei ◦Ffi

and obtain di = dk.
To show (ii), let P with morphisms p1 : P → A and p2 : P → B be the

preimage of f : A → C and monomorphism g : B ↪→ C. It follows that p1 is
mono.

Applying F and G to this diagram and filling in the transformation ν, which
we now assume to be natural, we obtain the following commutative cube:

GA
Gf �� GC

FA

νA

�������� Ff �� FC

νC

��������

GP

Gp1

��

Gp2 �� GB

Gg

��

FP

νP

����������

Fp1

��

Fp2 �� FB
��

Fg

��

νB

��������

Q

q1

��

�
�

�

�

�

�
�

e

��

d

	

�

�

!

�

q2

��

� " � 	 #
$

� � %

Since G weakly preserves preimages, the back face is a weak pullback diagram.
Since F preserves monos, Fp1 and Fg will be mono. We need to show that the
front face is a weak pullback, too.

198 H.P. Gumm

Given a competitor, i.e. an object Q with morphisms q1 : Q → FA and
q2 : Q → FB satisfying Ff ◦ q1 = Fg ◦ q2, we extend q1 and q2 with the
transformation morphisms νA and νB, to make Q into a competitor to the weak
pullback of the back face. This yields a mediating morphism d : Q → GP with
νA ◦ q1 = Gp1 ◦ d. Since ν is sub-cartesian, the left face is a pullback, so we
obtain a morphism e : Q → FP with Fp1 ◦ e = q1. It follows that

Fg ◦ Fp2 ◦ e = Ff ◦ Fp1 ◦ e

= Ff ◦ q1

= Fg ◦ q2,

so canceling the monomorphism Fg yields Fp2 ◦ e = q2.

4 Functors on the Category Set

Given a set X with subset U ⊆ X , we denote the canonical injection by ⊆X
U :

U ↪→ X . We sometimes drop the sub- and superscripts of ⊆ when they are clear
from the context.

Given a map f : X → Y with U ⊆ X and V ⊆ Y , we denote by f [U] the
image of U and by f−V the preimage of V under f . Occasionally, we write [f]
for the image f [X] of f .

4.1 Set-Functors

For a Set-functor T : Set → Set, and for U ⊆ X , we write T X
U for the application

of T to the inclusion map ⊆X
U , and [T X

U] for the image of TU under the said
map T X

U , i.e.

[T X
U] := T X

U [TU].

We note two simple lemmas:

Lemma 1. If U ⊆ V ⊆ X, then [T X
U] ⊆ [T X

V].

Proof. [T X
U] = T X

U [TU] = (T X
V ◦ T V

U)[TU] = T X
V [T V

U] ⊆ T X
V [TV] = [T X

V].

Lemma 2. If f : X → Y and U ⊆ X, then (Tf)[T X
U] = [T Y

f [U]].

Proof. Let f| be the domain-codomain-restriction of f to U , then f◦ ⊆X
U =⊆Y

f [U]

◦f|, hence Tf ◦ T X
U = T Y

f [U] ◦ Tf|. Applying the left side to TU yields (Tf)[T X
U].

Since f| is surjective, it has a right inverse, hence Tf| : TU → T (f [U]) must be
surjective, too. Therefore, (T Y

f [U] ◦ Tf|)[TU] = T Y
f [U][T (f [U])] = [T Y

f [U]].

From T -Coalgebras to Filter Structures and Transition Systems 199

4.2 Set-Functors Preserve Finite Nonempty Intersections

For a Set-functor T : Set → Set we may assume T (X) �= ∅, unless X = ∅, for
otherwise T would have to be the trivial functor with T (Y) = ∅ for every set Y .

For nonempty sets X and Y , any injective f : X → Y has a left inverse.
Hence Tf is invertible, too. As a consequence, every functor T on Set preserves
monos with nonempty domain.

Rather surprisingly, every Set-endofunctor T also preserves nonempty inter-
sections. This was proved by Trnková [Trn69]:

Lemma 3. Whenever U ∩ V �= ∅, then [T W
U] ∩ [T W

V] = [T W
U∩V].

A short proof of this result can be found in [GS02]. A corresponding theorem
for infinite intersections is not valid in general.

4.3 Discharging Empty Sets and Mappings

The proviso about the empty set can be discarded by modifying the functor
T on the empty set ∅ and on the empty mappings ∅A : ∅ → A. To this end,
consider the two-element set 2 = {0,1} with canonical injections e0, e1 : 1→ 2.
Let e : P → T1 be the equalizer of Te0 and Te1:

P
e �� T1

Te0 ��
Te1

�� T2 .

Then define a functor T + on objects X by

T +(X) =
{

P, if X = ∅,
T (X), otherwise.

Identifying any y ∈ Y with the map 1→ Y with value y, we have Ty : T1→ TY ,
and we can define for any f : X → Y :

T +f :=
{

Ty ◦ e, if X = ∅, y ∈ Y
T (f), otherwise.

Due to the construction of e as an equalizer, one easily checks that the defin-
ition of T +f does not depend on the choice of y ∈ Y . Then the following lemma
can be verified:

Lemma 4. ([Trn69]) T + is a Set-functor, preserving all monos and all finite
intersections. T + agrees with T on all nonempty sets and on all mappings with
nonempty domain.

The above description of T+ is from Barr([Bar93]) and it differs slightly from
the original construction of Trnková, who defined T +(∅) as the set of all natural
transformations from 1̂ to T , where 1̂ is the functor with 1̂(∅) = ∅ and 1̂(X) = 1
for X �= ∅. Barr’s description has the advantage that equalizers (in the category
Set) are usually easier to calculate than natural transformations.

200 H.P. Gumm

The following corollary will be needed later:

Corollary 1. T + preserves preimages of injective maps.

Since we are interested in coalgebras, nothing changes, when we replace T
by T +, so we will assume from now on that all Set-functors under consideration
satisfy the property of T + in the previous lemma. In particular, they preserve
monos, finite intersections and preimages of injective maps.

4.4 Preservation Properties of Set-Functors

Checking, whether a diagram is a pullback (weak pullback) is especially easy in
the category Set. Essentially, this is due to the fact that each set is a sum of one-
element sets, so the pullback condition can be checked elementwise. This means
that a set functor T : Set → Set weakly preserves the pullback (P, (pi)i∈I) of
a family of maps (fi : Xi → Z)i∈I iff for each family (ui ∈ TXi)i∈I satisfying
(Tfi)(ui) = (Tfk)(uk) for all i, k ∈ I there exists some w ∈ TP with (Tpi)(w) =
ui for all i ∈ I.

In the following lemma we will use this criterion for checking preservation of
infinite intersections, i.e. of wide pullbacks of monos:

Lemma 5. A functor T : Set → Set preserves intersections iff for each family
(Ui ⊆ X)i∈I ⋂

i∈I

[T X
Ui

] = [T X

i∈I Ui
].

Proof. By Lemma 1, the inclusion ”⊇” is always true.
Assume now, that T preserves intersections. For each u ∈

⋂
i∈I [T X

Ui
] and

each i ∈ I there exists ui ∈ TUi with T X
Ui

(ui) = u. Abbreviate W :=
⋂

i∈I Ui,
then TW with the maps T Ui

W is a limit of the sink (T X
Ui

)i∈I , so there exists some
w ∈ TW with T Ui

W (w) = ui, hence T X
W (w) = (T X

Ui
◦ T Ui

W)(w) = T X
Ui

(ui) = u, so
u ∈ [T X

W].
Conversely, assume that the formula is true and let P with maps fi : P → Xi

be the limit of the monomorphisms ei : Xi � X . Each ei factors as ei = ⊆ ◦ gi

with gi : Xi → Ui ⊆ X bijective. It follows that there is a bijective map g : P →⋂
i∈I Ui with gi ◦ fi = ⊆ ◦ g. Applying T , we have the following commutative

diagram:

TP��
Tg

����

�� Tfi �� TXi
��
Tgi

����

�� Tei �� TX

T
⋂

i∈I Ui = TW
� � T

Ui
W �� TUi

� � T X
Ui

���������

To see that TP with the maps Tfi is the limit of the Tei, assume a family
of elements ui ∈ TXi be given with (Tej)(uj) = (Tek)(uk) =: u for all j, k ∈ I.
We need to find an element p ∈ TP with Tfi(p) = ui for all i ∈ I.

From T -Coalgebras to Filter Structures and Transition Systems 201

Now, T X
Ui

(Tgi(ui)) = u for all i ∈ I, so u ∈
⋂

i∈I [T X
Ui

], hence by the as-
sumption u ∈ [T X

i∈I Ui
]. Abbreviating W :=

⋂
i∈I Ui, then u = T X

W (v) for some
v ∈ TW . We claim that p := Tg−1(v) is the sought element in TP . Indeed,
(Tei ◦ Tfi)(p) = (T X

Ui
◦ T Ui

W ◦ Tg)(Tg−1(v)) = T X
W (v) = u = Tei(ui) for each

i ∈ I. Since the Tei are monos, it follows Tfi(p) = ui for all i ∈ I.

The following is an easy but relevant corollary:

Corollary 2. T preserves infinite intersections iff for any u ∈ TX there is a
smallest U ⊆ X with u ∈ [T X

U].

Proof. The smallest U with u ∈ [T X
U] must be U :=

⋂
i∈I{V ⊆ X | u ∈ [T X

V]}.
To check whether indeed u ∈ [T X

U], we apply the formula of the previous lemma
and obtain the triviality u ∈

⋂
{ [T X

V] | u ∈ [T X
V] }.

For the other direction, choose any x ∈
⋂

i∈I [T X
Ui

] and let W be the smallest
W ⊆ X with x ∈ [T X

W]. Then W ⊆
⋂

i∈I Ui, so x ∈ [T X

i∈I Ui
] by Lemma 1.

5 The Filter Functor

A filter G on a set X is a nonempty collection of subsets of X that is closed
under finite intersections and supersets. In other words, ∅ �= G ⊆ P(X) and

– G1, G2 ∈ G ⇒ G1 ∩G2 ∈ G, and
– G ∈ G, and G ⊆ H ⊆ X ⇒ H ∈ G.

On any set X , let F(X) be the set of all filters on X . F can be made into an
endo-functor on Set by defining Ff for any map f : X → Y as

(Ff)(G) := ↑ {f [G] | G ∈ G},

where G is an arbitrary filter on X . Here ↑ H, for any system of subsets H ⊆
P(X), denotes the set of all supersets of sets in H, i.e.

↑ H := {W ⊆ X | ∃H ∈ H.H ⊆W}.

Here we shall work with the following equivalent definition for Ff :

Lemma 6. For any map f : X → Y , and any filter G on X, we have

(Ff)(G) = {V ⊆ Y | f−V ∈ G}.

It is shown in [Gum01] that F is a functor for which the following theorem holds:
Proposition 1. F weakly preserves pullbacks, but not infinite intersections.

Clearly, the covariant powerset functor P is a subfunctor of the filter functor
F. The natural embedding ε : P → F associates a set U ⊆ X with the filter of
all supersets of U in X . There is also an obvious transformation⋂

: F → P

in the other direction, given by intersection. We have
⋂
◦ ε = idF , but

⋂
is not

a natural transformation. Instead we find:

202 H.P. Gumm

Lemma 7.
⋂

: F→ P is sub-natural, but not sub-cartesian.

Proof. For sub-naturality, it suffices to check that for every injective map f :
X → Y and any G ∈ FX :

(Pf◦
⋂

)(G) = f [
⋂
G] =

⋂
{f [G] | G ∈ G} =

⋂
↑ {f [G] | G ∈ G} = (

⋂
◦Ff)(G).

P preserves intersections, and F preserves monos. Therefore, we can invoke Theo-
rem 1 to argue that if

⋂
was sub-cartesian, then by (i), F would have to preserve

intersections too, which is not the case, see e.g. [Gum01].

6 A Sub-cartesian Transformation to the Filter Functor

For an arbitrary functor T : Set → Set, we now define a transformation μ :
T → F. When T preserves preimages, μ will be natural, otherwise it will be
natural on injective maps only. Nevertheless, this property will suffice to prove
our coalgebraic results of the following section.

Definition 2. For any set X and any functor T : Set → Set define a map
μX : T (X)→ F(X) by

μX(u) := {U ⊆ X | u ∈ [T X
U]}.

To see that μX is indeed a filter, we invoke Lemmas 1 and 3 in combination
with 4. In general, μ is not a natural transformation, but we always have:

Lemma 8. μ is a sub-cartesian transformation.

Proof. For an injective map f : X → Y , we first need to show commutativity of
the following square:

TY
μY �� FY

TX
��

Tf

��

μX

�� FX
��
Ff

��

Given u ∈ TX , we have for any V ⊆ Y :

V ∈ μY ((Tf)(u)) ⇐⇒ (Tf)(u) ∈ [T Y
V]

⇐⇒ ∃v ∈ TV.(Tf)(u) = T Y
V (v)

!⇐⇒ ∃w ∈ T (f−V).T X
f−V (w) = u

⇐⇒ u ∈ [T X
f−V]

⇐⇒ f−V ∈ μX(u)
⇐⇒ V ∈ (Ff)(μX(u)).

The third (marked) equivalence is due to the fact that T preserves preimages
with respect to injective maps, see Corollary 1.

From T -Coalgebras to Filter Structures and Transition Systems 203

To check that the diagram is a weak pullback, let v ∈ TY and G ∈ FX be
given with μY (v) = (Ff)(G). This implies that for every V ⊆ Y we have:

v ∈ [T Y
V] ⇐⇒ f−V ∈ G.

Choosing V := f [X], we have f−f [X] = X ∈ G, so we obtain v ∈ [T Y
f [X]].

Hence, there exists w ∈ T (f [X]) with T Y
f [X](w) = v. Since f = ⊆Y

f [X] ◦f ′ with
f ′ bijective, we have that Tf = T Y

f [X] ◦ Tf ′ with Tf ′ bijective. This yields an
element u ∈ TX with (Tf ′)(u) = w, i.e. (Tf)(u) = v. The condition μX(u) = G
follows from the commutativity of the diagram together with the fact that Ff
is mono.

Note that we did not claim that μ should be natural. In fact, we shall soon
describe when this is the case. In the meantime, we can characterize μ amongst
all sub-cartesian transformations:

Theorem 2. μ is the largest sub-cartesian transformation from T to F.

Proof. Suppose ν : T → F is any sub-cartesian transformation. We need to prove
νX(q) ⊆ μX(q) for every set X and every q ∈ TX .

Put G := νX(q) and assume U ∈ G. For GU := {U ∩ G | G ∈ G} we have
G = ↑ GU = (FX

U)GU . We obtain the following situation:

q ∈ TX
νX �� FX G� U�

TU
��

T X
U

��

νU �� FU
��

F
X
U

��

GU

�

��

�

Since ν is sub-cartesian, there exists some w ∈ TU with (T X
U)(w) = q. Hence

q ∈ (T X
U)[TU] which means U ∈ μX(q).

We can now formulate our first characterization theorem:

Theorem 3. For a set functor T : Set → Set the following are equivalent:

(i) T (weakly) preserves preimages
(ii) μ : T → F is a natural transformation
(iii) There exists a natural transformation ν : T → F which is sub-cartesian.

Proof. (i)⇒(ii): Let T weakly preserve preimages and let f : X → Y be any
map. We need to show that the following diagram commutes:

TY
μY �� FY

TX

Tf

��

μX

�� FX

Ff

��

204 H.P. Gumm

Given any u ∈ TX we calculate

(Ff)(μX(u)) = {V ⊆ Y | u ∈ [T X
f−V]},

μY ((Tf)(u)) = {V ⊆ Y | (Tf)(u) ∈ [T Y
V]}.

The inclusion ”⊆” between the above sets always holds, for given u ∈ [T X
f−V],

there is some w ∈ T (f−V) with T X
f−V (w) = u. Applying Tf , we find

(Tf)(u) = (Tf)(T X
f−V (w))

= T Y
V ((Tf|)(w))

due to the commutativity of the following diagram which arises from applying
T to the diagram describing the preimage of V under f :

TX
Tf �� TY

T (f−V)
��

T X
f−V

��

Tf|
�� TV

��

T Y
V

��

Hence (Tf)(u) ∈ [T Y
V].

For the other inclusion ”⊇”, we need to assume that T preserves preimages,
which is to say that the above square is in fact a (weak) pullback. Given some
V ∈ μY ((Tf)(u)), i.e. (Tf)(u) ∈ [T Y

V], we have v ∈ TV with (Tf)(u) = T Y
V (v).

By the weak pullback property, there exists an element w ∈ T (f−V) with
T X

f−V (w) = u, hence f−V ∈ μX(u), i.e. V ∈ (Ff)(μX(u)).
(ii)⇒(iii) follows from Lemma 8.
For (iii)⇒(i), we recall from [Gum01] that the filter functor weakly preserves

pullbacks, in particular, preimages. Thus we are in a position to apply Theorem
1 to obtain the desired result.

6.1 Examples

It is instructive to calculate μ : T → F for some familiar functors on Set. In
the following table, the first column lists functors T : Set→ Set and the second
column gives, for an arbitrary q ∈ TX the value of μT

X(q) ⊆ X .

Functor T μX(q)

Id ↑ {q}
P(−) ↑ q

PP(−) ↑
⋃

q

F(−) q

A×− ↑ {π2(q)}
(−)I ↑ q[I]
P̄P̄(−) {U ⊆ X | ∀ V ∈ q.∀ W ⊆ X.V ∩ U = W ∩ U ⇒W ∈ q}

From T -Coalgebras to Filter Structures and Transition Systems 205

The last mentioned functor is the composition of the contravariant powerset
functor P̄ with itself. Exemplary, we calculate μX(q) for this case:

On objects, P̄(X) = P(X), but for a map f : X → Y , one has P̄(f) = f− :
P(Y) → P(X), hence P̄(⊆Y

X)(V) = X ∩ V for V ⊆ Y . Next, for S ∈ P̄P̄(U) one
gets (P̄P̄ ⊆X

U)(S) = {V ⊆ X | V ∩ U ∈ S}, hence

U ∈ μX(q) ⇐⇒ ∃ S ∈ P̄P̄(U). q = {V ⊆ X | V ∩ U ∈ S}.

The following formulas allow us to construct μ for functors that are com-
binations of simpler ones. Given T , T1, and T2 with associated sub-cartesian
transformations μT , μT1 , and μT2 to F, we get the following transformation for
their sums, products and powers:

Functor μT
X(q)

T1 + T2 if q ∈ Ti(X) then μTi

X (q)
T1 × T2 μT1

X (π1(q)) ∩ μT2
X (π2(q))

T I {U ⊆ X | q[I] ⊆ [T X
U]}

A system with state set X that takes an input from a set I and either produces
an error e ∈ E or moves to a new state, while producing an output o ∈ O, can
be modeled by a coalgebra of type T (X) = (E + O×X)I . The above table tells
us how to calculate μT . Using the fact that [FX

U] = FU for the standard functor
F (−) = E + O × (−), we obtain: μT

X(q) = ↑ q[I].

7 A Sub-natural Transformation to the Powerset
Functor

The covariant powerset functor P which associates with a map f : X → Y the
map Pf : PX → PY with (Pf)(U) := f [U] is obviously a subfunctor of the filter
functor F. The natural embedding is given by εX(U) := ↑ {U} for any U ∈ P(X).
When does the transformation μ : T → F factor through this embedding?

F
��
P��

ε
��

T

μ

��&&&&&&& τ

		'''''''

From
⋂
◦ ε = idP, we obtain immediately:

Lemma 9. τ :=
⋂
◦ μ is the only transformation τ : T → P with ε ◦ τ = μ.

In other words, for an arbitrary functor T : Set→ Set the following definition
yields a transformation, which is sub-natural due to Lemmas 7 and 8:

Definition 3. For an arbitrary set X, put τX(u) :=
⋂

μX(u).

206 H.P. Gumm

The just defined transformation τ is special amongst all sub-natural trans-
formations T → P, for in analogy with Theorem 2, we obtain:

Theorem 4. τ is the largest sub-natural transformation T → P.

Proof. For any sub-natural ν : T → P and for any q ∈ TX , we need to show

νX(q) ⊆
⋂
{U ⊆ X | q ∈ [T X

U]}.

Thus, for any U ⊆ X with q ∈ [T X
U], we need to show νX(q) ⊆ U .

By assumption, there is some w ∈ TU with q = (T X
U)(w). This implies:

νX(q) = (νX ◦ T X
U)(w)

= (PX
U ◦ νU)(w)

= νU (w)
∈ P(U).

Further properties of τ will require conditions on the functor T . In particular,
we are interested in preservation of intersections. Our aim is to characterize
preservation of intersection by the existence of transformations to the powerset
functor, in analogy to Theorem 3.

Theorem 5. For a functor T : Set→ Set the following are equivalent:

(i) T (weakly) preserves intersections.
(ii) μ = ε ◦ τ .
(iii) τ : T → P is sub-cartesian.
(iv) There exists a sub-cartesian transformation ν : T → P.

Proof. (i)⇒ (ii): By Corollary 2, for every u ∈ TX , there is a smallest U ⊆ X
with u ∈ [T X

U]. It follows that U =
⋂
{V ⊆ X | a ∈ [T X

V]} and μX(u) = ↑ U =
ε ◦ τ(u).

(ii)⇒ (iii): Since we know that μ = ε ◦ τ is sub-cartesian, the outer square
of the following figure is a weak pullback. As εX is mono, one easily checks that
the left square is a weak pullback, too, hence τ is sub-cartesian.

TY
τY �� PY �� εY �� FY

TX
��

Tf

��

τX �� PX
��

Pf

��

�� εX �� FX
��

Ff

��

(iv)⇒(i): This is exactly part (i) of Theorem 1, since P obviously preserves
arbitrary intersections.

From T -Coalgebras to Filter Structures and Transition Systems 207

8 A Natural Transformation to P

We now would like to characterize when τ is a natural transformation. This prop-
erty is brought about jointly by the preservation of intersections and of preim-
ages. Under the general assumption that T preserves preimages, the equivalence
of (i) and (iii) is stated (without proof) in [Tay00]. In fact, this assumption is
not necessary, as our proof will show:

Theorem 6. For any functor T : Set→ Set the following are equivalent:

(i) T (weakly) preserves preimages and infinite intersections.
(ii) τ : T → P is natural and sub-cartesian.
(iii) There exists a natural transformation ν : T → P which is sub-cartesian.

Proof. (i)⇒ (ii): By Theorem 5, τ is sub-cartesian and μ = ε◦τ , and by Theorem
3, μ is a natural transformation. So in the naturality diagram as in the previous
proof, but this time for an arbitrary map f : X → Y , we have the outer and the
right square commuting. Since εY is mono, the left square also commutes.

(iii)⇒ (i): Since P preserves preimages and intersections, this is once more a
consequence of Theorem 1.

9 Modal Operators on Coalgebras

Coalgebras of the filter functor F have been described in [Gum01]. Given an
F-coalgebra A = (A, α), i.e. a (structure)map α : A → FA, one defines a relation� between A and PA by

a � U : ⇐⇒ U ∈ α(a).

Then one has

(i) a � U and a � V ⇒ a � U ∩ V ,
(ii) a � U ⊆ V ⇒ a � V ,

and conversely, a relation � between A and PA satisfying (i) and (ii) arises
from a filter coalgebra on A.

Our sub-cartesian transformation μ can be used to associate to a coalgebra
A = (A, α) of arbitrary type T a filter coalgebra AF = (A, αF) on the same base
set. The fact that μ is sub-cartesian has as consequence that the subcoalgebra
structure is preserved and reflected:

Theorem 7. To every coalgebra AT = (A, α), one can construct a filter-
coalgebra AF on the same underlying set, so that AT and AF have the same
subcoalgebras.

208 H.P. Gumm

Proof. Define AF = (A, μ ◦ α). From a T -coalgebra structure α : A → TA, we
obtain the F-coalgebra structure αF := μA ◦ α. Since μ is sub-natural, every
subcoalgebra of A becomes a subcoalgebra of AF, to. Since μ is sub-cartesian,
every subcoalgebra of U of AF arises from a subcoalgebra of A on the same set.
The required T -structure map on U arises as the mediating map for the weak
pullback square in in the following figure:

A

αA
F

��α �� TA
μA �� FA

U
��

⊆

��

αU
F

��
����� TU

��

T A
U

��

μU

�� FU
��

F
A
U

��

It would be nice, if in the previous theorem, we could replace the filter func-
tor by the powerset functor. However, coalgebras of the powerset functors, i.e.
Kripke-structures, have the property that the system of subcoalgebras is closed
under arbitrary intersection. Therefore, we can hope for a similar theorem only
when T preserves infinite intersections.

Nevertheless, without any assumptions on T , we can define an abstract next-
time-operator ©, which recovers the vital properties of the next-time operator
on Kripke-Structures. Indeed, if T preserves intersections, ©P is the set of all
states s ∈ S whose immediate successors are all in P . The following lemmas,
in particular Lemma 11, allow one to define ©P for coalgebras in arbitrary
categories. We begin with the following concrete definition:

Definition 4. Let A = (A, α) be a T -coalgebra on A. For any subset P ⊆ A let

©AP := {a ∈ A | α(a) ∈ [T A
P]}.

We shall drop the subscript A, whenever the coalgebra structure is clear from
context. When A is a Kripke structure, i.e. a P-coalgebra, then ©P is just the
set of all states a ∈ A such that all successors are in P . Guided by this intuition,
the following properties are immediate:

Lemma 10. (i) © : PA→ PA is monotone.
(ii) U ⊆ A is a subcoalgebra iff ©U ⊆ U .

Note that preimages are just pullbacks along injective maps, so the following
lemma suggests a categorical definition of ©P :

Lemma 11. ©P is the preimage of T A
P : TP ↪→ TA wrt. to α : A→ TA.

Proof. By definition, α[©P] ⊆ [T A
P], and since T A

P is injective, there is (precisely)
one map ϕ : P → TP making the square in the following figure commutative.

©P

ϕ

���
�
�

� � ⊆ �� A

α

��
TP

� �

T A
P

�� TA

From T -Coalgebras to Filter Structures and Transition Systems 209

The square is in fact a preimage square, for given a ∈ A and q ∈ TP with
α(a) = T A

P (q), then a ∈ ©P by definition and (T A
P ◦ ϕ)(a) = (α ◦ ⊆)(a) =

α(a) = T A
P (q). Since T A

P is injective, this means that ϕ(a) = q.

For arbitrary coalgebras A = (A, α) we therefore can define modal operators
A and ♦A as largest and smallest fixed points:

AS := νX.S ∩©AX,

♦AS := μX.S ∪©AX.

Lemma 12. Given a coalgebra A = (A, α) and any subset S ⊆ A, then S is
the largest subcoalgebra of A that is contained in S.

Proof. We have S = S ∩©S, so S ⊆ S and S is a subcoalgebra of A by
Lemma 10. According to Tarski’s description of the largest fixed point,

S =
⋃
{X ⊆ A | X ⊆ S ∩©X},

and using Lemma 10, S is the union of all subcoalgebras are contained in S.

Lemma 13. Let A = (A, α) and B = (B, β) be coalgebras, ϕ : A → B a
homomorphism. Then for any subset Q ⊆ B we have:

©ϕ−Q ⊆ ϕ−©Q.

Proof. In the diagram below, the bottom face arises from applying the functor
T to a preimage square. The front face commutes, since ϕ is a homomorphism,
and the left and right faces are in fact pullbacks, due to Lemma 11.

©ϕ−Q

��

��

�����
���

��
�� ©Q
	

�����
���

�

��

A

α

��

ϕ �� B

β

��

Tϕ−Q
��

�����
���

�
�� TQ
	

�����
���

�

TA
Tϕ �� TB

©ϕ−Q with the obvious maps becomes a competitor to the pullback ©Q.
This yields the dotted map, making the top face commutative. In particular,
ϕ[©ϕ−Q] ⊆ ©Q, hence ©ϕ−Q ⊆ ϕ−©Q.

Applying this lemma to a subset Q = ϕP , we obtain the corollary:

Corollary 3. For any homomorphism ϕ : A → B and any P ⊆ A we have:

ϕ[©P] ⊆ ©ϕ[P].

210 H.P. Gumm

Theorem 8. T (weakly) preserves preimages if and only if for all homomor-
phisms ϕ : A → B we have:

ϕ−©Q = ©ϕ−Q.

Proof. We can reuse the figure from the previous proof. If T preserves preimages,
then the bottom face is a weak pullback. We will show that the top face is a
pullback, i.e. a preimage, too.

Given some u ∈ ϕ−©Q, i.e. ϕ(u) ∈ ©Q. Then

(Tϕ)(α(u)) = βϕ(u) ∈ [T B
Q].

Thus there is a w ∈ TQ with T B
Q (w) = (Tϕ)(α(u)) and the pullback Tϕ−Q

contains an element v ∈ Tϕ−Q with T A
ϕ−Q(v) = α(u), i.e. u ∈ ©ϕ−Q.

For the ”only-if”-direction, it is enough, according to [GS03], to show that
for any subcoalgebra V ≤ B we have that ϕ−V ≤ A.

Given V ≤ B, we have V ⊆ ©V , i.e. ϕ−V ⊆ ϕ− © V . The hypothesis
therefore yields ϕ−V ⊆ ©ϕ−V , meaning that ϕ−V is a subcoalgebra of A.

Theorem 9. T (weakly) preserves arbitrary intersections if and only if for every
coalgebra A and each family Pi ⊆ A, i ∈ I, we have

©
⋂
i∈I

Pi =
⋂
i∈I

©Pi.

Proof. Let T preserve intersections. In the following diagram the right squares
are pullbacks by Lemma 11 and the bottom row is a weak intersection. This
yields a map f :

⋂
i∈I ©Pi → T

⋂
i∈I Pi, completing the outer square.⋂

i∈I ©Pi

f

��

� � �� ©Pj

fj

��

� � �� A

α

��
T
⋂

i∈I Pi
� � �� TPj

� � �� TA

If we can show that this square is indeed a weak pullback square, then the result
follows again from Lemma 11.

Any competitor Q for
⋂

i∈I Pi becomes a competitor to each of the ©Pj .
The arising maps δj : Q → ©Pj make Q into a copmpetitor to te intersection⋂

i∈I ©Pi. This yields the mediating map ε : Q→
⋂

i∈I ©Pi.
For the other direction, assume

⋂
i∈I ©αPi ⊆ ©α

⋂
i∈I Pi for every coalgebra

A = (A, α). This means

(∀i ∈ I. α(x) ∈ [T A
Pi

])⇒ α(x) ∈ [T A

i∈I Pi
].

Given any element u ∈
⋂

[T A
Pi

], we consider the coalgebra on A with constant
structure map α(a) = u, in order to conclude that u ∈ [T A

i∈I Pi
]. Consequently,⋂

[T A
Pi

] ⊆ [T A

i∈I Pi
].

Lemma 1 provides the reverse inclusion, so by 5, T preserves intersections.

From T -Coalgebras to Filter Structures and Transition Systems 211

Now we can formulate the main theorem of this section:

Theorem 10. For every T -coalgebra A = (A, α) there is a Kripke structure
K = (A, R) on the same set A with ©A = ©K if and only if T (weakly) preserves
intersections.

The proof follows from the following lemma in combination with Theorem 9.

Lemma 14. Let A = (A, α) be a coalgebra. There exists a Kripke-Structure
K = (A, �) on the base set A with ©A = ©K if and only if for every family of
subsets Pi ⊆ A, i ∈ I: ⋂

i∈I

©APi = ©A
⋂
i∈I

Pi.

Proof. As Kripke-structures satisfy the formula, the necessity is clear. Con-
versely, assume the validity of the formula and define a Kripke structure
K = (A, �) by

a � b :⇐⇒ b ∈
⋂
{P ⊆ A | a ∈ ©AP}

Given a ∈ ©AQ, then a � b implies that b ∈ Q for every b, hence a ∈ ©KQ.
For the other direction, compute:

a ∈ ©KQ ⇐⇒ ∀b ∈ A. a � b ⇒ b ∈ Q

⇐⇒
⋂
{P ⊆ A | a ∈ ©AP} ⊆ Q

⇒ ©A
⋂
{P ⊆ A | a ∈ ©AP} ⊆ ©AQ

⇒
⋂
{©AP ⊆ A | a ∈ ©AP} ⊆ ©AQ

⇒ a ∈ ©AQ

10 Discussion and Further Work

Starting with Rutten’s seminal work [Rut00], weak preservation of pullbacks,
resp. of intersections by the coalgebraic type functor has played an important
role in the universal theory of coalgebra. Weak pullback preservation splits into
weak preservation of kernels and (weak) preservation preimages [GS03].

Here we have seen that (weak) preimage preservation yields a natural and
subcartesian transformation of T to the filter functor F, thus establishing an in-
timate relationship between T -coalgebras and filter coalgebras. Similarly, preser-
vation of intersections makes for a sub-cartesian transformation from T to the
powerset functor P, thus relating every T -coalgebra with a Kripke-Structure.

In the work of E.G. Manes [Man98] we can find the definition of sub-natural,
resp. sub-cartesian, transformations under the names “mono-transformation”,
resp. “taut transformation”. Manes proves that finitary collection monads are
precisely the taut quotients of polynomial functors.

212 H.P. Gumm

For coalgebras of polynomial type, B. Jacobs has introduced a nexttime op-
erator in [Jac02]. Since polynomial functors are standard and preserve weak
pullbacks and intersections, they are rather special. Our definition of ©A does
not rely on any assumption on the type functor, in fact, Lemma 11 suggests how
to define a nexttime operator for coalgebras over base categories other than Set.

We have seen that preservation of preimages, resp. of intersections, are re-
flected in very natural preservation properties of the© operator. It can now serve
as a starting point for a CTL-like logic, for arbitray coalgebras. As an example,
coalgebras of the 3-2-functor F (X) = {(x1, x2, x3) | card({x1, x2, x3}) ≤ 2} (see
[AM89]) are characterized in this logic by the following formulae:

1. © true,
2. ©(ϕ ∨ ψ ∨ θ) ⇒©(φ ∨ ψ) ∨©(φ ∨ θ) ∨©(ψ ∨ θ).

References

AHS90. J. Adámek, H. Herrlich, and G.E. Strecker, Abstract and concrete categories,
John Wiley & Sons, 1990.

AM89. P. Aczel and N. Mendler, A final coalgebra theorem, Proceedings category the-
ory and computer science (D.H. Pitt et al., eds.), Lecture Notes in Computer
Science, Springer, 1989, pp. 357–365.

Bar93. M. Barr, Terminal coalgebras in well-founded set theory, Theoretical Com-
puter Science (1993), no. 144(2), 299–315.

GS02. H.P. Gumm and T. Schröder, Coalgebras of bounded type, Math. Struct. in
Comp. Science (2002), no. 12, 565–578.

GS03. , Types and coalgebraic structure, Tech. report, Philipps-Universität
Marburg (to appear in Algebra Universalis), 2003.

Gum01. H.P. Gumm, Functors for coalgebras, Algebra Universalis (2001), no. 45 (2-3),
135–147.

Jac02. B. Jacobs, The temporal logic of coalgebras via Galois algebras, Math. Struct.
in Comp. Science (2002), no. 12, 875–903.

Man98. E.G. Manes, Implementing collection classes with monads, Math. Struct. in
Comp. Science 8 (1998), 231–276.

Rut00. J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoretical Com-
puter Science (2000), no. 249, 3–80.

Tay00. P. Taylor, Practical foundations of mathematics, 2. ed., Cambridge University
Press, 2000.

Trn69. V. Trnková, Some properties of set functors, Comm. Math. Univ. Carolinae
(1969), no. 10,2, 323–352.

Context-Free Languages via Coalgebraic Trace
Semantics

Ichiro Hasuo and Bart Jacobs

Institute for Computing and Information Sciences, Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{ichiro, B.Jacobs}@cs.ru.nl
http://www.cs.ru.nl/{~ichiro, B.Jacobs}

Abstract. We show that, for functors with suitable mild restrictions,
the initial algebra in the category of sets and functions gives rise to
the final coalgebra in the (Kleisli) category of sets and relations. The
finality principle thus obtained leads to the finite trace semantics of non-
deterministic systems, which extends the trace semantics for coalgebras
previously introduced by the second author. We demonstrate the use of
our technical result by giving the first coalgebraic account on context-
free grammars, where we obtain generated context-free languages via
the finite trace semantics. Additionally, the constructions of both finite
and possibly infinite parse trees are shown to be monads. Hence our
extension of the application domain of coalgebras identifies several new
mathematical constructions and structures.

1 Introduction

Context-free grammars and context-free languages are undoubtedly among the
most fundamental notions in computer science. Introduced by Chomsky [Cho56],
they have come to serve as a theoretical basis for formal (programming) lan-
guages [ASU86]. This paper presents the first steps in a coalgebraic analysis of
those notions. In a sense it extends previous coalgebraic work [Jac05a, Rut03]
on regular languages.

A context-free grammar is a clear example of a coalgebra: the state space
consists of its non-terminal symbols and the coalgebraic structure is defined by
its generation rules. Then the context-free language generated by the grammar
should be the “behavior” of the coalgebra. Our motivation is to find a suitable
setting which gives that behavior by coinduction, i.e. an argument using finality.

What is unusual here is that we are concerned only with the finite behavior
(i.e. generated strings of only finite length). This suggests that the domain of the
semantics might be the initial algebra, as the subcoalgebra of the final coalgebra
consisting of all the finite behavior.

Interestingly, it turns out that for functors with mild restrictions, the initial
algebra in Sets gives rise to the final coalgebra in the category Rel of sets and
relations. The finality principle in Rel is called the finite trace semantics in this

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 213–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

214 I. Hasuo and B. Jacobs

paper, in contrast to the (possibly infinite) trace semantics from [Jac04b] where
the final coalgebra in Sets gives rise to a weakly final coalgebra in Rel.

A context-free grammar is identified as a coalgebra in Rel because of its non-
deterministic nature. Now our technical result of finite trace semantics allows us
to obtain the set of generated finite skeletal parsed trees (finite strings with
additional tree structure) via finality. After applying the flattening function it
yields the set of generated strings.

The category Rel can also be described as the Kleisli category SetsP of the
powerset monad. This view is relevant in generalization of our work to other
monads other than P , such as the subdistribution functor D.

The remainder of this paper is organized as follows. Later on this section
gives a “sneak preview” of the technical result and its applications. Section 2
formulates context-free grammars as coalgebras, and introduces the notion of
skeletal parse trees (SPTs) as strings with tree structure. It is shown in Section
3 that (finite) SPTs carry the initial algebra/final coalgebra for an appropriate
functor, and that their formations have monad structures, related to one another
via the “fundamental span” of monad maps. The details of our technical result of
finite trace semantics for coalgebras are presented in Section 4. Section 5 puts the
current work in the context of the previous work [Jac04b] of (possibly infinite)
trace semantics for coalgebras. Section 6 is for conclusions and future work.

It is assumed that the reader is familiar with the basic categorical theory of
algebras and coalgebras for both functors and monads. For these preliminaries
see e.g. [Jac05b, Rut00, BW83].

1.1 Sneak Preview

As motivation we briefly present our main technical result and two illustrating
examples of non-deterministic automata and context-free grammars. The details
of constructions, definitions and proofs will follow later. For a functor F : Sets →
Sets with mild restrictions, we have an initial algebra in Sets and a canonical
lifting F : Rel → Rel.

Theorem 1.1 (Finite trace semantics for coalgebras). Let α : FA
∼=→ A

be the initial F -algebra in Sets. The coalgebra graph(α−1) : A
∼=→ FA in Rel is

final for the lifted functor F . Hence, given a coalgebra c : X → FX in Rel there
exists a unique arrow ftc : X → A which makes the following diagram in Rel
commute.

FX
F (ftc)

FA

X

c

ftc
A

graph(α−1) (1)

The relation ftc thus obtained is called the finite trace of c.

Translating back to the category Sets, Theorem 1.1 assigns to each non-
deterministic coalgebra c : X → PFX its finite trace ftc : X → PA into the
powerset of the carrier of the initial F -algebra.

Context-Free Languages via Coalgebraic Trace Semantics 215

Example 1.2 (Non-deterministic automata). A non-deterministic automa-
ton over alphabet Σ can be described as a coalgebra X → (PX)Σ × 2, or equiv-
alently as c : X → P(1 + Σ × X) in Sets. The set c(x) then contains the
unique element � of 1 = {�} if and only if x is an accepting state. For the
functor F = 1 + Σ × − involved, the initial F -algebra (in Sets) consists of the
strings (or lists) over Σ, as in: [nil, cons] : 1 + Σ ×Σ∗ ∼=→ Σ∗. Hence, given a
non-deterministic automaton c : X → PFX , Theorem 1.1 yields its finite trace
ftc : X → PΣ∗. It is shown later in Example 4.13 that the set ftc(x) ⊆ Σ∗ is
indeed the language accepted by the automaton when it starts in state x.

Example 1.3 (Context-free grammars). A context-free grammar (CFG)
consists of a set Σ of terminal symbols, a set X of non-terminal symbols, and a
relation R ⊆ X × (Σ + X)∗ consisting of generation rules. It is described as a
coalgebra c : X → P

(
(Σ + X)∗

)
in Sets.

For the functor F = (Σ+−)∗, the initial algebra Σ� consists of finite skeletal
parse trees (finite SPTs), which are strings with tree structure. An example of
a finite SPT is given below on the left: it describes the formula s(x) = 0. The
initial algebra structure on Σ� is illustrated below on the right, where S1 and
S2 are finite SPTs.

s

x

=

0

(Σ + Σ�)∗ αΣ

∼= Σ�

〈
a1, S1 , a2, a3, S2

〉 a1

S1

a2 a3

S2

Given a CFG c : X → PFX , via the finite trace semantics we obtain a function
ftc : X → PΣ�. Later in Example 4.14 it is shown that, for a non-terminal
x ∈ X , the set ftc(x) consists of all the finite SPTs that can be generated
from x. By applying the flattening function Σ� → Σ∗, which is defined via the
initiality of Σ�, we obtain the set of strings generated from x.

1.2 Notations

The i-th coprojection into a coproduct
∐

i∈I Xi is denoted by κi. If the index
set I is finite the coproduct will be written as Xi1 + Xi2 + · · ·+ Xin .

The operator (−)∗ defined by X∗ =
∐

n<ω Xn is so-called the Kleene star.
The set X∗ consists of all the strings of finite length over X . It is standard that
the Kleene star has a monad structure with unit ∗

η creating a string of length
one and multiplication ∗

μ “flattening” a string of strings into a string. We denote
a string of length n by 〈a1, a2, . . . , an〉; 〈〉 is then the empty string of length
zero.

We write a symbol on top of the unit η and multiplication μ to indicate the
relevant monad. E.g. ∗

ηΣ is the Σ-component of the unit of Kleene monad (−)∗.
Hence (∗

ηΣ)∗ is the application of the functor (−)∗ to the arrow ∗
ηΣ.

We will heavily use two powerset functors: one is covariant P and the other
is contravariant P. They act the same on objects. For a function f : X → Y , Pf

216 I. Hasuo and B. Jacobs

maps a subset of X to its direct image under f , and Pf maps a subset u ⊆ Y
to its inverse image f−1(u).

It is standard that there is a bijective correspondence between a relation
R ⊆ X × Y and a function f : X → PY , given by fR(x) = {y ∈ Y | (x, y) ∈ R}
(relation-into-function). In this paper we identify a relation with the correspond-
ing function, and vice versa. Hopefully this will not cause any confusion.

2 Context-Free Grammars as Coalgebras

In this section we give a precise coalgebraic formulation of context-free gram-
mars and context-free languages. For more about traditional treatment of those
notions the reader is referred to [LP81].

A (traditional) context-free grammar, described as a triple of terminals, non-
terminals and generation rules R ⊆ X × (Σ + X)∗, is described as a coalgebra:

X
c P

(
(Σ + X)∗

)
, namely x {s ∈ (Σ + X)∗ | 〈x, s〉 ∈ R}.

Definition 2.1 (Context-free grammar). In this paper a P
(
(Σ +−)∗

)
-coal-

gebra in Sets is called a context-free grammar (CFG in short) over Σ. Equiva-
lently, via the relation-into-function, a CFG is a (Σ +−)∗-coalgebra in Rel.

Notice that not all P
(
(Σ + −)∗

)
-coalgebras are context-free grammars in the

traditional sense, due to the lack of finiteness conditions on Σ, X and the gen-
eration rules. The above definition, which is more liberal and natural from the
coalgebraic perspective, ignores algorithmic aspects of context-free grammars.
They are not relevant in this paper.

Example 2.2. Consider the following CFG for the syntax of Peano arithmetic.

Σ = {0, s, =,∧,∨,⊃,¬, ∀, ∃} ∪ Var , X = {T,Q,F},
T → 0, T → x (x ∈ Var), T → sT,

Q → ∀x (x ∈ Var), Q → ∃x (x ∈ Var),
F → T=T, F → F∧F, F → F∨F, F → F⊃F, F → ¬F, F → QF.

The induced CFG c : X → P
(
(Σ + X)∗

)
is as follows.

c(T) = {0} ∪ Var ∪ {sT}, c(Q) = {∀x | x ∈ Var} ∪ {∃x | x ∈ Var},
c(F) = {T=T,F∧F,F∨F,F⊃F,¬F,QF}.

Usually a context-free grammar over Σ is considered as a machine which
generates strings over Σ, i.e. elements of Σ∗. However, from a coalgebraic per-
spective it is more natural to first obtain finite SPTs (i.e. strings with tree
structure), and then by flattening obtain strings. In the following the precise
definition of finite SPTs is presented, together with a few related notions.

The next definition is a bit complicated; the reader may find an alternative
characterization (Proposition 3.1) in terms of initial algebra/final coalgebra.

Context-Free Languages via Coalgebraic Trace Semantics 217

Definition 2.3 ((Skeletal) parse trees). Let c : X → P
(
(Σ+X)∗

)
be a CFG

over Σ. A parse tree generated by c from x ∈ X is a (possibly infinite-depth)
tree which satisfy the following:

1. All leaf nodes are labelled from Σ + X;
2. All internal (i.e. non-leaf) nodes are labelled from X ;
3. The root is labelled with x;
4. If a leaf node is labelled from X , say with y, then the empty string 〈〉 belongs

to c(y);
5. For each internal node let y ∈ X be its label and let its immediate successors

be labelled with c1, c2, . . . , cm (ci ∈ Σ+X) from left to right. Then the string
〈c1, c2, . . . , cm〉 is an element of c(y).1

Condition 5 ensures that a parse tree is finitely-branching. A parse tree is finite
if its depth is finite.

A skeletal parse tree (SPT for short) generated by c from x is a parse tree
generated by c from x, with all of its labels from X deleted. It is finite if its depth
is finite. A skeletal parse tree (SPT) over Σ is a skeletal parse tree generated
by some CFG c over Σ. Equivalently, it is a finitely-branching, possibly infinite-
depth tree with some of its leaves labelled from Σ and its internal nodes not
labelled, and if it is trivial (i.e. root-only) then the sole node is not labelled.2

An SPT is finite if its depth is finite.
The set of all the (possibly infinite) SPTs over Σ is denoted by Σ∧, and the

set of the finite SPTs is denoted by Σ�.

Example 2.4. Below are two parse trees generated by the context-free grammar
in Example 2.2, from the non-terminal symbol F. The one on the left is finite.

F
Q

∀ x
F

¬ F
T

s T
x

= T

0

F
T

s T
s T

s ...

= T

0

Forgetting about the non-terminal symbols from X , we obtain the following
SPTs generated by the grammar from F.

∀ x ¬

s
x

=
0

s
s

s ...

=
0

The infinite one on the right has no corresponding well-formed formula, while
the other one can be read as ∀x.¬(s(x) = 0).
1 Condition 4 may be considered as an instance of Condition 5 when m = 0.
2 Since an SPT is generated from a non-terminal symbol.

218 I. Hasuo and B. Jacobs

3 Monad Structures on Languages

In this section we first investigate (co)algebraic structures on the set of fi-
nite/infinite SPTs. Then it turns out that the formation of finite SPTs Σ�

and SPTs Σ∧, from Σ, are all monads just like that of strings Σ∗. Moreover,
the embedding Σ� � Σ∧ and the flattening function Σ� � Σ∗ are shown to
be both maps of monads [BW83].

The following observation is the first step. It may also be read as a definition
of Σ� and Σ∧. The proof is standard and left to the reader.

Proposition 3.1. The set Σ� of all finite SPTs over Σ carries the initial (Σ+
−)∗-algebra. The algebraic structure αΣ makes a sequence 〈c1, c2, . . . , cn〉 (where
ci ∈ Σ + Σ�) into a tree by adding a fresh root whose immediate successors
are c1, c2, . . . , cn. An example is found in Example 1.3. The empty string 〈〉 is
mapped by αΣ to the trivial tree which is not labelled.

The set Σ∧ of (possibly infinite) SPTs over Σ carries the final (Σ + −)∗-
coalgebra. The coalgebraic structure ζΣ removes the root and returns the sequence
of its immediate successors. For example,3

Σ∧
ζΣ

∼=
(Σ + Σ∧)∗

a1

S1

a2 a3

S2

〈
a1, S1 , a2, a3, S2

〉
The trivial tree is mapped to the empty string 〈〉. ��

Remark 3.2. We can think of the functor (Σ + −)∗ as a “signature” in the
sense of traditional universal algebra. Let � be a fresh symbol, and for each
s ∈ (Σ + {�})∗ let ‖s‖ denote the number of �’s appearing in s. Then we have
an obvious isomorphism

(Σ + X)∗ ∼=
∐

s∈(Σ+{�})∗X‖s‖ .

Hence (Σ+−)∗ describes a signature such that (Σ+{�})∗ is the set of operations
and each operation s ∈ (Σ + {�})∗ is ‖s‖-ary.

The notation (−)� : Σ �→ Σ� and (−)∧ : Σ �→ Σ∧ is used to suggest an
analogy with the Kleene (or list, string) monad (−)∗. Indeed, these constructions
are closely related, as is shown in the sequel.

Each of the mappings (−)� and (−)∧ extends to a functor, using standard
results about initial algebras and final coalgebras for a functor F (Σ,−), where
F is a bifunctor—in this case F (X1, X2) = (X1 + X2)∗. Moreover, it turns
out that both functors (−)� and (−)∧ have a monad structure. The formation
3 An open triangle designates a tree with a possibly infinite depth, while a closed one

is a tree with a finite depth. This conforms to the notation Σ∧ and Σ
.

Context-Free Languages via Coalgebraic Trace Semantics 219

of units
�
η,

∧
η and multiplications

�
μ,

∧
μ is much like for the free monad and free

iterative monad generated by a functor [AAMV03, Jac04a]. The difference is
that here the parameter set Σ is inside the Kleene monad (−)∗, which adds
some complexity. The concrete constructions are described in Appendix A.1.
It is straightforward, but laborious, to show that the constructions satisfy the
requirements of a monad.

Proposition 3.3. The triples
(
(−)�,

�
η,

�
μ
)

and
(
(−)∧,

∧
η,

∧
μ
)

are monads. ��

Let ιΣ : Σ� � Σ∧ be the canonical embedding of the initial algebra into
the final coalgebra. It is a mono by [Bar93, Theorem 3.2].

(Σ + Σ�)∗

αΣ ∼=

(Σ + ιΣ)∗
(Σ + Σ∧)∗

Σ�
ιΣ Σ∧

ζΣ
∼=

It is straightforward to show that ιΣ is natural in Σ, and is compatible with
monad structures, i.e., is a map of monads.

The flattening function ϕΣ : Σ� → Σ∗, which maps a finite SPT to a flat
string demolishing the tree structure, is obtained via initiality of αΣ .

(Σ + Σ�)∗
(Σ + ϕΣ)∗

∼=αΣ

(Σ + Σ∗)∗
∗
μΣ ◦ [∗

ηΣ , Σ∗]∗

Σ�
ϕΣ

Σ∗

It is easy to see that the flattening map is a map of monads. Moreover, it is
obviously an epi: for a sequence 〈a1, a2, . . . , an〉 ∈ Σ∗ take the finite SPT of
depth 2 that has leaves a1, a2, . . . , an from left to right.

Hence we have obtained the following result.

Proposition 3.4. The embedding ιΣ and the flattening map ϕΣ both form a
map of monads. They yield the following “fundamental span of languages”.

Σ∗ Σ�ϕΣ ιΣ
Σ∧ ��

4 Finite Trace Semantics for Coalgebras

This section presents the main technical result (already previewed as Theorem
1.1) that an initial algebra in Sets (of a suitable functor) yields a final coalgebra
in Rel. Examples 1.2 and 1.3 are also fully elaborated in greater detail.

220 I. Hasuo and B. Jacobs

4.1 Shapely Functors

The family of endofunctors F in Sets we are interested in is that of shapely
functors [Jay95]. The following inductive definition is equivalent to the original
one.

Definition 4.1 (Shapely functors). The family of shapely functors is defined
inductively by the following BNF notation:

F, G, Fi ::= id | Σ | F ×G |
∐

i∈I Fi ,

where Σ denotes the constant functor into Σ.

Notice that we can take the exponentiation (−)Σ to the power of a finite
set Σ in building a shapely functor, because XΣ is isomorphic to the |Σ|-fold
product of X ’s. A shapely functor is different from a polynomial functor in the
following points: we cannot take an exponentiation with an infinite set (because
it makes Lemma 4.2.2 fail), but we can take an infinite coproduct—so that we
can form the Kleene star (−)∗ =

∐
n<ω(−)n. A shapely functor has the following

properties needed for our purpose.

Lemma 4.2. Let F : Sets → Sets be a shapely functor.

1. F preserves weak pullbacks.
2. For an arrow ?X : 0 � X with domain 0, F?X : F0 → FX is mono. Hence

F preserves all monos in Sets.
3. F preserves ω-colimits and ωop-limits. Hence F has both the initial algebra

and the final coalgebra. They are, together with the canonical embedding,
denoted as follows.

FA
α ∼=

F ι
FZ

A ι Z

ζ∼=

Proof. The proofs are easy by induction on the construction of F . The preser-
vation of ω-colimits (or ωop-limits) allows us to obtain the initial F -algebra (or
the final F -coalgebra) as the colimit (or limit) of the initial sequence of length
ω (or final sequence, respectively): see e.g. [Bar93, AK95]. ��

4.2 Relation Lifting, Distributive Law and Kleisli Category

An endofunctor F yields a relation lifting: given a relation 〈r1, r2〉 : R � X×Y ,
a lifted relation RelF (R) � FX × FY is defined by image factorization.

FR

〈Fr1, F r2〉

RelF (R)

FX × FY

The following compatibility results hold for a functor F which preserves weak
pullbacks, hence in particular for a shapely F (Lemma 4.2).

Context-Free Languages via Coalgebraic Trace Semantics 221

Lemma 4.3. Relation lifting is compatible with such operations on relations as:

1. Composition: for R � X × Y , S � Y × Z and their composition S ◦ R =
{(x, z) ∈ X × Z | ∃y ∈ Y.(x, y) ∈ R and (y, z) ∈ Z} we have RelF (S ◦ R) =
RelF (S) ◦ RelF (R).

2. Graph of a function and functor application: for a function f : X → Y
and its graph graph(f) = {(x, f(x)) | x ∈ X} we have RelF (graph(f)) =
graph(Ff).

3. Inverse image and direct image: for functions f1 : X1 → Y1, f2 : X2 → Y2
and relations R � X1 ×X2, S � Y1 × Y2, let us denote the inverse image
and the direct image by (f1 × f2)−1(S) =

{
(x1, x2) |

(
f1(x1), f2(x2)

)
∈ S

}
,

and
∐

f1×f2
(R) = {

(
f1(x1) , f2(x2)

)
| (x1, x2) ∈ R}. Then we have

RelF
(
(f1 × f2)−1(S)

)
= (Ff1 × Ff2)−1(RelF (S)

)
,

RelF
(∐

f1×f2
(R)

)
=

∐
Ff1×Ff2

(
RelF (R)

)
. ��

The membership relation ∈X � X×PX on a set X is lifted to RelF (∈X) �
FX × FPX . By transposition we obtain the following function λX .

FPX
λX PFX u {a ∈ FX | 〈a, u〉 ∈ RelF (∈X)}

Then the map λX is: 1) natural in X , and 2) compatible with the monad struc-
ture of P : when we denote the unit (singleton map) by {−} and the multiplication
(union) by

⋃
, the following diagrams commute.

FX
F{−}X

{−}FX

FPX

λX

PFX

FP2X
λPX

F
⋃

X

PFPX
PλX P2FX⋃

FX

FPX
λX

PFX

This says that the natural transformation λ : FP ⇒ PF is a distributive law.4

Lemma 4.4 ([Jac04b]). The maps λX thus defined form a distributive law of
a functor F over a monad P. It is called the “power law”. ��

Example 4.5. For the functor F = 1 + Σ × −, where 1 = {�}, the lifted
membership relation is as follows.

Rel1+Σ×−(∈X) = {(�, �)} ∪
{(

(a, x), (a, u)
)
| a ∈ Σ, x ∈ u

}
.

For the functor F = (Σ+−)∗, the lifted membership relation Rel(Σ+−)∗(∈X)
between (Σ + X)∗ and (Σ + PX)∗ is described concretely as follows: a pair
〈 c1c2 . . . cm, d1d2 . . . dm 〉 belongs to Rel(Σ+−)∗(∈X) if and only if for each i =
1, 2, . . . , m,
4 The use of a distributive law in coalgebraic settings is investigated elaborately in

[Bar04].

222 I. Hasuo and B. Jacobs

– if ci ∈ Σ then di is also from Σ and ci = di;
– if ci ∈ X then di is in PX and ci ∈ di.

The distributive law λ : FP ⇒ PF gives rise to a lifting F : SetsP → SetsP
of a functor F in the Kleisli category by

F :
(

X
f

Y
)

�→
(

FX
λY ◦ Ff

FY
)

.

In the sequel we identify the category Rel with the Kleisli category SetsP of
the powerset monad. It is justified by the following straightforward observation.

Lemma 4.6. The category Rel of sets and relations is isomorphic to the Kleisli
category SetsP via the relation-into-function correspondence.

Moreover, let F be an endofunctor in Sets which preserves weak pullbacks.
Then the canonical lifting of F in Rel in the sense of [CKW91], which maps an
arrow R : X → Y to RelF (R) : FX → FY , coincides with the lifting of F in
SetsP defined above via the distributive law. ��
Remark 4.7. As is already noted, working in the Kleisli category SetsP makes
it easier to generalize to other monads than P . A similar finality result holds for
the subdistribution monad D such that DX = {d : X → [0, 1] |

∑
x∈X d(x) ≤ 1}.

In that case we do not have the counterpart of the notion of relation lifting but
start with a distributive law FD ⇒ DF . Details will be published later.

4.3 Contravariant Powerset Functor

We use the contravariant powerset functor P in our construction. The following
properties are used there.
Lemma 4.8. 1. For a mono m : X � Y , Pm is a split mono with its left

inverse Pm, i.e. Pm ◦ Pm = idPX .
2. For an iso i : X

∼=→ Y , Pi is again an iso with inverse Pi.
3. The union maps

⋃
X : P2X → PX form a natural transformation PP ⇒ P.

4. For each n, the maps λn
X : FnPX → PFnX in Lemma 4.9 form a natural

transformation FnP ⇒ PFn.

Proof. See Appendix A.2. ��

4.4 Construction of Finite Trace via Composition of Coalgebra

In the construction of the finite trace, we use the n-fold composition cn : X →
PFnX of a coalgebra c : X → PFX in Sets. Intuitively, one transition of cn

corresponds to n successive transitions of the original coalgebra c. It is defined
inductively on n as follows.

c0 = {−}X ,
X

c

cn+1

PFX
PFcn

PFPFnX
PλF nX P2Fn+1X⋃

F n+1X

PFn+1X

.

The next observation is basic for the n-fold composition of a coalgebra.

Context-Free Languages via Coalgebraic Trace Semantics 223

Lemma 4.9 ([Wor]). The distributive law λ : FP ⇒ PF extends to n-fold
distributive law λn : FnP ⇒ PFn in the following way.

λ0
X = idPX ,

Fn+1PX
FnλX

λn+1
X

FnPFX

λn
FX

PFn+1X

.

Let c : X → PFX be a coalgebra in Sets. For each n, m the following diagrams
commute.

Fn+mPX
Fnλm

X

Fmλn
X λn+m

X

FnPFmX

λn
F mX

FmPFnX
λm

F nX
PFn+mX

X
cn

cn+m

PFnX
PFncm

PFnPFmX
Pλn

F mX

P2Fn+mX⋃
F n+mX

PFn+mX

Proof. By induction. ��

Now we are ready to prove our main technical result.

Theorem 4.10 (Finite trace semantics for coalgebras, Theorem 1.1).
Let F be a shapely functor, and α : FA

∼=→ A be the initial F -algebra in Sets.
The coalgebra {−}FA ◦ α−1 : A

∼=→ FA in SetsP is final for the lifted functor F .

Proof. Given a coalgebra c : X → FX in SetsP , we construct an arrow ftc :
X → A, and show that it is the unique arrow which makes the diagram in SetsP
on the left (equivalently, the diagram in Sets on the right) commute.

FX
F ftc

FA

X

c

ftc
A

{−}FA ◦ α−1

,

PFX
PF ftc PFPA

PλA

P2FA⋃
FA

PFA
∼= Pα

X

c

ftc
PA .

(2)

In the rest of the proof we work in the category Sets.
As is stated in Lemma 4.2, the initial F -algebra in Sets for shapely F is

obtained via the initial sequence 0 → F0 → F 20 → · · · as follows.

224 I. Hasuo and B. Jacobs

A

α−1∼=· · · Fn0

σn

Fσn−1

Fn?F0
Fn+10

σn+1

Fσn

· · ·

FA

α (3)

The cocone {σn : Fn0 → A}n<ω is by construction the colimit of the initial
sequence. Since a shapely F preserves ω-colimits the cocone {?FA : 0 → FA} ∪
{Fσn : Fn+10 → FA}n<ω is again a colimit, yielding the initial algebra α as
the mediating iso arrow. Lemma 4.2.2 shows that each σn is mono.

We define the n-th trace tracen
c : X → PA of c by the following composite.

The n-th trace tracen
c (x) ⊆ A is understood as the set of behavior of x which

terminates within n steps.

X
cn

tracen
c

PFnX
PFn?X PFn0

Pσn

PA

For n-th traces the following equality holds, which says that all behavior within
n steps are already included in tracen. For n ≤ m,

Im σn ∩ tracem
c (x) = tracen

c (x) , (4)

where Im σn is the direct image σn[Fn0]. The proof is given in Appendix A.3.
Finally, we define the finite trace ftc : X → PA of c as the union of n-th

traces: for each x ∈ X ,

ftc(x) def=
⋃

n<ωtracen
c (x) .

By the equality (4) we have another characterization of ftc(x): for each n and
tn ∈ Fn0, σn(tn) ∈ ftc(x) if and only if σn(tn) ∈ tracen

c (x). Hence, by Lemma
4.8.1, for each n we have the following equality of functions X → Fn0.

Pσn ◦ ftc = Pσn ◦ tracen
c = PFn?X ◦ cn . (5)

In the following Lemmas 4.11 and 4.12 we show that the arrow ftc thus con-
structed is indeed the unique arrow that makes the diagram (2) commute. ��

Lemma 4.11. The arrow ftc : X → PA in Sets, as defined in the proof of
Theorem 4.10, makes the diagram (2) commute.

Proof. By the construction of the initial algebra as the colimit (i.e. coequalizer
of coproduct), it suffices to prove that: for each n < ω and tn ∈ Fn0,

σn(tn) ∈ ftc(x) ⇐⇒ σn(tn) ∈ (Pα ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x) .

Context-Free Languages via Coalgebraic Trace Semantics 225

When n = 0, we have Fn0 = 0 hence the equivalence trivially holds. When
n > 0, we proceed as follows.

σn(tn) ∈ (Pα ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x)

⇐⇒ tn ∈ (Pσn ◦ Pα ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x)

⇐⇒ tn ∈ (Pσn ◦ Pα−1 ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x)

(Pα = (Pα−1)−1 = Pα−1 by Lemma 4.8.2)

⇐⇒ tn ∈ (PFσn−1 ◦
⋃

FA
◦ PλA ◦ PF ftc ◦ c)(x) (α−1 ◦ σn = Fσn−1)

⇐⇒ tn ∈ (
⋃

F n0
◦ PλF n−10 ◦ PFPσn−1 ◦ PF ftc ◦ c)(x) (Lemma 4.8.3,4)

⇐⇒ tn ∈ (
⋃

F n0
◦ PλF n−10 ◦ PFPFn−1?X ◦ PFcn−1 ◦ c)(x) (By (5))

⇐⇒ tn ∈ (PFn?X ◦
⋃

F nX
◦ PλF n−1X ◦ PFcn−1 ◦ c) (Lemma 4.8.4,3)

⇐⇒ tn ∈ (PFn?X ◦ cn) (Definition of cn)
⇐⇒ σn(tn) ∈ ftc(x) . (By (5))

This concludes the proof. ��

Lemma 4.12. If an arrow f : X → PA in Sets makes the diagram (2) com-
mute in place of ftc, then f is equal to ftc as defined in the proof of Theorem
4.10.

Proof. It suffices to show that

Pσn ◦ f = Pσn ◦ ftc , (6)

since, if it holds, for each x ∈ X , n < ω and tn ∈ Fn0 we have

σn(tn) ∈ f(x) ⇐⇒ σn(tn) ∈ ftc(x)

which yields the lemma. We show (6) by induction on n.
When n = 0 the claim trivially holds. For n + 1,

Pσn+1 ◦ f = Pσn+1 ◦ Pα ◦
⋃

FA
◦ PλA ◦ PFf ◦ c

(f makes the diagram (2) commute)

=
⋃

F n+10
◦ PλF n0 ◦ PFPσn ◦ PFf ◦ c

(As in the proof of Lemma 4.11)

=
⋃

F n+10
◦ PλF n0 ◦ PFPσn ◦ PF ftc ◦ c

(Pσn ◦ f = Pσn ◦ ftc by induction hypothesis)

= Pσn+1 ◦ ftc . (Same calculation as above, but now backwards)

This concludes the proof. ��

226 I. Hasuo and B. Jacobs

Example 4.13 (Non-deterministic automata). We continue from Example
1.2. For the functor F = 1+Σ×−, the commutation of the diagram (2) amounts
to the following conditions.

〈〉 ∈ ftc(x) ⇐⇒ � ∈ c(x) ,

cons(a, s) ∈ ftc(x) ⇐⇒ ∃x′ ∈ X. (a, x′) ∈ c(x) ∧ s ∈ ftc(x′) .

These conditions indeed (corecursively) characterize the language ftc(x) accepted
by the non-deterministic automaton c when we start from x.

Bartels [Bar04] gives an alternative characterization of the accepted language,
using a different distributive law. The precise relationship with our work is yet
to be determined.

Example 4.14 (Context-free grammar). We continue from Example 1.3.
For the functor F = (Σ +−)∗, the commutation of the diagram (2) amounts to
the following conditions. For each element

c1 c2 . . . cn

of ftc(x) (here c1, c2, . . . , cn ∈ Σ + Σ�), there exists a string 〈d1, d2, . . . , dn〉 ∈
c(x) such that for each i:

– if ci ∈ Σ then di is also in Σ and ci = di ;
– if ci ∈ Σ� then di is in X and ci ∈ ftc(di).

Hence we obtain the set of finite SPTs generated by c from x as ftc(x) via finality
in SetsP .

5 (Possibly Infinite) Trace Semantics

In this section we relate our current work to earlier work [Jac04b], where the
final coalgebra in Sets gives rise to a weakly final coalgebra in Rel.

Theorem 5.1 (Main result of [Jac04b]). Let F be a shapely functor, and
ζ : Z

∼=→ FZ be the final coalgebra in Sets.

1. The coalgebra graph(ζ) : Z → FZ is weakly final for the lifted functor F in
Rel. That is, given a coalgebra c : X → FX, there exists a (not necessarily
unique) relation t : X → Z that makes the following diagrams commute.

FX
Ft

FZ

X

c

t
Z

graph(ζ) (7)

Context-Free Languages via Coalgebraic Trace Semantics 227

2. There is a canonical choice mtc (maximum trace) of a trace of c, namely the
maximum one with respect to the inclusion order. ��

It turns out that the finite trace of a coalgebra gives rise to the smallest trace
via canonical embedding ι : A � Z.

Corollary 5.2. Let F be a shapely functor, and c : X → PFX be a coalgebra
in Sets.

1. Each trace t of c gives rise to the finite trace of c by X
t PZ

Pι PA

in Sets.

2. The finite trace ftc gives rise to a trace of c by X
ftc PA

Pι PZ in
Sets. Moreover, this trace is the smallest among the traces of c.

Proof. A trace induces the finite trace, and vice versa, since the following dia-
gram in Sets commutes. For the former take the three squares on the left and
put them on the right of the definition of a trace, and for the latter take those
on the right.

PFPZ

PλZ

PFPι

(i)

PFPA
PFPι

PλA (iv)

PFPZ

PλZ

P2FZ⋃
FZ

PPF ι
(ii)

P2FA

(v)
P2F ι⋃

FA

P2FZ⋃
FZ

PFZ

Pζ
PF ι
(iii)∼=

PFA

(vi)
PF ι

Pα∼=

PFZ

PZ

Pζ

Pι
PA Pι

Pα

PZ

Pζ∼=

Square (i) commutes by Lemma 4.8.4, (ii) by Lemma 4.8.3, (iii) is the definition
of ι mapped by P , (iv) commutes by naturality of λ, (v) by naturality of

⋃
, and

(vi) is the definition of ι.
It remains to be shown that the trace Pι ◦ ftc is the smallest trace. Take

an arbitrary trace t : X → PZ of c. It induces the finite trace by Pι ◦ t, and
by Theorem 4.10 (uniqueness of the finite trace) we have ftc = Pι ◦ t. Since in
general (Pf ◦ Pf)(u) ⊆ u holds, we have Pι ◦ ftc = Pι ◦ Pι ◦ t ⊆ t. ��

6 Conclusions and Future Work

We have presented that under suitable mild restrictions the initial algebra in
Sets gives rise to the final coalgebra in Rel. The relation induced by the finality
in Rel extracts the set of finite behavior of non-deterministic systems. The
technical result is applied to non-deterministic automata and the first coalgebraic

228 I. Hasuo and B. Jacobs

account of context-free grammars/languages. The (co)algebraic and monadic
structures on strings and skeletal parse trees have been also elaborated.

The well-known relationship between context-free languages and pushdown
automata (see e.g.[LP81]) would be an interesting topic to consider from a coal-
gebraic perspective. So is the problem of parsing, which is a partial inverse of
the flattening function ϕΣ in Section 3.

As mentioned in Remark 4.7 we are now applying the current approach to
another monad than P , namely the subdistribution monad.

Acknowledgements

Thanks are due to Ana (Sokolova) Woracek and anonymous referees for valuable
comments and discussion.

References

[AAMV03] P. Aczel, J. Adámek, S. Milius, and J. Velebil. Infinite trees and completely
iterative theories: a coalgebraic view. Theor. Comp. Sci., 300:1–45, 2003.

[AK95] J. Adámek and V. Koubek. On the greatest fixed point of a set functor.
Theor. Comp. Sci., 150(1):57–75, 1995.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley series in Computer Science. Addison-Wesley,
1986.

[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp.
Sci., 114:299–315, 1993.

[Bar04] F. Bartels. On Generalized Coinduction and Probabilistic Specification
Formats: Distributive Laws in Coalgebraic Modelling. PhD thesis, Free
Univ. Amsterdam, 2004.

[BW83] M. Barr and C. Wells. Toposes, Triples and Theories.
Springer-Verlag, 1983. Available free for downloading at
http://www.cwru.edu/artsci/math/wells/pub/ttt.html.

[Cho56] N. Chomsky. Three models for the description of language. IRE Trans-
actions on Information Theory, 2:113–124, 1956.

[CKW91] A. Carboni, G. Kelly, and R. Wood. A 2-categorical approach to change of
base and geometric morphisms I. Cah. de Top. et Géom. Diff., 32(1):47–
95, 1991.

[Jac04a] B. Jacobs. Relating two approaches to coinductive solution of recurisve
equations. In Coalgebraic Methods in Computer Science (CMCS 2004),
volume 106 of Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2004.

[Jac04b] B. Jacobs. Trace semantics for coalgebras. In Coalgebraic Methods in
Computer Science (CMCS 2004), volume 106 of Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2004.

[Jac05a] B. Jacobs. A bialgebraic review of regular expressions, deterministic au-
tomata and languages. Techn. Rep. NIII-R05003, Inst. for Computing
and Information Sciences, Radboud Univ. Nijmegen, 2005.

Context-Free Languages via Coalgebraic Trace Semantics 229

[Jac05b] B. Jacobs. Introduction to coalgebra. Towards mathematics of states and
observations. Draft of a book,
www.cs.ru.nl/B.Jacobs/PAPERS/index.html, 2005.

[Jay95] C. Jay. A semantics for shape. Science of Comput. Progr., 25:251–283,
1995.

[LP81] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Compu-
tation. Prentice-Hall, 1981.

[Rut00] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci.,
249:3–80, 2000.

[Rut03] J. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theor. Comp. Sci., 308:1–53, 2003.

[Wor] A. (Sokolova) Woracek. Personal communication.

A Appendix

A.1 Functor/Monad Structure of (−)� and (−)∧

On a function f : Σ → Φ, the action of (−)� and (−)∧ is obtained as follows.

(Σ + Σ
)∗ (Σ + f
)∗

αΣ ∼=

(Σ + Φ
)∗

(f + Φ
)

(Φ + Φ
)∗

αΦ∼=
Σ

f
 Φ

and

(Φ + Σ∧)∗ (Φ + f∧)∗
(Φ + Φ∧)∗

(Σ + Σ∧)∗
(f + Σ∧)∗

Σ∧
ζΣ ∼=

f∧ Φ∧

∼= ζΦ

The monad structure is constructed as follows.

Σ
κ1

�
ηΣ

Σ + Σ�
∗
ηΣ+Σ�

(Σ + Σ�)∗

αΣ∼=
Σ�

(Σ + Σ)∗
(Σ + ∧

ηΣ)∗
(Σ + Σ∧)∗

Σ + Σ

∗
ηΣ+Σ

Σ

κ1

∧
ηΣ

Σ∧

ζΣ
∼=

(Σ� + Σ��)∗

αΣ�∼=

(Σ� +
�
μΣ)∗

(Σ� + Σ�)∗

[α−1
Σ ,

∗
ηΣ+Σ� ◦ κ2]∗

(Σ + Σ�)∗∗
∗
μΣ+Σ�

(Σ + Σ�)∗

αΣ∼=
Σ��

�
μΣ

Σ�

The definition of ∧
μ is rather complicated. Let aΣ be the following composite on

the left.

230 I. Hasuo and B. Jacobs

Σ∧∧ ζΣ∧

∼=
aΣ

(Σ∧ + Σ∧∧)∗
(ζΣ + Σ∧∧)∗

∼=
(
(Σ + Σ∧)∗ + Σ∧∧)∗

[κ∗
1,

∗
η(Σ+Σ∧)+Σ∧∧ ◦ κ2]∗(

Σ + (Σ∧ + Σ∧∧)
)∗ (

(Σ + Σ∧) + Σ∧∧)∗
[Σ + κ1, κ2 ◦ κ2]∗

(
(Σ + Σ∧) + Σ∧∧)∗∗

∗
μ(Σ+Σ∧)+Σ∧∧

This map aΣ is used in the coalgebraic structure map on the left in:

(
Σ + (Σ∧ + Σ∧∧)

)∗ (Σ + bΣ)∗
(Σ + Σ∧)∗

Σ∧ + Σ∧∧
[(Σ + κ1)∗ ◦ ζΣ , aΣ]

bΣ
Σ∧

∼= ζΣ

Σ∧∧

κ2
∧
μΣ .

By finality one easily obtains bΣ ◦ κ1 = Σ∧.

A.2 Proof of Lemma 4.8

Points 1 and 2 are straightforward. Point 3 is equivalent to saying that union is
preserved by taking an inverse image. For Point 4, we show the proof for n = 1.
The case for general n is easy by induction. Let s ∈ FX and r ∈ FPY . Then

s ∈ (λX ◦ FPf)(r) ⇐⇒ (s, (FPf)(r)) ∈ RelF (∈X) (Definition of λ)

⇐⇒ (s, r) ∈ (id× FPf)−1 RelF (∈X)

⇐⇒ (s, r) ∈ RelF
(
(id× Pf)−1(∈X)

)
(Lemma 4.3.3)

⇐⇒ (s, r) ∈ RelF
(
(f × id)−1(∈Y)

)
(†, see below)

⇐⇒ ((Ff)(s), r) ∈ RelF (∈Y) (Lemma 4.3.3)
⇐⇒ (Ff)(s) ∈ λY (r) (Definition of λ)

⇐⇒ s ∈ (PFf ◦ λY)(r) ,

where (†) holds because

(x, u) ∈ (id× Pf)−1(∈X) ⇐⇒ x ∈ (Pf)(u)
⇐⇒ f(x) ∈ u

⇐⇒ (x, u) ∈ (f × id)−1(∈Y) . ��

A.3 Proof of Theorem 4.10

First we show that, for each n,

Im σn ∩ tracen+1
c (x) = tracen

c (x) . (8)

Context-Free Languages via Coalgebraic Trace Semantics 231

It is proved as follows.

Im σn ∩ tracen+1
c (x)

= (Pσn ◦ Pσn ◦ tracen+1
c)(x)

= (Pσn ◦ PFn?F0 ◦ Pσn+1 ◦ tracen+1
c)(x) (σn = σn+1 ◦ Fn?F0 by (3))

= (Pσn ◦ PFn?F0 ◦ PFn+1?X ◦ cn+1)(x)
(Definition of tracen+1

c , and Pσn ◦ Pσn = id by Lemma 4.8.1)

= (Pσn ◦ PFn?FX ◦ cn+1)(x) (F?X ◦?F0 =?FX)

= (Pσn ◦ PFn?FX ◦
⋃

F n+1X
◦ Pλn

FX ◦ PFnc ◦ cn)(x)

= (Pσn ◦
⋃

F n0
◦ Pλn

0 ◦ PFnP?FX ◦ PFnc ◦ cn)(x) (Lemma 4.8.3,4)

= (Pσn ◦
⋃

F n0
◦ Pλn

0 ◦ PFnP?X ◦ PFn{−}X ◦ cn)(x)

(P?FX ◦ c = P?X ◦ {−}X : X → P0, with terminal codomain 1 = P0)

= (Pσn ◦ PFn?X ◦
⋃

F nX
◦ Pλn

X ◦ PFn{−}X ◦ cn)(x) (Lemma 4.8.4,3)

= (Pσn ◦ PFn?X ◦
⋃

F nX
◦ P{−}F nX ◦ cn)(x)

(λn is compatible with the unit of P)

= (Pσn ◦ PFn?X ◦ cn)(x) (Unit law of the monad P)
= tracen

c (x) .

Obviously the sequence {Im σn}n<ω of subsets of A is increasing, since σn =
σn+1 ◦ Fn?F0. Now, for arbitrary n ≤ m,

Im σn ∩ tracem
c (x) = Im σn ∩ Im σn+1 ∩ · · · ∩ Im σm−1 ∩ tracem

c (x)
(Since Imσn ⊆ Im σn+1 ⊆ · · · ⊆ Im σm−1)

= Im σn ∩ Im σn+1 ∩ · · · ∩ tracem−1
c (x) (By (8))

= · · ·
= tracen

c (x) . ��

Towards a Coalgebraic Semantics of the
Ambient Calculus

Daniel Hausmann, Till Mossakowski, and Lutz Schröder

BISS, Dept. of Computer Science, University of Bremen

Abstract. Recently, various process calculi have been introduced which
are suited for the modelling of mobile computation and in particular the
mobility of program code; a prominent example is the ambient calculus.
Due to the complexity of the involved spatial reduction, there is — in
contrast to the situation in standard process algebra — up to now no sat-
isfying coalgebraic representation of a mobile process calculus. Here, we
discuss work towards a unifying coalgebraic framework for the denota-
tional semantics of mobile systems. The connection between the ambient
calculus and a coalgebraic approach which uses an extension of labelled
transition systems in the representation of the reduction relation is ana-
lyzed in more detail. The formal representation of this framework is cast
in the algebraic-coalgebraic specification language CoCasl.

1 Introduction

Coalgebra has in recent years gained importance as a framework which allows
the modelling of reactive systems at an appropriate level of generality [14]. Here,
coalgebra serves as a basis for the semantics of processes, giving rise to generic no-
tions in particular of bisimilarity, coinduction, corecursion, and modal logic [12].
In analogy to the (largely algebraic and order theoretic) denotational semantics
of programming languages and logics, it is desirable to find a coalgebraic denota-
tional semantics for process calculi, which then profit from the above-mentioned
generic semantic notions and results. Such a denotational semantics also adds
clarity to the calculi themselves and facilitates the comparison and, possibly,
unification of process calculi.

For (the finitely branching fragment of) the classical process calculus CCS, a
coalgebraic semantics has been defined in [10]; further work in similar directions
is found e.g. in [6,7]. Here, we present work leading towards a coalgebraic denota-
tional semantics for mobile process calculi, in particular the ambient calculus [4].
This poses rather more involved problems than in the case of classical calculi,
since the spatial structure interacts with the dynamic structure of processes in
a complex way.

An LTS semantics for the ambient calculus has been defined in [5]. This se-
mantics involves the use of a hardening relation, which singles out active top-level
processes to be involved in spatial reductions. The hardening relation inspires
our design of a coalgebraic functorial signature for the ambient calculus. We

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 232–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards a Coalgebraic Semantics of the Ambient Calculus 233

then give corecursive definitions of the process-building operations of a subset
of the ambient calculus in the final coalgebra for this functor, and we show that
the arising coalgebraic notion of bisimulation coincides with the one induced by
the LTS semantics of [5]. As a framework supporting the formal specification of
these concepts, we use the algebraic-coalgebraic language CoCasl [10].

The material is organized as follows. Section 2 provides a brief overview of
CoCasl. An introduction to the ambient calculus is given in Section 3. Finally,
our coalgebraic semantics for the ambient calculus is presented in Section 4.

2 CoCasl

The algebraic-coalgebraic specification language CoCasl has been introduced
in [10] as an extension of the standard algebraic specification language Casl.
For the basic Casl syntax, the reader is referred to [2,11]. We briefly explain
the CoCasl features relevant for the understanding of the present work.

A simple but typical CoCasl specification is shown in Fig. 1. This specifica-
tion defines the final finitely branching labelled transition system (LTS) over a
given set of labels, exploiting both algebraic and coalgebraic aspects of CoCasl.

spec FinalLTS =
sort Label
then cofree {

sort State
then free {

type Set ::= {} | { }(State) | ∪ (Set ; Set)
op ∪ : Set × Set → Set ,

assoc, comm, idem,unit {} }
then cotype State ::= (next : Label → Set) }

end

Fig. 1. CoCasl specification of the final LTS

Several CoCasl features are nicely illustrated here. To begin, CoCasl offers
a cotype construct which defines coalgebraic process types, dually to Casl’s
datatype construct type. Without further qualifications, type or cotype declara-
tions essentially amount to just operator declarations; e.g., the type declaration
in Fig. 1 gives rise to operators { } : State → Set etc. called constructors, while
the cotype declaration produces an operator next : State × Label → Set , called
a selector or observer. Like type declarations, cotype declarations may have sev-
eral alternatives separated by |; while for types, this is just an enumeration of
constructors, the effect of alternatives in a cotype declaration is the generation
of axioms emulating sum types, i.e. guaranteeing that the cotype is disjointly
decomposed into the domains of the (partial) observers. E.g. writing

234 D. Hausmann, T. Mossakowski, and L. Schröder

cotype Process ::= cont(hd1 :?Elem;next :?Process)
| fork(hd2 :?Elem; left :?Process ; right :?Process)

produces a process type that can in each step either just advance one step
(next) or fork (left/right). It is shown in [10] that one can indeed define for
each cotype signature a functor T such that models of the cotype correspond
to T -coalgebras. E.g., the cotype State of Fig. 1 corresponds to coalgebras for
TX = Label → Pω(X), where Pω denotes the finite powerset functor, and the
cotype Process above to coalgebras for TX = Elem ×X + Elem ×X ×X .

Cotypes can be qualified by keywords expressing further constraints. In par-
ticular, the keyword cofree, placed directly before the keyword cotype, restricts
the models of a simple cotype such as Process to the final coalgebra (uniquely up
to isomorphism), which in the case of Process consists of infinite Elem-labelled
trees with branching degree either 1 or 2 at each node. In the context of this
work, a more powerful mechanism is more important, which applies to complex
cotypes such as State in Fig. 1: The keyword cofree may also be used to restrict
the models of an entire specification, delimited as in Fig. 1 by curly brackets, to
final models over a given model of the preceding specification — in the case of
Fig. 1 over a given set of labels. This concept is dual to the Casl construct free,
also appearing in Fig. 1, which restricts models of the following specification to
be initial over a given model of the preceding specification, in the case of the
type Set in Fig. 1 over a given set of states (and, irrelevantly, a given set of
labels). (Subtle differences between cofree and free are discussed in [10]; this is
not relevant for the understanding of the present work.)

Explicitly, this means that the type Set indeed consists of the set of construc-
tor terms modulo associativity, commutativity, idempotence, and neutrality of
{}, i.e. essentially of all finite subsets of State. The cotype State is thus really
the final coalgebra for the functor TX = Label → Pω(X), i.e. the final finitely
branching LTS. This cotype, or process type, has been used in [10] in order to
define a coalgebraic denotational semantics for CCS, exploiting the fact that
final coalgebras admit corecursive definitions; e.g. the parallel operator may be
defined in CoCasl by the corecursive equation

• next(l , s1 ‖ s2) = power [‖](next(l , s1) ∗ s2 ∪ s1 ∗ next(l , s1))

(omitting the silent action), where power [‖] has previously been defined
as the image function of ‖ : State × State → State, and A ∗ s denotes the
cartesian product A×{s}. In this work, we pursue similar goals for the ambient
calculus.

The form of corecursion used above, also called coiteration or coinductive
definition, is a very simple one which is based directly on the definition of the
final coalgebra: the corecursive equation essentially expresses that next is the
unique morphism from a coalgebra determined by the right hand side of the
equation into the final coalgebra. In the definition of our coalgebraic semantics
of the ambient calculus, we will need a more complex form of corecursion to be
explained in Section 4.

Towards a Coalgebraic Semantics of the Ambient Calculus 235

3 The Ambient Calculus

The ambient calculus [4] models mobile computing (i.e. in mobile computing de-
vices, like latops or mobile phones) as well as mobile computations (i.e. processes
that move among devices, like applets). A central issue is the handling of admin-
istrative domains and their boundaries (e.g. protected by firewalls). The ambient
calculus hence comprises agents, their ambients, and mobility of these ambients.

Space is understood to be hierarchical in the ambient calculus, and the hier-
archical fragmentation of space is represented using the notion of ambient: An
ambient is a single entity with a clear separation from its environment. It may
contain processes or further ambients. Thus ambients may be nested or they may
be residing in parallel on the same level. The dynamic change of the position
of ambients in space over time is represented in the ambient calculus by several
reduction rules which utilize so called capabilities. The capabilities model the
opportunity for processes to enter, leave, or open ambients.

The syntax of the ambient calculus is defined as follows: For a set N of names
(m, n will range over names in the sequel), the set of processes for the ambient
calculus AC is defined inductively as the least set which is closed under

– the nil process 0,
– parallel composition of processes P |Q,
– capability prefixing M.P , where M ∈ {inn,outn,openn}
– the ambient operator n[P],
– name restriction (νn)P ,
– replication !P .

The set of free names fn(P) of an ambient calculus process P is, roughly speak-
ing, the set of names that appear in the process either in ambient operators or
in the prefixing of capabilities, minus the set of all names that appear in name
restrictions.

m[inn.P |Q] | n[R] −→ n[m[P |Q]|R] n[m[out n.P |Q] | R] −→ m[P |Q] | n[R]

openn.Q | n[R] −→ Q|R
P −→ Q

P |R −→ Q|R
P −→ Q

n[P] −→ n[Q]
P −→ Q

(νn)P −→ (νn)Q

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

Fig. 2. The reduction relation of the ambient calculus

236 D. Hausmann, T. Mossakowski, and L. Schröder

P |0 ≡ P P |Q ≡ Q|P (νm)(νn)P ≡ (νn)(νm)P

(νn)0 ≡ 0 (P |Q)|R ≡ P |(Q|R) (νn)(P |Q) ≡ P |(νn)Q if n ∈ fn(P)

!0 ≡ 0 !P ≡ P |!P (νm)n[P] ≡ n[(νm)P] if n = m

Fig. 3. The structural congruence of the ambient calculus

The semantics of the ambient calculus is defined by the reduction relation
−→⊂ AC × AC, which is the least relation that satisfies the rules displayed in
Fig. 2, where ≡⊂ AC ×AC denotes structural congruence. The latter is defined
as the smallest congruence relation satisfying the rules of Fig. 3.

Example 1. The following typical example shows two possible chains of reduc-
tions of the process m[inn.outn.0] | n[openm.0]:

m[inn.outn.0] | n[openm.0] −→ n[m[outn.0] | openm.0]
−→ m[0] | n[openm.0]

m[inn.outn.0] | n[openm.0] −→ n[m[outn.0] | openm.0]
−→ n[outn.0 | 0]

It is easy to see that the ambient calculus is non-deterministic and non-confluent
(and due to the replication operation also potentially non-terminating).

4 A Coalgebraic Semantics for the Ambient Calculus

Following [4], we can equivalently define the reduction relation of the ambient
calculus in terms of a labelled transition system together with a hardening re-
lation; the role of the latter is to single out active top-level processes, in order
to prevent processes ‘tagging along’ in spatial reductions performed by paral-
lel processes. Below, we present such a system in a somewhat modified form
which will allow us to embed the ambient calculus semantically into a coal-
gebraic framework; in particular, we give a suitable behaviour functor for the
ambient calculus and define the process building operations of the ambient cal-
culus as corecursive operations on the final coalgebra of this functor. Besides
making standard coalgebraic machinery available for the ambient calculus, this
clarifies the observational aspects of the calculus. The corecursive definitions will
be presented in CoCasl.

Towards a Coalgebraic Semantics of the Ambient Calculus 237

4.1 The LTS

We recall the definition of labelled transition systems:

Definition 2. A labelled transition system (LTS) is a triple (S, A, T) where S is
a set of states, A is a set of actions and T ⊂ S×A×S is the transition relation.
For P, Q ∈ S and a ∈ A, (P, a, Q) ∈ T means that the system evolves by the
action a from source P to target Q; this is denoted in the form P

a→ Q.
In order to allow for a coalgebraic specification of the semantics, we design

a variant of the LTS given in [4] in such a way that the conclusion of each
inference rule of the LTS has the application of exactly one process-building
operation of the ambient calculus on the left hand side of the conclusion (and
no process building operations appear in the premises). This facilitates the sub-
sequent corecursive definition of the operations. As indicated above, we need a
hardening relation as in [5], extended by intermediate capabilities in the spirit
of [8]:

As in [5], a concretion is an expression of the form: (ν−→p)〈P 〉Q, where P, Q ∈
AC and −→p = {p1, . . . , pn}. The process P is called the prime, the process Q is
called the residue. The intuition is that a process, which may have many top-
level processes, may harden to a concretion that singles out an active subprocess
P , leaving behind the residue Q, where −→p is the set of private names shared by
P and Q.

P
inn−→ Q

m[P]
enter n� (ν)〈m[Q]〉0 n[P]

enter n� (ν)〈P 〉0
P

outn−→ Q

m[P]
exit n� (ν)〈m[Q]〉0 n[P]

openn� (ν)〈P 〉0

−→p ∩ fn(Q) = ∅ P
α� (ν−→p)〈P ′〉P ′′

P |Q α� (ν−→p)〈P ′〉P ′′|Q
−→p ∩ fn(Q) = ∅ P

α� (ν−→p)〈P ′〉P ′′

Q|P α� (ν−→p)〈P ′〉Q|P ′′

P
α� (ν−→p)〈P ′〉P ′′

!P
α� (ν−→p)〈P ′〉P ′′|!P

P
α� C n ∈ fn(α)

(νn)P
α� (νn)C

Fig. 4. The hardening relation

In order to keep track of the structure of an ambient calculus process over
several inference steps, we use a labelled version of the hardening relation. So-
called intermediate capabilities are used to store the information that a process
is of a specific shape, and this information then appears as the premise of an
inference rule which is used to derive a transition of the process. Thus, the LTS
itself works entirely on processes, rather than also on concretions as in [8].

238 D. Hausmann, T. Mossakowski, and L. Schröder

The hardening relation and the LTS are defined by mutual recursion; i.e. LTS
relations may appear as assumptions in the rules for the hardening relation, and
vice versa. The hardening relation has the format

α�⊂ AC ×HAction×Υ for the
set HAction = {enter, enter, exit,open} × N . The rules are given in Fig. 4,
where (νn)C for C = (ν−→p)〈P ′〉P ′′ is defined as

(νn)C =

⎧⎪⎨⎪⎩
(ν−→p)〈P ′〉(νn)P ′′ if n �∈ fn(P ′)
(ν−→p 〈m[(νn)P ′′′]〉)P ′′ if n �∈ fn(P ′′) and P ′ = m[P ′′′] (n �= m)
(νn,−→p)〈P ′〉P ′′ otherwise.

The labelled transition system has the format α−→⊂ AC×Action×AC for the set
Action = {τ} ∪ {in,out,open} × N of transition labels. Its rules are displayed
in Fig. 5. The rules imply that concretions in hardenings labelled enter or exit
are always of the form (ν−→p)〈n[P]〉Q. Note that while we do not impose the
full structural congruence on terms for purposes of the hardening and transition
relations, we do assume that bound names are given only up to α-equivalence.
Thus the hardening rule for parallel composition and the transition rules for
opening and entering ambients can always be made applicable by suitably re-
naming bound names. Concerning the transition rule for exiting ambients, one
can show that the premise implies n ∈ fn(P), in particular n /∈ −→p .

M.P
M−→ P

P
α−→ P ′

P |Q α−→ P ′|Q
P

α−→ P ′

Q|P α−→ Q|P ′
P

α−→ P ′

P ! α−→ P ′|P !

P
exitn� (ν−→p)〈P ′〉P ′′

n[P] τ−→ (ν−→p)(n[P ′′] | P ′)
P

τ−→ Q

n[P] τ−→ n[Q]
P

α−→ Q n ∈ fn(α)
(νn)P α−→ (νn)Q

P
openn−→ P ′ Q

openn� (ν−→q)〈Q′〉Q′′ −→q ∩ fn(P) = ∅
P |Q τ−→ (ν−→q)(P ′|Q′|Q′′)

Q
openn−→ Q′ P

open n� (ν−→p)〈P ′〉P ′′ −→p ∩ fn(Q) = ∅
P |Q τ−→ (ν−→p)(P ′|P ′′|Q′)

P
entern� (ν−→p)〈P ′〉P ′′ Q

enter n� (ν−→q)〈Q′〉Q′′ −→p ∩ −→q = ∅
P |Q τ−→ (ν−→p)(ν−→q)(n[P ′|Q′] | P ′′|Q′′)

Q
enter n� (ν−→q)〈Q′〉Q′′ P

entern� (ν−→p)〈P ′〉P ′′ −→p ∩ −→q = ∅
P |Q τ−→ (ν−→p)(ν−→q)(n[P ′|Q′] | P ′′|Q′′)

Fig. 5. The transition relation

Theorem 3. The labelled transition system defined above is, up to structural
congruence, sound and complete with respect to the reduction relation of the

Towards a Coalgebraic Semantics of the Ambient Calculus 239

ambient calculus as recalled in Section 3. Formally: P
τ−→ Q implies P −→ Q

(soundness) and P −→ Q implies ∃P ′.P
τ−→ P ′ ∧ P ′ ≡ Q (completeness).

Cardelli and Gordon present a different labelled transition system for the
ambient calculus in [5]. We write P

α−→CG Q to indicate that the process P can
reduce to the process Q by a transition with label α which is justified by a rule
of the labelled transition system from [5]. (Unlike the system in [5], our system
does not take input and output primitives into account; however, these features
can easily be added to the theory.)

Theorem 4. The labelled transition system defined above is sound and complete
with respect to the labelled transition system of [5]: P

α−→ Q implies P
α−→CG Q

(soundness) and P
α−→CG Q implies P

α−→ Q (completeness).

4.2 Coalgebraic Semantics

The mobility aspects of the labelled transition system defined above can be
modelled in a coalgebraic manner. This amounts to designing a behaviour functor
which captures the possible observations on an ambient calculus process. These
observations apparently include not only the reductions in the LTS, but also
the concretions to which a process hardens. An further important aspect is the
handling of name creation, which however poses certain technical problems in the
coalgebraic setting. For the time being, we therefore give a coalgebraic semantics
of a reduced calculus without name restriction (comparable in this respect e.g.
to the Basic Sail calculus [13]). The combination of reduction and hardening
suggests using the functor

AC = λX.(Action → Pω(X)) × (HAction → Pω(X ×X)).

Coalgebras (A,ψ :A→ AC(A)) for this functor have a function ψ =〈next ,harden〉
as structure. The first part of this function (next : A → (Action → Pω(A)))
assigns to each state of the coalgebra a function which maps each transition
label to the set of the corresponding successor states. The second function
(harden : A→ (HAction → Pω(A×A))) assigns to each state a function which
maps hardening labels to the set of the corresponding concretions of the state.

It should be noted that the crucial difference between AC and the standard
functor Pω(A×) for LTS lies in the fact that the hardening part is essentially
of the type λX.Pω(X×X); here, the peculiarity is captured that a process splits
into two parts for purposes of further reduction. There is good indication that
this feature is indeed the essence of ‘mobility’, since it is instrumental in the
modelling of ‘moving and leaving others behind’.

A CoCasl specification of the final coalgebra of the functor AC is shown
in Fig. 6. The specification is based on a specification of finite sets, which is
parametric in the type of elements and which needs to be instantiated with states
and concretions. The cotype State is the mentioned final AC-coalgebra; it serves
as a semantic domain for the interpretation of the ambient calculus operations.
Since CoCasl does not have product and sum types, the presentation of AC

240 D. Hausmann, T. Mossakowski, and L. Schröder

spec Set [sort Elem] =
free {

type Set [Elem] ::= {} | { }(Elem) | ∪ (Set [Elem]; Set [Elem])
op ∪ : Set [Elem] × Set [Elem] → Set [Elem],

assoc, comm, idem,unit {} }
then
pred ε : Elem × Set [Elem]
op − : Set [Elem] × Elem → Set [Elem]
. . . %% recursive Definitions of ε, −

spec ACDomain[sort Name] = Set [sort Name] then
cofree {

sort State
free type Cap ::= in | out | open
free type HCap ::= enter | coenter | exit | coopen
free type Action ::= tau | action(Cap; Name)
free type HAction ::= haction(HCap; Name)
free type Concretion ::= conc(State; State)
then Set [sort State] and Set [sort Concretion]
then cotype State ::= (next : Action → Set [State];

harden : HAction → Set [Concretion])
}

Fig. 6. CoCasl specification of the semantic domain for the ambient calculus

needs to be split up into various datatype definitions; this makes for a somewhat
more verbose, but also clearer and more readable specification style.

The process building operations of the ambient calculus can then be defined
as functions into the semantic domain State by mutual corecursion. The corecur-
sive definitions are clear from the corresponding inference rules for the hardening
relation and the transition relation as shown in Figs. 4–5. The CoCasl speci-
fications of the operations are shown in Figs. 7–11. (The operator declarations
should be considered redeclarations, following an initial declaration of all opera-
tors which is necessary for mutually corecursive definitions due to Casl’s linear
visibility principle. Moreover, the label in would have to be introduced via a
display annotation, since in is a reserved word.)

In the description of the successor and concretion sets, the definitions be-
low use explicit equivalences for elementhood in the successor sets rather than
equations involving application of the powerset functor to the defined functions.
One can also apply the latter style in CoCasl, making extensive use of parame-
trized specifications as e.g. in the CCS semantics of [10]. This style is actually
preferable, but would require rather more infrastructure than the available space
permits to present here.

Remark 5. A word of explanation is in order as to why the equations in Figs. 7–
11 actually constitute good corecursive definitions. The format of these equations

Towards a Coalgebraic Semantics of the Ambient Calculus 241

op zero : State
vars a : Action; b : HAction
• next(a, zero) = {}
• harden(b, zero) = {}

Fig. 7. CoCasl specification of the nil process

op cap : Cap × Name × State → State
vars a : Action; b : HAction ; c : Cap;n : Name; p : State
• next(a, cap(c, n, p)) = {p} when a = action(c, n) else {}
• harden(b, cap(c, n, p)) = {}

Fig. 8. CoCasl specification of capability prefixing

op ‖ : State × State → State
vars a : Action; b : HAction; n : Name; p, q , r : State; c : Concretion
• r ε next(a, p ‖ q) ⇔

(a = τ ∧ ∃p′, q ′, q ′′ : State •
r = p′ ‖ q ′ ‖ q ′′ ∧ p′ ε next(action(open, n), p) ∧
conc(q ′, q ′′) ε harden(haction(coopen, n), q)) ∨

(a = τ ∧ ∃q ′, p′, p′′ : State •
r = p′ ‖ p′′ ‖ q ′ ∧ q ′ ε next(action(open, n), q) ∧
conc(p′, p′′) ε harden(haction(coopen, n), p)) ∨

(a = τ ∧ ∃p′, p′′, q ′, q ′′ : State •
r = amb(n, p′ ‖ q ′) ‖ p′′ ‖ q ′′ ∧
conc(p′, p′′) ε harden(haction(enter , n), p) ∧
conc(q ′, q ′′) ε harden(haction(coenter , n), q)) ∨

(a = τ ∧ ∃p′, p′′, q ′, q ′′ : State •
r = amb(n, p′ ‖ q ′) ‖ p′′ ‖ q ′′ ∧
conc(p′, p′′) ε harden(haction(coenter , n), p) ∧
conc(q ′, q ′′) ε harden(haction(enter , n), q)) ∨

(∃p′ : State • r = p′ ‖ q ∧ p′ ε next(a, p)) ∨
(∃q ′ : State • r = p ‖ q ′ ∧ q ′ ε next(a, q))

• c ε harden(b, (p ‖ q)) ⇔
(∃p′, p′′ : State • c = conc(p′, p′′ ‖ q) ∧ conc(p′, p′′) ε harden(b, p)) ∨
(∃q ′, q ′′ : State • c = conc(q ′, p ‖ q ′′) ∧ conc(q ′, q ′′) ε harden(b, q))

Fig. 9. CoCasl specification of parallel composition

242 D. Hausmann, T. Mossakowski, and L. Schröder

op amb : Name × State → State
vars a : Action; b : HAction; cap : Cap;m,n : Name; p, q : State; c : Concretion
• q ε next(τ, amb(n, p)) ⇔

(∃p′, p′′ : State •
q = amb(n, p′′) ‖ p′ ∧
conc(p′, p′′) ε harden(haction(exit , n), p)) ∨

(∃p′ : State • q = amb(n, p′) ∧ p′ ε next(τ, p))
• next(action(cap, n), amb(m, p)) = {}
• c ε harden(haction(enter , n), amb(m, p)) ⇔

(∃p′ : State • c = conc(amb(m, p′), zero) ∧
p′ ε next(action(in, n), p))

• harden(haction(coenter , n), (amb(n, p))) = {conc(p, zero)}
• c ε harden(haction(exit , n), amb(m,p)) ⇔

(∃p′ : State • c = conc(amb(m, p′), zero) ∧
p′ ε next(action(out , n), p))

• harden(haction(coopen, n), (amb(n,p))) = {conc(p, zero)}

Fig. 10. CoCasl specification of the ambient operator

op rep : State → State
vars a : Action; b : HAction; p, q : State; c : Concretion
• q ε next(a, rep(p)) ⇔

(∃p′ : State • q = p′ ‖ rep(p) ∧ p′ ε next(a, p))
• c ε harden(b, rep(p)) ⇔

(∃p′, p′′ : State • c = conc(p′, p′′ ‖ rep(p)) ∧
conc(p′, p′′) ε harden(b, p))

Fig. 11. CoCasl specification of replication

deviates from the standard coiteration format in that the right hand sides contain
composite expressions of the language being interpreted, rather than just one
application of the single operation being defined. According to the results of [16],
a semantics for a process calculus with signature functor Σ in coalgebras for a
behaviour functor B can be defined by exhibiting an abstract GSOS law, i.e. a
natural transformation

ρ : Σ(Id ×B) → BT ,

where T is the free monad (i.e. the term algebra functor) over Σ (cf. also [1]).
The appearance of T in the target offers the possibility of using composite terms,
as required. The semantic function h : ΣS → S, where (S, ζ) is the final B-
coalgebra, is the unique so-called ρ-model over (S, ζ), i.e. uniquely determined
by the equation

ζ ◦ h = Bh∗ ◦ ρS ◦Σ〈id, ζ〉, (∗)
where h∗ : TS → S is the T -algebra determined by h. If the semantic function h
is omitted from the notation, as done above, then equation (∗) becomes precisely

Towards a Coalgebraic Semantics of the Ambient Calculus 243

the format of our corecursive definitions. This shows that our corecursive equa-
tions have a unique solution provided that ρS is part of a natural transformation
ρ. If, as is the case here, Σ and B are κ-accessible for some regular cardinal κ
and |S| ≥ κ, then it suffices to check that ρS is natural for self-maps of S: we
then obtain the components ρX for |X | < κ, natural in X , by restriction of ρZ ,
and from these ρX we can assemble all of ρ by taking κ-directed unions.

Verification of the naturality condition for ρS as given in Figs. 4–5 is tedious
but straightforward. The point is essentially that the rules adhere to similar
restrictions as standard GSOS rules for the definition of labelled transition sys-
tems, in particular do not depend on equality of states, do not introduce new
state variables in the conclusion, and never look ahead more than one step (the
latter could in fact also be handled by means of so-called tree rules [16]).

Generally, GSOS semantics is compositional, i.e. the interpretation of com-
posite terms is recursively derived from that of single operations [16]. This does
not, incidentally, contradict the previously diagnosed impossibility of a compo-
sitional LTS semantics for the ambient calculus [17], since our semantic domain
is more than just an LTS.

Remark 6. The reason that restriction is currently omitted in the specification
is that it is as yet unclear how to model the sharing of private names in con-
cretions: a concretion needs to contain information about the potential future
interaction between the prime and the residue, but on the other hand should
not leak information about the shared bound names.

We explicitly record the agreement between the coalgebraic specification and
the LTS semantics given above:

Lemma 7. The CoCasl specification is sound and complete with respect to the
LTS defined in Section 4.1: for ambient calculus terms P and P ′ not involving
restriction, P

α−→ P ′ iff P ′ ε next(α, P) follows from the corecursive equations
(omitting an obvious translation between ambient calculus terms and their rep-
resentation in CoCasl). Furthermore, the LTS and the CoCasl specification

agree w.r.t. hardening: P
β� (ν)〈P ′

1〉P ′
2 iff conc(P ′

1, P
′
2) ∈ harden(β, P) follows

from the corecursive equations (again for terms without restriction, and omitting
an obvious translation of fixed finite sets).

For the reduced calculus, the notion of bisimulation arising from the coalge-
braic modelling can be brought into agreement with a natural notion of behav-
ioral indistinguishability:

Definition 8 (Ambient bisimulation). A symmetric relation � on ambient
calculus processes without name restriction is called an ambient bisimulation if
for any two processes P, Q such that P � Q the following hold:

1. P
α−→ P ′ ⇒ (∃Q′. Q

α−→ Q′ ∧ P ′ � Q′) for any α ∈ Act.

2. P
β� (ν)〈P ′

1〉P ′
2 ⇒ (∃Q′

1, Q
′
2. Q

β� (ν)〈Q′
1〉Q′

2 ∧ P ′
1 � Q′

1 ∧ P ′
2 � Q′

2) for each
β ∈ HAction.

If P � Q for some ambient bisimulation �, then P and Q are called ambient
bisimilar.

244 D. Hausmann, T. Mossakowski, and L. Schröder

Recall that for any endofunctor G, a binary relation R between two G-
coalgebras E and F is called a bisimulation if there exists a G-coalgebra structure
on R that makes the projection functions π1 : R → E and π2 : R → F into coal-
gebra homomorphisms. If for two elements e ∈ E and f ∈ F and a bisimulation
R it holds that e R f , then e and f are said to be bisimilar. In the final coalgebra,
bisimilarity is equality.

From the preceding lemma, the following is easily shown:

Theorem 9. Ambient bisimulation and coalgebraic bisimulation onAC-coalgebras
coincide; formally: for P, Q ∈ AC not involving restriction, P � Q iff P and Q
denote the same element of the final AC-coalgebra, i.e. iff P = Q follows from
the above CoCasl specification.

5 Conclusion

We have described a transition semantics for the ambient calculus that correctly
captures the ambient calculus in the sense that its reductions coincide with the
reduction of the ambient calculus. Similar results have been obtained in [8] for the
safe ambient calculus with passwords, and in [9] for the ambient calculus itself.
In both cases, however, labelled transition systems are used which mix processes
and concretions, while our system separates the two types of entities by keeping
the reduction relation and the hardening relation apart. A consequence is that
our semantics fits into a coalgebraic framework.

The coalgebraic treatment of the transition semantics (using the specification
language CoCasl, or a corresponding functor) exhibits more structure than
labelled transition systems. The coalgebraic structure is based on two kinds of
observations: one can observe firstly the successor states in the sense of process
algebra, and secondly the set of ways (‘concretions’) in which a top-level process
can be singled out for interaction with the ambient structure. Here, the set of
concretions is particularly noteworthy; we expect that this part of the functor,
being essentially the composite of the powerset functor and the squaring functor,
points to a fundamental aspect of mobile calculi — processes split up into parts
that move and others that remain behind. The coalgebraic treatment of private
names, i.e. the security aspect of the ambient calculus, had to be left open for
the time being; this problem is hoped to be resolved in future work. One should
note that the first step in this direction has already been taken in the shape
of our transition semantics, which does include name restriction: the transition
rules adhere to a generalized GSOS format, which is an important precondition
for a corecursive formulation.

The corecursive definition of process building operations implies the possibil-
ity to prove algebraic laws about the ambient calculus using coinduction, based
on a notion of bisumulation arising from the coalgebraic semantics. An open
problems that remains in this respect is the relation of this bisimilarity to the
contextual equivalence of ambients [4] and to the notion of reduction barbed
congruence [9].

Towards a Coalgebraic Semantics of the Ambient Calculus 245

We expect that the program of characterizing process and mobile calculi
using coalgebras over certain functors will eventually lead to a systematic un-
derstanding of the nature of these calculi. The calculi are usually presented using
some concrete syntax plus some transition rules; and there are many variations
of the syntax and the rules whose impact on the nature of the respective calculus
is not clear from the outset. By contrast, the representation using operations on
a coalgebra for a certain functor immediately determines (through the functor)
the fundamental observations that can be made, while the operations (that cor-
respond to the syntax of the respective calculus) may vary without changing the
fundamental nature of the meaning of processes. Hence, it is also expected that
different calculi can be related and combined much more easily using the coal-
gebraic representation. Future work will substantiate this point by considering
further mobile calculi. Moreover, the behaviour functor more or less automat-
ically comes with an expressive modal logic (cf. [15] and references therein);
further work will include the investigation of this logic in particular in relation
to ambient logic [3]. In advance, we note that the hardening part of our behav-
iour functor will naturally give rise to a binary modality which appears also in
ambient logic.

References

1. F. Bartels, Generalised coinduction, Math. Struct. Comput. Sci. 13 (2003), 321–
348.

2. M. Bidoit and P. D. Mosses, Casl user manual, LNCS, vol. 2900, Springer, 2004.
3. L. Cardelli and A. Gordon, Ambient logic, Math. Struct. Comput. Sci., to appear.
4. , Mobile ambients, Theoret. Comput. Sci. 240 (2000), 177–213.
5. A. Gordon and L. Cardelli, Equational properties of mobile ambients, Math. Struct.

Comput. Sci. 13 (2003), 371–408.
6. F. Honsell, M. Lenisa, U. Montanari, and M. Pistore, Final semantics for the π-

calculus, Programming Concepts and Methods, Chapman & Hall, 1998, pp. 225–
243.

7. B. Klin, A coalgebraic approach to process equivalence and a coinduction principle
for traces, Coalgebraic Methods in Computer Science, ENTCS, vol. 106, Elsevier,
2004, pp. 201–218.

8. M. Merro and M. Hennessy, Bisimulation congruences in safe ambients, ACM SIG-
PLAN Notices 37 (2002), 71–80.

9. M. Merro and F. Zappa Nardelli, Behavioural theory for mobile ambients, Tech.
Report RR-5375, INRIA, 2004.

10. T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel, Algebraic-co-
algebraic specification in CoCasl, J. Logic Algebraic Programming, to appear.

11. P. D. Mosses (ed.), Casl reference manual, LNCS, vol. 2960, Springer, 2004.
12. D. Pattinson, Expressive logics for coalgebras via terminal sequence induction,

Notre Dame J. Formal Logic 45 (2004), 19–33.
13. D. Pattinson and M. Wirsing, Making components move: a separation of concerns

approach, Formal Methods for Components and Objects (FMCO 02), LNCS, vol.
2852, Springer, 2003, pp. 487–507.

14. J. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249
(2000), 3–80.

246 D. Hausmann, T. Mossakowski, and L. Schröder

15. L. Schröder, Expressivity of coalgebraic modal logic: The limits and beyond, Founda-
tions of Software Science And Computation Structures, LNCS, vol. 3441, Springer,
2005, pp. 440–454.

16. D. Turi and G. Plotkin, Towards a mathematical operational semantics, Logic in
Computer Science, IEEE Computer Society Press, 1997, pp. 280–291.

17. M. Vigliotti, Reduction semantics for ambient calculi, Ph.D. thesis, Imperial Col-
lege, London, 2004.

The Least Fibred Lifting and the Expressivity
of Coalgebraic Modal Logic

Bartek Klin

University of Sussex, Warsaw University
klin@brics.dk

Abstract. Every endofunctor B on the category Set can be lifted to a
fibred functor on the category (fibred over Set) of equivalence relations
and relation-preserving functions. In this paper, the least (fibre-wise) of
such liftings, L(B), is characterized for essentially any B. The lifting has
all the useful properties of the relation lifting due to Jacobs, without
the usual assumption of weak pullback preservation; if B preserves weak
pullbacks, the two liftings coincide. Equivalence relations can be viewed
as Boolean algebras of subsets (predicates, tests). This correspondence
relates L(B) to the least test suite lifting T (B), which is defined in the
spirit of predicate lifting as used in coalgebraic modal logic. Properties
of T (B) translate to a general expressivity result for a modal logic for
B-coalgebras. In the resulting logic, modal operators of any arity can
appear.

1 Introduction

Coalgebras are used as models for various kinds of transition systems, offering
a general view on the notions of coinduction, bisimulation, and on logics used
to reason about systems. For example, a finitely branching labelled transition
system with carrier X is a coalgebra h : X → Pf(A × X), where A is a set of
labels. Replacing the behaviour functor Pf(A×−) with various functors on the
category Set of sets and functions, one models other kinds of systems [1].

Final coalgebras are abstract models of the behaviour of systems. For a coal-
gebra h : X → BX , two processes in X are considered behaviourally equivalent
if they are identified by the unique morphism from h to a final B-coalgebra. If
B = Pf(A×−), behavioural equivalence coincides with bisimilarity.

Usually, bisimilarity is defined as the greatest bisimulation on a transition
system. A natural coalgebraic generalization of the classical notion of bisimu-
lation [2,3] is based on spans of coalgebras [1]. There, a bisimulation is a re-
lation that lifts to a span of coalgebra morphisms. If the behaviour functor B
preserves weak pullbacks, the greatest bisimulation exists and coincides with
behavioural equivalence. Another, closely related approach was presented by Ja-
cobs et al. [4,5,6]. There, the functor B is provided with a relation lifting J(B),
which is a functor on the category of binary relations that behaves as B on
the underlying sets. A bisimulation is then a J(B)-coalgebra. Provided B pre-
serves weak pullbacks, bisimulations satisfy many useful properties, e.g., they

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 247–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

248 B. Klin

are closed under unions and preserved by coalgebra morphisms; also, as in the
span approach, the greatest bisimulation coincides with behavioural equivalence.

In the case of labelled transition systems, bisimilarity is characterized by
Hennessy-Milner logic [7]. The coalgebraic framework provides a more general
perspective, where a modal logic can be derived for coalgebras for any functor. It
is expected that coalgebraic modal logic is invariant under behavioural equiva-
lence. Moreover, it should be expressive: logically indistinguishable states should
be behaviourally equivalent. Several approaches to deriving coalgebraic modal
logics have been proposed [8,9,10,11,12,13], based on different abstract notions
of modal operators (modalities).

In [10], a single modal operator is associated with every functor B. The result-
ing logic is expressive for essentially all functors. However, the modal operator
involved is rather complex and difficult to relate to modalities usually consid-
ered in particular cases (e.g., the box and diamond modalities of Hennessy-Milner
logic). In [11], modalities are defined to be predicate liftings, i.e., natural trans-
formations λ : 2− → 2B, which transform predicates on any set X to predicates
on BX . These correspond more closely to the modal operators usually consid-
ered in modal logics. However, the logic thus obtained fails to be expressive for
many functors. In [9], modalities are defined to be test constructors, i.e. functions
w : B2 → 2.

Very recently, Schröder [13] provided a characterization of functors which
admit an expressive logic based on predicate liftings. He also observed that
predicate liftings and test constructors are in a one-to-one correspondence. To
enhance expressivity, he then introduced polyadic predicate liftings, correspond-
ing to functions w : B(2κ) → 2, and proved that a modal logic based on those is
expressive for all accessible functors.

In this paper, we treat both relation lifting and coalgebraic modal logics in
a fibrational setting. The relation lifting J(B) is viewed as a lifting of B to a
fibred functor on the category Rel of binary relations and relation-preserving
functions. Similarly, any family of predicate liftings (test constructors) induces
a fibred lifting of B to the category TS of test suites, i.e., families of predicates.

Our first observation is that, when one wants to lift a functor B to a fibred
functor on Rel, the choice of J(B) among many other liftings is not entirely
clear. Despite its many useful properties, it does not really seem canonical. We
therefore study the least fibred liftings of functors. The least fibred liftings to Rel
turn out to be trivial, but when restricted to the category ERel of equivalence
relations, the least fibred lifting L(B) is nontrivial, and it enjoys all the useful
properties of J(B), without the usual assumption of weak pullback preservation.
Indeed, if B preserves weak pullbacks, both liftings coincide. It seems, therefore,
that L(B) is the canonical choice of relation lifting, at least to equivalence rela-
tions, and that J(B) inherits its properties from it. Our lifting L(B) is defined
only for equivalence relations, but this does not seem a serious limitation in this
context, since behavioural equivalence, which one aims to model by bisimula-
tions, is always an equivalence relation. (Note, however, that the lifting J(B)
has been used in other contexts [14], where arbitrary relations are essential.)

The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic 249

The category ERel is isomorphic to the category BTS of test suites closed
under union, intersection and complementation. This isomorphism relates L(B)
corresponds to the least fibred lifting T (B) of B to TS. Lifting functors to test
suites is in the spirit of coalgebraic modal logic, where families of predicate lift-
ings induce such constructions. From a characterization of T (B) we derive a
modal logic for any functor on Set, and prove an expressivity result for a wide
class of functors (we give proofs for ω-continuous functors here, but all results
generalize to all accessible functors, as will be shown in the full version of this
paper). The logic we obtain is exactly the same as the logic of polyadic modali-
ties of [13]. This provides further insight into the canonicity and importance of
Schröder’s results.

The paper is organized as follows. Section 2 treats preliminaries. In Section 3,
basic definitions concerning fibrations are given together with two examples used
throughout the paper. In Section 4, the least relation lifting L(B) is characterized
and compared with Jacobs’s lifting J(B). In Section 5, the least test suite lifting
T (B) is characterized and studied, and in Section 6 we define the modal logic
related to it. We also give some examples suggesting that polyadic modalities
can be useful to describe practically important cases.

I would like to thank Gordon Plotkin for inspiring discussions, and Lutz
Schröder for letting me know of his recent related work. I am grateful to Alexan-
der Kurz and to an anonymous referee for pointing out several inaccuracies.

2 Preliminaries

Let Set denote the category of sets and functions, and Pos the category of partial
orders and monotonic functions. For an endofunctor B on any category, a B-
coalgebra is a morphism h : X → BX . A coalgebra morphism from g : X → BX
to h : Y → BY is a morphism f : X → Y such that Bf ◦g = h◦f . For any B, all
B-coalgebras and their morphisms form a category. For any h : X → BX , the
unique morphism to the final B-coalgebra (if it exists) is called the coinductive
extension of h.

Many functors on Set admit final coalgebras; in particular, all ω-continuous
ones do. A functor B is called ω-continuous if it preserves limits of diagrams of
the shape

X0 X1�� X2�� X3��

The carrier Z of a final B-coalgebra arises from the limiting cone

Z
p0

�����
���

���
���

���
�

p1
����
��
��
��
p2

��
p3 ��(

((
((

((
((

1 B1
!

�� B21
B!

�� B31
B2!

��

(1)

where 1 is the final object in the underlying category, and ! : B1 → 1 is the
unique map from B1.

250 B. Klin

Many kinds of state-based systems can be modelled as coalgebras. For ex-
ample, finitely branching labelled transition systems are coalgebras h : X →
Pf(A×X), where Pf is the covariant finite powerset functor, and A is a fixed set
of labels. Coalgebras for this functor are described by Hennessy-Milner logic [7],
which is defined by the grammar:

φ ::= tt | φ ∧ φ | ¬φ | 〈a〉φ
Given any coalgebra h : X → Pf(A×X), every formula of this logic is interpreted
as a predicate on X or, equivalently, as a function [[φ]] : X → 2 (here and in
the following, 2 denotes the two-element set {tt, ff}), defined inductively in the
natural way, with the only interesting clause:

[[〈a〉φ]](x) = tt ⇐⇒ ∃ 〈a, y〉 ∈ hx. [[φ]](y) = tt

This logic is invariant under behavioural equivalence. Moreover, it is expressive: if
two states are not distinguished by Hennessy-Milner formulae, they are identified
by the coinductive extension of h.

3 Fibrations and Lifting

Any functor (−)∗ : Setop → Pos gives rise to a total category Set∗, via the
so-called Grothendieck construction: objects of Set∗ are pairs 〈X, R〉 such that
R ∈ X∗, and morphisms f : 〈X, R〉→ 〈Y, S〉 are functions f : X → Y such that
R ≤ f∗S, where ≤ is the ordering relation in X∗.

The obvious forgetful functor p : Set∗ → Set, mapping a pair 〈X, R〉 to
its underlying set X , is then a fibration. This is only a special case of a more
general definition used in fibration theory (see [15] for a detailed presentation),
but only examples of this kind are considered in this paper. Slightly abusing the
terminology, we will simply call functors (−)∗ : Setop → Pos fibrations. The
partial order X∗ is called the fibre over X . The map f∗ : Y ∗ → X∗ is called the
reindexing along f .

Example 1. Define (−)† : Setop → Pos by

X† = 〈P(X ×X),⊆〉
f †(S) = { 〈x, y〉 ∈ X ×X : (fx)S(fy) }

for any set X , function f : X → Y and relation S ⊆ Y × Y . The proof of
functoriality is very easy and omitted here. In the total category arising from
this fibration, objects are pairs 〈X, R〉 with R a binary relation on X , and a
function f : X → Y is a morphism between f : 〈X, R〉 → 〈Y, S〉 if and only
if xRy implies (fx)S(fy). The total category is therefore the category Rel of
binary relations and relation-preserving functions. The fibre over a set X is the
set of all binary relations on X , partially ordered by inclusion.

Note that for any f : X → Y , the reindexing f † : Y † → X† maps equivalence
relations to equivalence relations. It is therefore possible to restrict the functor

The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic 251

(−)† to yield equivalence relations only; the total category arising from this
fibration is the category ERel of equivalence relations and relation-preserving
functions.

Example 2. Denote 2 = {tt, ff}. A test on a set X is a function V : X → 2. (A
test can be also seen as a subset of its domain, but the functional representation
will make some definitions and results in Section 5 look more natural.) A test
suite on X is simply a set of tests on X . To say that θ is a test suite on a set X ,
we write θ : X ⇒ 2. Define (−)‡ : Setop → Pos by

X‡ = 〈{θ : X ⇒ 2},⊇〉
f ‡(ϑ) = {V ◦ f : V ∈ ϑ }

for any set X , function f : X → Y and test suite ϑ : Y ⇒ 2. Note that fibres
X‡ are ordered by reverse inclusion. The proof of functoriality is again very
easy and omitted here. The total category arising from this fibration is denoted
by TS. As object in TS is a pair 〈X, θ〉 where θ : X ⇒ 2, and a morphism
f : 〈X, θ〉 → 〈Y, ϑ〉 is a function f : X → Y such that for any test V ∈ ϑ, one
has V ◦ f ∈ θ.

To get some intuition, note that any topology can be seen as a test suite
subject to additional closure conditions. Morphisms in TS between such test
suites are then exactly continuous functions between topological spaces.

Intersections, unions and complements of tests are defined in the obvious
way. It is easy to see that if a test suite ϑ : Y ⇒ 2 is a complete field of sets (i.e.,
it is closed under arbitrary intersection, union and complementation), then for
any f : X → Y , the test suite f ‡ϑ is also a complete field of sets. It is therefore
possible to restrict (−)‡ to complete fields of sets only; the total category arising
from this fibration will be denoted BTS.

Proposition 3. The categories ERel and BTS are isomorphic; the two maps
defined on objects as

〈X, θ〉 �→ 〈X, { 〈x, y〉 ∈ X ×X : ∀V ∈ θ. V x = V y }〉
〈X, R〉 �→ 〈X, {V : X → 2 : ∀x, y ∈ X. xRy ⇒ V x = V y }〉 (2)

and as identities on morphisms are mutually inverse functors. ��

For any fibration (−)∗ : Setop → Pos, say that a functor B∗ : Set∗ → Set∗

lifts a functor B : Set → Set if

p ◦B∗ = B ◦ p

where p : Set∗ → Set is the forgetful functor associated to (−)∗. Given a functor
B : Set → Set, a lifting of B to B∗ is uniquely determined by its action on the
elements of fibres, i.e., by a family (indexed by sets X) of functions

BX : X∗ → (BX)∗

252 B. Klin

For any such family, the map defined by

B∗ 〈X, R〉 = 〈BX, BXR〉
B∗f = Bf

(3)

is a functor on Set∗ if and only if all functions BX are monotonic and, for any
function f : X → Y and any S ∈ Y ∗,

BX(f∗S) ≤ (Bf)∗(BY S)

If, moreover, the above inequality holds as equality:

BX(f∗S) = (Bf)∗(BY S) (4)

we say that B∗ is fibred.
In the following, an iterated version of BX will be useful. For any R ∈ X∗,

define BnR ∈ (BnX)∗ by induction:

B0
XR = R

Bn+1
X R = BBnXBn

XR

The following result, used in Section 5, is a characterization of final coalgebras
for fibred liftings of ω-continuous functors.

Proposition 4. Assume a fibration (−)∗ : Setop → Pos such that

- every fibre has arbitrary intersections
∧

, and
- reindexing functions preserve intersections.

Every fibred functor B∗ : Set∗ → Set∗ lifting an ω-continuous functor B :
Set → Set admits a final coalgebra

φ : 〈Z, ζ〉→ 〈BZ, BZζ〉
where φ : Z → BZ is the final B-coalgebra obtained as in (1), and

ζ =
∧
n∈N

p∗n(Bn
1 T)

where T is the largest element (i.e., the empty intersection) in 1∗.

4 The Least Relation Lifting

In [4,5,6], Jacobs et al. showed how to lift any functor B : Set → Set to a
functor J(B) : Rel → Rel (in fact they work in a slightly more general setting,
with relations of the type X × Y rather than X × X ; here their definition is
simplified to fit into the setting of this paper), defined by the following action:

J(B)X(R) = { 〈α, β〉 ∈ BX ×BX : ∃w ∈ BR.(Bπ1)w = α, B(π2)w = β }

The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic 253

where π1, π2 : R → X are projections. They then define a bisimulation (on the
underlying B-coalgebra) to be a J(B)-coalgebra. If B preserves weak pullbacks,
J(B) has many useful properties. For example, it is fibred, bisimulations are
closed under unions, and (the relation component of the carrier of) the greatest
bisimulation on the final B-coalgebra is the equality relation.

The definition of J(B) is elegant in that it does not depend on the structure of
B. It is also closely related to the coalgebra span approach to bisimulation [16,1].
However, speaking in terms of fibrations, it does not really seem canonical: it is
not immediately clear why one should choose this particular lifting from many
available ones, and only the numerous useful properties of J(B) convince one
that the lifting is “right”.

In search for a canonical lifting of a functor B to Rel it is natural to look at
the least and the greatest (fibre-wise) fibred liftings. These turn out to be trivial:
as is easy to check, the least (greatest) fibred lifting of any B to Rel is defined
by the action mapping any relation on X to the empty (resp. full) relation on
BX . However, when one restricts to the category ERel of equivalence relations,
the least fibred lifting becomes more interesting. In the remainder of this section
we shall see the construction of this lifting, denoted L(B), and some of its prop-
erties. The construction works for any functor that preserves monos. This is a
much weaker assumption than that of weak pullback preservation. Practically all
functors on Set preserve monos, and every functor on Set preserves all monos
with nonempty domains.

Observe that L(B) is fully determined by its action on equality relations.
Indeed, take any set X and an equivalence R on X , and consider the abstraction
function

[−]R : X → X/R

Note that [−]†RΔX/R
= R (here and in the following, ΔX denotes the equality

relation on X .) Pictorially:

R

��
��
��

ΔX/R

�[−]†R��

��
��
��

X
[−]R

�� X/R

Then

L(B)XR = L(B)X([−]†R(ΔX/R
)) = (B[−]R)†(L(B)X/R

(ΔX/R
))

The second equality holds by the fibredness condition (4) on L(B)X . Note that
(B[−]R)† in the rightmost expression does not depend on the lifting L(B)X , so
the left hand side is fully determined by L(B)X/R

(ΔX/R
).

The least possible value of the latter is ΔB(X/R), as this is the smallest
equivalence relation on B(X/R). Then one has

L(B)XR = (B[−]R)†(ΔB(X/R)) =
= { 〈α, β〉 ⊆ BX ×BX : (B[−]R)α = (B[−]R)β } (5)

254 B. Klin

From the above reasoning it is clear that every fibred lifting of B is fibre-wise
larger than L(B) defined as in (5). It is also obvious that for any equivalence
relation R on X , L(B)XR is also an equivalence relation. It must yet be checked
that L(B)X defines a fibred functor. This follows from a collection of properties
analogous to those of J(B) as listed in [6]:

Proposition 5. If B preserves monos, then the maps L(B)X :

(i) preserve equality relations: L(B)(ΔX) = ΔBX ;
(ii) half-preserve the transitive closure of relational composition: for R, S equiva-

lence relations on X , the relational composition S◦R ={〈x, z〉:∃y. xRy, ySz}
satisfies: L(B)X(S ◦R) ⊇ L(B)XR ◦ L(B)XS;

(iii) are monotonic: if R ⊆ S then L(B)XR ⊆ L(B)XS;
(iv) preserve reversals: L(B)X(Rop) = (L(B)XR)op;
(v) preserve reindexing: for any f : X → Y and any relation S on Y , the

condition (4) from Section 3 holds.

Note that the property (iv) above is trivially satisfied, and is included here
for a comparison with an analogous result in [6].

Corollary 6. If B preserves monos, then L(B) defined as in (3) from maps
L(B)X defined in (5) is a fibred functor on ERel.

Proof. : Immediate from properties (iii) and (v) in Proposition 5. ��
By a bisimulation on a B-coalgebra h : X → BX we will mean simply an

L(B)-coalgebra
h : 〈X, R〉→ 〈BX, L(B)XR〉

In other words, it is an equivalence relation R on X such that

xRy =⇒ (B[−]R)(hx) = (B[−]R)(hy)

The next theorem states some properties of bisimulations, analogous to those
mentioned in [6] (see also [1]).

Proposition 7. If B preserves monos, then for any coalgebras g : X → BX ,
h : Y → BY :

(i) Bisimulations are closed under transitive closures of arbitrary unions, hence
there exists a greatest bisimulation, called bisimilarity.

(ii) Equality relations are bisimulations.
(iii) If f : X → Y is a B-coalgebra homomorphism from g to h, then any x is

bisimilar to fx in the coalgebra

[Bι1 ◦ g, Bι2 ◦ h] : X + Y → B(X + Y)

(iv) If f : X → Y is a coalgebra homomorphism from g to h then x is bisimilar
to x′ in X if and only if fx is bisimilar to fx′ in Y .

The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic 255

(v) If B is ω-continuous, then (a final B-coalgebra exists and) bisimilarity on
the final B-coalgebra is equality.

Propositions 5 and 7 show that L(B) satisfies all the useful properties of
J(B), without the assumption that B preserves weak pullbacks. Moreover:

Proposition 8. If B preserves weak pullbacks, then L(B) = J(B).

Therefore J(B), when restricted to equivalence relations, is essentially a spe-
cial case of the canonical lifting L(B).

5 The Least Test Suite Lifting

In Section 3, it was noted that the category ERel of equivalence relations and
relation-preserving functions is isomorphic to the category BTS of test suites
that are complete fields of sets. This means that for any B : Set → Set, the
least fibred lifting L(B) to ERel corresponds to the least fibred lifting to BTS;
its concrete description can be obtained from (5) and the isomorphisms (2).
However, the resulting definition is rather unwieldy. Since least fibred liftings of
functors to test suites will be of use in Section 6, instead we use techniques as in
Section 4 to derive a characterization of the least fibred lifting to TS, denoted
T (B) in the following. It turns out that the new characterization does not require
even the very mild condition of B preserving monos.

For any set X , denote the test suite of all tests on X by TX . Begin by
observing that any fibred lifting of B : Set → Set to TS is fully determined by
its values on the TX . Indeed, consider any set X and any test suite θ : X ⇒ 2.
Define a function eθ : X → 2θ by

eθ(x)(V) = V x for V ∈ θ

Lemma 9. For any θ : X ⇒ 2, θ = e‡θT2θ ; pictorially,

θ

��
��
��

T2θ
�e‡

θ��

��
��
��

X eθ

�� 2θ

��
Then, by the fibredness condition (4), for any θ : X ⇒ 2 we have

T (B)Xθ = T (B)X(e‡θT2θ) = (Beθ)‡T (B)2θ T2θ

The least (wrt. the fibre ordering) possible value for T (B)2θ T2θ is TB(2θ), hence
the least candidate for a fibred lifting T (B)X of B is defined by

T (B)Xθ = (Beθ)‡TB(2θ) =
{

W ◦Beθ : W : B(2θ) → 2
}

(6)

256 B. Klin

Theorem 10. For any functor B on Set, the above action T (B)X defines a
fibred functor on TS as in (3).

Proof. For any X , the action T (B)X is clearly monotonic, therefore the only
condition to check is that for any f : X → Y and any θ : Y ⇒ 2 the equality

(Bf)‡T (B)Y θ = T (B)X(f ‡θ) (7)

holds. To prove this, we begin with two easy lemmas, assuming arbitrary f :
X → Y and θ : Y ⇒ 2.

Lemma 11. For any Z : 2f‡θ → 2 there exists W : 2θ → 2 such that

Z = W ◦ 2(−◦f)

Proof. The function 2(−◦f) : 2f‡θ → 2θ is always a mono, so (since its domain
is nonempty) it is a section. Take W = Z ◦ u, where u : 2θ → 2f‡θ is the
corresponding retraction. ��

Lemma 12. The following diagram commutes:

X

f

��

e
f‡θ �� 2f‡θ

2(−◦f)

��
Y eθ

�� 2θ

Proof. Calculate, for any x ∈ X and V ∈ θ,

(2(−◦f)(ef‡θ(x)))(V) = ((ef‡θ(x)) ◦ (− ◦ f))(V)
= ef‡θ(x)(V ◦ f)
= (V ◦ f)(x) = V (f(x)) = eθ(f(x))(V)

��
We are now ready to prove (7). Calculate

(Bf)‡T (B)Y θ =
{

W ◦Beθ ◦Bf : W : B(2θ) → 2
}

=
{

W ◦B(2(−◦f)) ◦Bef‡θ : W : B(2θ) → 2
}

=
{

Z ◦Bef‡θ : Z : B(2f‡θ) → 2
}

= T (B)X(f ‡θ)

using two lemmas above. ��
Note that the characterization of T (B) does not require B to preserve monos.

From properties of L(B) and T (B) it follows that:

Corollary 13. If B preserves monos then T (B), restricted to BTS, coincides
with L(B) along the isomorphisms between BTS and ERel.

The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic 257

Moreover, the properties of L(B) as stated in Propositions 5 and 7 trans-
late to analogous properties of T (B). Two of these properties (corresponding to
properties (iv) and (v) from Proposition 7) will be useful in Section 6, so we
restate them here, and we provide independent proofs.

In the following theorem, given any h : X → BX , elements x, y ∈ X are
called bisimilar if there exists a T (B)-coalgebra h : 〈X, θ〉 → 〈BX, T (B)Xθ〉
such that x, y are not distinguishable by tests from θ, which is then called a
bisimulation suite.

Theorem 14. If f : X → Y is a B-coalgebra homomorphism from g to h then
x is bisimilar to x′ in X if and only if fx is bisimilar to fx′ in Y .

Proof (sketch). For any bisimulation suite θ on h such that V (fx) = V (fx′) for
all V ∈ θ, f ‡θ is a bisimulation suite on g. Moreover, V x = V x′ for all V ∈ f ‡θ.
Similarly, for any bisimulation suite θ on g such that V x = V x′ for all V ∈ θ,

f‡ = {V : Y → 2 : V ◦ f ∈ θ }
is a bisimulation suite on h, and V (fx) = V (fx′) for all V ∈ f‡θ. ��
Theorem 15. (Expressivity) Assume B : Set → Set is ω-continuous and
preserves monos. Then a final T (B)-coalgebra

φ : 〈Z, ζ〉→ 〈BZ, T (B)Zζ〉
exists, and the test suite ζ : Z ⇒ 2 is jointly monic, i.e., any two elements of Z
are distinguished by a test from ζ.

Proof. Since B is ω-continuous, a final B-coalgebra

φ : Z → BZ

exists and is obtained as in (1). Since T (B) is fibred, by Proposition 4 a final
T (B)-coalgebra as above exists and

ζ =
⋃
n∈N

p‡n(T (B)n
1∅)

where ∅ : 1 ⇒ 2 is the final test suite, i.e., the empty test suite on 1. Pictorially:

Z
p0

�����
���

���
���

���
�

p1
����
��
��
��
p2

��
p3 ��(

((
((

((
((

1

��
∅
��

B1
!

��

T (B)1∅
����

B21
B!

��

T (B)21∅
����

B31
B2!

��

����
2 2 2 2

The family of functions { pn : Z → Bn1 : n ∈ N }, being a limiting cone, is
jointly monic. Since compositions of jointly monic families is always jointly

258 B. Klin

monic, it is enough to ensure that all test suites T (B)n
1∅ are jointly monic.

The empty test suite on 1 is jointly monic, so it is enough to show T (B) pre-
serves joint monicity of test suites: whenever θ : X ⇒ 2 is jointly monic, then
T (B)Xθ : BX ⇒ 2 is jointly monic.

To show that, recall that

T (B)Xθ =
{

W ◦Beθ : W : B(2θ) → 2
}

First, if θ is jointly monic then eθ is a mono. Indeed, assume any x, y ∈ X such
that eθ(x) = eθ(y). This, by definition of eθ, means that for all V ∈ θ, V x = V y.
Since θ is jointly monic, x = y.

Since B preserves monos, also Beθ is a mono. Moreover, the family of all
functions from B(2θ) to 2 is jointly monic, as 2 is a cogenerator in Set. Pre-
composing a jointly monic family with a mono yields a jointly monic family,
therefore T (B)Xθ is jointly monic. This completes the proof. s ��

Results and examples of Section 6 should give some intuition on how the
final T (B)-coalgebra looks in concrete cases.

6 Application to Coalgebraic Modal Logic

We proceed to show how the least fibred lifting T (B) of an ω-continuous functor
B to TS gives rise to an expressive modal logic for B-coalgebras.

Given a functor B : Set → Set, define the set L of formulae inductively: for
any k ∈ N, and for any function U : B(2k) → 2, if φ1, . . . , φk ∈ L then

[U](φ1, . . . , φk) ∈ L

The interpretation of L in a coalgebra h : X → BX is a function

[[−]] : L→ (X → 2)

defined inductively by

[[[U](φ1, . . . , φk)]] = U ◦B([[φ1]]× · · · × [[φk]]) ◦BΔk ◦ h

where Δk : X → Xk is the diagonal map, defined by Δk(i)(x) = x.
The relation of this logic to the lifting T (B) from Section 5 is made apparent

in the following theorem:

Theorem 16. If B is ω-continuous and preserves monos, then for any coalgebra
h : X → BX with the coinductive extension f : X → Z,

{ [[φ]] : φ ∈ L } = f ‡ζ

where ζ : Z ⇒ 2 comes from the final T (B)-coalgebra as in Proposition 4.

The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic 259

Proof. (Sketch). To prove the left-to right inclusion, proceed by structural in-
duction on L. Consider any φ = [U](φ1, . . . , φk), for some U : B(2k) → 2.
By the inductive assumption, V1, . . . , Vk ∈ f ‡ζ, hence there exists a function
ρ : k → f ‡ζ. Define W : B(2f‡ζ) → 2 by

W = U ◦B(2ρ)

Note that for any x ∈ X , i ≤ k,

(2ρ(ef‡ζ(x))(i) = ef‡ζ(x)(ρ(i)) = Vix

therefore
2ρ ◦ ef‡ζ = (V1 × · · · × Vk) ◦Δk

Then calculate

[[φ]] = U ◦B(V1 × · · · × Vk) ◦BΔk ◦ h =
= U ◦B2ρ ◦Bef‡ζ ◦ h =

= W ◦Bef‡ζ ◦ h ∈ h‡T (B)X(f ‡ζ) ⊆ f ‡ζ

To prove the right-to-left inclusion, define θn = f ‡(p‡n(T (B)n
1 ∅)) (see the

proof of Theorem 15). Then f †ζ =
⋃

n∈N
θn. One shows by induction on n that

every test from θn is an interpretation of a formula from L. To this end, prove
from fibredness of T (B) that

θn = h‡(T (B)X(θn−1))

therefore each test from θn is of the form

V = W ◦B(eθn−1) ◦ h

for some W : B(2θn−1) → 2. One proves by induction that all θn are finite. Take
k = |θn−1|, fix a bijection σ : k → θn−1, and define

U = W ◦B(2σ)

Consider the formula
φ = [U](φ1, . . . , φk)

such that [[φi]] = σ(i) (such φi exist by the inductive assumption). Then calculate,
similarly as above,

[[φ]] = U ◦B(σ(1)× · · · × σ(k)) ◦BΔk ◦ h =
= W ◦B2σ ◦B(σ(1)× · · · × σ(k)) ◦BΔk ◦ h =
= W ◦Beθn−1 ◦ h = V ��

Corollary 17. If B is ω-continuous and preserves monos, the logic L is adequate
and expressive.

260 B. Klin

Proof. Combine Theorems 14, 15 and 16. ��
The logic L and its interpretation is essentially the expressive logic of polyadic

predicate liftings as defined in [13], so the above expressivity result should come
as no surprise. The purpose of this section was to show a strong link of the logic
to the least fibred lifting of B, thus providing further insight into the canonicity
and importance of results from [13].

Example 18. Consider B = Pf (A ×X), where A is a fixed set of labels. Coal-
gebras for B are finitely branching labelled transition systems. The finitary
Hennessy-Milner logic, adequate and expressive for such coalgebras, can be
equivalently defined inductively as follows: for any logical operator b : 2k → 2,
and for any labels a1, . . . , ak ∈ A and for any formulae φ1, . . . , φk,

b[〈a1〉φ1, . . . , 〈ak〉φk]

is a formula. The interpretation of formulae in a coalgebra h : X → BX is a
function from formulae to X → 2 defined inductively:

[[b[〈a1〉φ1, . . . , 〈ak〉φk]]](x) = b(v1, . . . , vk)

where vi = tt iff 〈ai, y〉 ∈ hx such that [[φi]]y = tt. An interpretation-preserving
translation between this and the usual representation of Hennessy-Milner logic is
straightforward. The translation is not bijective; for example, Hennessy-Milner
formulae tt ∧ 〈a〉 (tt ∨ 〈a〉 tt) and 〈a〉 tt are mapped to the same formula.
However, all identified formulae are logically equivalent.

This version of Hennessy-Milner logic can be translated bijectively to the
logic L defined above. The translation, denoted γ, is defined by induction:

γ(b[〈a1〉φ1, . . . , 〈ak〉φk]) = [U](γ(φ1), . . . , γ(φk))

where U : Pf (A× 2k) → 2 is defined by

U(β) = b(u1, . . . , uk)

where ui = tt iff 〈ai, tt〉 ∈ β. It is straightforward to check that this translation
is bijective and preserves interpretation of formulae: [[φ]] = [[γ(φ)]].

Example 19. In [13], Schröder proves that if, for a functor B, the family of
functions

(Bf : BX → B2)f :X→2

is jointly monic for any set X , then B admits an expressive modal logic with
unary modalities. He also shows a few functors for which this condition fails.
Here is another example, maybe simpler and more natural: the functor BX =
Pf (A×X ×X), for A a nonempty fixed set of labels. Indeed, for X = {x, y, z},
the set

{〈a, x, x〉 , 〈a, x, y〉 , 〈a, y, z〉 , 〈a, x, z〉}

The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic 261

is identified with
{〈a, x, x〉 , 〈a, x, y〉 , 〈a, y, z〉}

under Bf for any f : X → 2. This means that the expressive logic L for this
functor makes essential use of modalities of multiple arity. Proceeding as in
Example 18 above, one shows a correspondence between L and a logic similar
to Hennessy-Milner logic and defined by:

φ ::= tt | φ ∧ φ | ¬φ | 〈a〉 (φ, φ)

(where a ranges over A), with an interpretation (for a given h : X → BX) as
for Hennessy-Milner logic, except:

[[〈a〉 (φ1, φ2)]](β) = tt iff 〈a, x, y〉 ∈ β s.t. [[φ1]]x = tt, [[φ2]]x = tt

This logic has actually been used in the literature, to describe a simple calculus
with process passing [17]. This example shows that the extension of coalgebraic
modal logic to modalities of arbitrary arity, as done first in [13], is of practical
importance. Note, however, that allowing multiple sorts of logical formulae one
can define an expressive logic for this functor with only unary modalities, along
the lines of [18].

References

1. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249 (2000) 3–80

2. Park, D.M.: Concurrency and automata on infinite sequences. Lecture Notes in
Computer Science 140 (1981) 195–219

3. Milner, R.: Communication and Concurrency. Prentice Hall (1988)
4. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational

setting. Information and Computation 145 (1998) 107–152
5. Jacobs, B.: Exercises in coalgebraic specification. In Crole, R., Backhouse, R.,

Gibbons, J., eds.: Algebraic and Coalgebraic Metods in the Mathematics of Pro-
gram C onstruction. Volume 2297 of Lecture Notes in Computer Science. Springer
(2002)

6. Jacobs, B., Hughes, J.: Simulations in coalgebra. Electronic Notes in Theoretical
Computer Science 82 (2003)

7. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32 (1985) 137–161

8. Jacobs, B.: Towards a duality result in the modal logic for coalgebras. In: Proc.
CMCS 2000. Volume 33 of Electronic Notes in Theoretical Computer Science.
(2000)

9. Klin, B.: Abstract Coalgebraic Approach to Process Equivalence for Well-Behaved
Operational Semantics. PhD thesis, BRICS, Aarhus University (2004)

10. Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96 (1999) 177–317
11. Pattinson, D.: Expressivity Results in the Modal Logic of Coalgebras. PhD thesis,

Universität München (2001)
12. Pattinson, D.: Semantical principles in the modal logic of coalgebras. In: Proc.

STACS 2001. Volume 2010 of Lecture Notes in Computer Science., Springer Verlag
(2001)

262 B. Klin

13. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. In:
Procs. FOSSACS’05. (to appear)

14. Jacobs, B.: Trace semantics for coalgebras. In: Proc. CMCS 2004. Volume 106 of
Electronic Notes in Theoretical Computer Science. (2004)

15. Jacobs, B.: Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. North Holland (1999)

16. Aczel, P., Mendler, N.: A final coalgebra theorem. In: Proc. CTCS’89. Volume 389
of Lecture Notes in Computer Science. (1989) 357–365

17. Thomsen, B.: A theory of higher-order communicating systems. Information and
Computation 116 (1995)

18. Cirstea, C., Pattinson, D.: Modular construction of modal logic. In: Proc. CON-
CUR’04. Volume 3170 of Lecture Notes in Computer Science. (2004)

Ultrafilter Extensions for Coalgebras

C. Kupke1, A. Kurz2,�, and D. Pattinson3

1 CWI and Universiteit van Amsterdam, Amsterdam, The Netherlands
2 Department of Computer Science, University of Leicester, UK

3 Imperial College, London, UK

Abstract. This paper studies finitary modal logics as specification languages for
Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-
known that Set-coalgebras are not semantically adequate for finitary modal logics
in the sense that bisimilarity does not in general coincide with logical equiv-
alence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the
other hand, do provide an adequate semantics for finitary modal logics. This leads
us to study the relationship of finitary modal logics and Set-coalgebras by uncov-
ering the relationship between Set-coalgebras and Stone-coalgebras. This builds
on a long tradition in modal logic, where one studies canonical extensions of
modal algebras and ultrafilter extensions of Kripke frames to account for finitary
logics. Our main contributions are the generalisations of two classical theorems
in modal logic to coalgebras, namely the Jónsson-Tarski theorem giving a set-
theoretic representation for each modal algebra and the bisimulation-somewhere-
else theorem stating that two states of a coalgebra have the same (finitary modal)
theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter exten-
sion of the coalgebra.

1 Introduction

To formalise transition systems as coalgebras for a functor T : Set → Set has many
advantages. In particular, the theory of transition systems can be set up parametric in
the ‘type’ T of the transition system and a number of techniques for coalgebras (e.g.
final semantics, isomorphism theorems, final sequence, co-Birkhoff theorems) can be
obtained by dualising the corresponding concepts for algebras (Rutten [18]). Unfortu-
nately, when it comes to specification languages for coalgebras, it is more difficult to
achieve results parametric in the functor T .

The idea that (variants of) modal logics are the natural logics for coalgebras goes
back to Moss seminal paper [14]. Applying to modal logic dualised algebraic meth-
ods, leads to the insight that modal logic for coalgebras is dual to equational logic for
algebras [11,13]. But the methods derived from this approach are adequate only for in-
finitary logics. This can be seen as a consequence of the fact that Setop is equivalent
to the category of complete atomic Boolean algebras which correspond to infinitary
propositional logic in the same way as Boolean algebras capture finitary propositional
logic.

� Partially support by the Nuffield Foundation Grant NUF-NAL04.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 263–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

264 C. Kupke, A. Kurz, and D. Pattinson

Maybe for this reason, the approach towards (more realistic) finitary logics for coal-
gebras has been somewhat ad hoc. It essentially consisted in giving up parametricity in
T and restricting attention to particular classes of functors [12,17,6]. More recently,
Pattinson [15,16] has shown how these logic arise uniformly as logics given by predi-
cate liftings. It is one of the aims of this paper to further develop this approach towards
a theory of logics for coalgebras that is fully parametric in the functor T .

Another approach to finitary logics for coalgebras is to change the model theory,
that is, to replace coalgebras over Set (Set-coalgebras) by coalgebras over Stone spaces
(Stone-coalgebras) [10]. Stone-coalgebras generalise the so-called descriptive general
frames which are known in modal logic as the standard adequate semantics for finitary
modal logics. Here adequate means that the logic is sound and complete and that two
states are bisimilar iff they have the same theory. The deeper reason for the adequateness
of finitary modal logics and Stone-coalgebras is the duality of Boolean algebras and
Stone spaces, see Johnstone [7].

In [9], we have shown that every sound logic L given by predicate liftings induces
a functor L on the category BA of Boolean algebras. Using the dual equivalence of BA
and the category Stone of Stone spaces, it follows that L has a ‘dual’ L∂ on Stone and
that L∂-coalgebras provide an adequate semantics for L.

The main issue of this paper can now be explained as follows: If a finitary modal
logic for T -coalgebras is given by a functor L on BA, then an adequate semantics for
this logic is provided by the Stone-coalgebras for the dual functor L∂ . The quest for a
model theory of finitary modal logics for coalgebras now boils down to a comparison
of T -coalgebras over Set and Stone-coalgebras for L∂ . This is the main theme of this
paper. By building on the well-developed model theory of modal logics, where this
question has been studied for the special case of Kripke frames and Kripke models, our
main contribution is the generalisation of two important theorems of modal logic: The
Jónsson-Tarski theorem and bisimulation-somewhere-else. The former result provides
us with an completeness theorem, and the latter with a model-theoretic characterisation
of logical equivalence.

Summary of Techniques: The main ingredients of our approach are depicted in the
following non-commuting diagram

BA
S �� Stone

U��))
))
))
))

Set
Q

��********

(1)

The category BA of Boolean algebras is the main building block of our logics, which
are obtained by ‘adding modal operators’ to BA. The category Stone of Stone spaces is
our main technical tool. Stone is ‘categorically the same’ as BA in the sense that Stone
is dually equivalent to BA. But, as a category of topological spaces, Stone is sufficiently
Set-like to be useful in the study of Set-based coalgebras.

The functor Q : Set → BA is the contravariant powerset functor mapping a set X to the
algebra of predicates over X . The functor S is one part of the dual equivalence between
Stone and BA and maps a Boolean algebra A to its space SA of ultrafilters giving a

Ultrafilter Extensions for Coalgebras 265

topological representation1 of A. Finally, U is the forgetful functor that maps a space to
its carrier set. Note that the one traversal of this diagram, starting at BA, produces the
perfect [8] or canonical extension QUS(A) for any Boolean algebra A. The traversal
starting at Set produces the set of ultrafilters USQ(X) over a set X (see e.g. [3] for
more information).

One of our aims is to lift these constructions to T -coalgebras, where T : Set → Set.
This will be achieved by first translating a T -coalgebra to an L-algebra, for a suitable
L : BA → BA, then to transport this algebra by duality to an L∂-coalgebra over Stone
and finally back to a T -coalgebra where we use Q, S, U to map the carriers of the
respective structures.

It has been shown in [9] that any logic L for T -coalgebras (as e.g. the logics in
[15,16,6,17,12]) given by predicate liftings can be described by a functor L on BA
(capturing syntax and proof rules) and a natural transformation δ : LQ → QT (giving
the coalgebraic semantics).

BA
S ��L

��
Stone

U�����
���

�
δ : LQ → QT

Set
Q

��+++++++

T

��

(2)

The transformation δ allows to lift Q to a functor Q̃ : Coalg(T) → Alg(L). The se-
mantics of formulas w.r.t. to a coalgebra ξ : X → TX is given by by the unique
morphism from the initial L-algebra to Q̃ξ. The initial L-algebra is commonly known
as the Lindenbaum algebra of the logic L.

Summary of Results: We will show how to generalise two classic results from modal
logic to coalgebras, namely the Jónsson-Tarski theorem and the bisimulation-
somewhere-else result for ultrafilter extensions.

Jónsson-Tarski Theorem (Completeness). Given a modal logic described by L and δ,
we extend US : BA → Set to a map Ũ S̃ : Alg(L) → Coalg(T). Applying

Q̃Ũ S̃ : Alg(L) → Coalg(T) → Alg(L) (3)

to an algebra LA → A, there will be an injective L-algebra morphism

jA : A → QUSA.

This is known in modal logic, in the case of Kripke frames, as the Jónsson-Tarski theo-
rem. As a corollary, completeness of the logic w.r.t. T -coalgebras then follows because
the T -coalgebra corresponding to the initial L-algebra provides a counter-model for any
non-derivable formula.

1 The elements of A are represented by the clopen (closed and open) subsets of the topological
space SA. ∧, ∨, ¬ in A become intersection, union and complement.

266 C. Kupke, A. Kurz, and D. Pattinson

Lifting Functors from Set to Stone. We will lift a functor T : Set → Set to a functor
T̂ : Stone → Stone in such a way that SQ extends to a functor

S̃Q̃ : Coalg(T) → Coalg(T̂).

T̂ will depend on a choice of logic for T , but there is a canonical such, namely the logic
given by all predicate liftings for T . We show that two states in a T -coalgebra have the
same theory if and only if they are bisimilar in the corresponding T̂ -coalgebra.

Ultrafilter Extensions. Ultrafilter extensions are one of the central notions in the model
theory of modal logics. In order to define ultrafilter extensions we need to find, for each
coalgebra X → TX a suitable coalgebra USQ(X) → T (USQ(X)) where USQ :
Set → Set maps a set X to the set of ultrafilters on X . We determine conditions that
allow us to obtain a transformation t : UT̂ → TU , thus completing Diagram (2) to

BA
S ��L

��
Stone

U�����
���

��
T̂

��

δ : LQ → QT t : UT̂ → TU

Set
Q

��,,,,,,,

T

��

(4)

The transformation t allows to lift U to Ũ : Coalg(T̂) → Coalg(T). The ultrafilter
extension of a coalgebra is then given by the composition

Ũ S̃Q̃ : Coalg(T) → Alg(L) → Coalg(T̂) → Coalg(T). (5)

Under the assumption that the transformation t above is natural, we show that two
states in a T -coalgebra (X, ξ) have the same theory if and only if they are bisimilar in
the ultrafilter extension Ũ S̃Q̃(X, ξ). This provides a model-theoretic characterisation
of logical equivalence for finitary logics.

Related Work. The first attempt of formulating a duality which accounts for an al-
gebraic semantics of modal logic, for the special class of Kripke-polynomial functors,
goes back to Jacobs [6]. Moreover, Section 5 of loc.cit. contains some material on ul-
trafilter extensions of coalgebras but fails to give an account of bisimilarity somewhere
else, as there the function embedding a coalgebra into its ultrafilter extension is a mor-
phism of coalgebras.

2 Preliminaries and Notation

Stone Duality. Unfortunately we have space only to indicate the most important no-
tions. For a general introduction we refer to [7,2]. We write Set for the category of sets
and functions, BA for the category of Boolean algebras and their morphisms and Stone
for the category of Stone-spaces and continuous maps. The contravariant functors wit-
nessing the dual equivalence between Set and Stone are denoted by

P : Stone → BA and S : BA → Stone

Ultrafilter Extensions for Coalgebras 267

where PX is the Boolean algebra of clopen (closed and open) subsets of X and SA is the
space consisting of ultrafilters over A; on arrows, these functors act as inverse image;
for more on this duality see [7]. The forgetful functors are denoted by U : Stone → Set
and V : BA → Set throughout, and Q : Set → BA is the contravariant powerset
functor, which is assumed to take values in BA. The composition QUS constructs the
perfect [8] or canonical extension of a Boolean algebra, and we write

jA : A → QUSA, a �→ {u ∈ USA | a ∈ u}
for the canonical embedding. The fact that jA : A → QUSA is an injective Boolean
algebra morphism is known as Stone’s representation theorem for Boolean algebras:
jA represents A as an algebra of subsets where ∧,∨,¬ in A become intersection, union
and complement. Another map which we will need throughout the paper is the map

ηX : X → USQX, x �→ {Y ⊆ X | x ∈ Y }
embedding a set X into the set of ultrafilters of QX . (In fact, but we will not use this,
Q and US are adjoint on the right and j and η are the (co)units of the adjunction.)

The category Stone allows familiar type constructions. For example, whereas
Kripke polynomial functors (KPF) [6] on Set are given by the left-hand side below,
Vietoris polynomial functors (VPF) [10] on Stone are given by the right-hand side.

T ::= Id | K | T I | T +T | T×T | P◦T T ::= Id | K | T I | T +T | T×T | V◦T
K, K denote constant functors, I denotes a set. P is covariant powerset and V the Stone
space analogue: VX is the Stone space of closed subsets of X; the topology is generated
by {{b ⊆ UX | b closed and b ⊆ a} | a clopen}.

Coalgebraic Modal Logic. (See [9] for more details). Our treatment of coalgebras
and modal logic is parametric in an endofunctor Set → Set, which is denoted by T
throughout. By an n-ary predicate lifting for T we mean a natural transformation λ :
(2·)n → 2T · where 2· : Set → Set is contravariant powerset (note that 2· = V Q). A
set Λ of predicate liftings and associated arities gives rise to a functor L0 : Set → BA
by mapping A �→ F{[λ](a1, . . . , an) | λ n-ary, a1, . . . , an ∈ A}; here F : Set →
BA is the functor that constructs free Boolean algebras and expressions of the form
[λ](a1, . . . , an) are understood purely syntactically. To every set of predicate liftings
we associate a logic L(Λ) given by

L(Λ) � ϕ ::= ff | ϕ → ϕ | [λ](ϕ1, . . . , ϕn) (λ ∈ Λ n-ary)

It follows by induction that L(Λ) =
⋃

n≥0(UL0)n(V F{tt, ff}) where V : BA → Set
is the forgetful functor.

A modal axiom is an expression ϕ ↔ ψ where ϕ, ψ ∈ L0(FX) for a denumerable
set X of variables. We write A ! ϕ if ϕ is derivable using propositional reasoning,
congruence (if ϕ1 ↔ ψ1, . . . , ϕn ↔ ψn then [λ](ϕ1, . . . , ϕn)↔ [λ](ψ1, . . . , ψn)) and
substitution instances of axioms in A.

Given a set A of modal axioms, we define a functor L : BA → BA by LA =
L0UA/∼ where ∼ is the least equivalence relation on UL0A that contains all sub-
stitution instances of axioms ϕ ↔ ψ ∈ A. This allows us to view syntax and proof

268 C. Kupke, A. Kurz, and D. Pattinson

calculus of a logic given by a set of predicate liftings and modal axioms as endofunctor
L : BA → BA. Note that the n-fold application of L to the initial Boolean algebra
yields the set

Ln(Λ,A) = {ϕ ∈ L(Λ) | rank(ϕ) ≤ n}/∼
where∼ is the inter-derivability relation given by A.

For a T -coalgebra (C, γ), the semantics [[ϕ]]γ ⊆ C of a formula is given by the
inductive extension of the assignment

[[[λ](ϕ1, . . . , ϕn)]]γ = γ−1 ◦ λ(C)([[ϕ1]]γ , . . . , [[ϕn]]γ)

to the whole ofL(Λ). Assuming soundness of the semantics, that isA ! ϕ↔ ψ implies
[[ϕ]]γ = [[ψ]]γ for all T -coalgebras (C, γ), we can define a natural transformation

δX : LQ(X) → QT (X)

by the inductive extension of the assignment ([λ](ϕ1, . . . , ϕn))∼ �→ λ(X)(ϕ1, . . . , ϕn)
where (·)∼ is the equivalence class of · by ∼.

This allows us to recast the coalgebraic semantics of L(Λ) as follows: For ϕ ∈
V F ({tt, ff}), [[ϕ]]γ is given canonically; if ϕ ∈ (UL0)n+1(V F ({tt, ff})) we obtain
[[ϕ]]γ = γ−1 ◦ δ(π(ϕ)) where π : L0U → L takes equivalence classes. Assuming that
the initial L-algebra exists, we arrive at the following compact characterisation of the
coalgebraic semantics. The semantics of formulas w.r.t. to a coalgebra ξ : X → TX is
given by by the unique morphism from the initial algebra LI → I

I

[[·]]
��

LI��

L[[·]]
��

QX QTX
Qξ�� LQX

δX��

(6)

We say that two states x, y in two coalgebras are behaviourally equivalent or bisimilar
if they can be identified by some coalgebra morphism. If two states are bisimilar, then
they satisfy the same formulae. The converse is not true in general. This failure plays
an important role in this paper.

3 Jónsson-Tarski Theorem (Completeness)

Given an algebra α : LA → A, we want to transform it to the Set-coalgebra

Ũ S̃(α) = USA
USα→ USLA

hA→ TUSA.

Thinking of the elements of USLA as ultrafilters over LA, we define

hA : USLA −→ TUSA (7)

u �→ hA(u) ∈
⋂
{δ(LjA(a)) | a ∈ u} (8)

Ultrafilter Extensions for Coalgebras 269

that is, hA chooses an element in
⋂{δ(LjA(a)) | a ∈ u} for each ultrafilter u on LA.

This definition is constructed in such a way that Ũ S̃ preserves the semantics (compare
Diagram(9) below with Diagram (6)). The notation Ũ S̃ suggests that both U and S can
be lifted seperately, see Section 5. Here we neither require hA to be natural nor Ũ S̃ to
be a functor.

Definition 1. We say that h is definable if for all algebras A and all ultrafilters u on LA
we have that

⋂{δ(LjA(a)) | a ∈ u} is non-empty.

Remark 2. A necessary condition for h to be definable is that δ is injective. For sup-
pose otherwise. Then there will be an a ∈ LA such that a �=⊥ and δ(LjA(a)) = ∅. As
a �=⊥we find an ultrafilter u ∈ USLA s.t. a ∈ u. But then

⋂{δ(LjA(a)) | a ∈ u} = ∅.
The essence of completeness w.r.t. to the coalgebraic semantics is that

jA : A → QUSA

is an injective Alg(L)-morphism. This is known as the Jónsson-Tarski theorem. It is an
extension of Stone’s representation theorem from Boolean algebras to modal algebras
(ie L-algebras).

To see how completeness follows, assume that ϕ is not derivable and α : LA → A
is the initial algebra. We have α |= ϕ �= #, hence Q̃Ũ S̃(α) |= ϕ �= # by jA being an
injective morphism, hence Ũ S̃(α) /|= ϕ by definition of the coalgebraic semantics (see
Diagram (6)), thus providing the countermodel for ϕ.

From Stone’s theorem, we know that jA is an injective BA-morphism. To see what is
needed to make jA an L-algebra morphism we take a look at the following diagram.

A

jA

��

LA
α��

jLA

��							
						

						
						

						
					

LjA

��
QUSA QUSLA

QUSα
�� QTUSA

QhA=h−1
A

�� LQUSA
δUSA

��

(9)
The lower part, which is an L-algebra on QUSA, is obtained by transforming (A, α)
into a T -coalgebra and back to an L-algebra. From the naturality of j, it follows that jA

is an L-algebra morphism if the triangle commutes. This leads us to

Theorem 3. Assuming that h is definable, the logic given by δ is complete w.r.t. the
coalgebraic semantics.

Proof. We show that the triangle in the diagram above commutes. For b ∈ LA, let us
write b̂ for jLA(b) = {u ∈ USLA | b ∈ u}. Eliding subscripts, we have to show
h−1(δ(Lj(b))) = b̂, that is,

h(u) ∈ δ(Lj(b))⇔ b ∈ u.

‘⇐’ holds by definition of h. For ‘⇒’ assume b /∈ u. It follows ¬b ∈ u, hence h(u) ∈
δ(Lj(¬b)), hence h(u) ∈ ¬δ(Lj(b)), ie h(u) /∈ δ(Lj(b)).

270 C. Kupke, A. Kurz, and D. Pattinson

Remark 4. The completeness proof of Jacobs [6] works essentially this way (his r is
our h). Compared to the completeness proof of [9] (which mimicked the induction along
the final coalgebra sequence of [15]), the Jónsson-Tarski approach to completeness is
simpler as it avoids an induction along the final sequence. On the other hand not all
logics admit such a completeness proof: If we take the finite powerset functor together
with the standard modal logic, then h is not definable, see Example 23.

4 Lifting Functors from Set to Stone

In this section we are going to use predicate liftings to lift a functor T : Set → Set to a
functor T̂ : Stone → Stone. We will give two descriptions of T̂ . First, T̂X is the dual of
the Boolean algebra generated by the images of the predicate liftings QUX → QTUX

(Definition 7). Second, T̂ is the dual of the functor L on BA that describes the complete
logic corresponding to the given predicate liftings (Remark 16).

Given a collection S of subsets of X we denote by 〈S〉BA the subalgebra of the
Boolean algebra P(X) generated by S, i.e. by closing S under taking finite unions,
intersections and under complementation. We will use the following technical lemma.

Definition and Lemma 5. Given a functor F : C → Set and a functor G : Cop → Set
such that there is a natural transformation j : G → V QF op. Then we can define a
functor 〈G〉BA : Cop → BA by letting 〈G〉BAX := 〈jX [GX]〉BA and 〈G〉BAf :=
V QF opf �〈G〉BAY for arbitrary X, Y and f : X → Y ∈ C.

Proof. Using the naturality of j it is easy to show that 〈G〉BA is well defined on objects
and morphisms. Functoriality of 〈G〉BA then follows from the functoriality of V QF op.

Definition 6. Let F, G : C → Set be functors and τ : F → G a natural transformation.
Then we define a functor %(τ) : C → Set by %(τ)(X) := τX [FX] for X ∈ C and by
letting %(τ)(f) to be the unique map such that the following diagram commutes

FX

Ff

��

�� �� %(τ)(X)

�(τ)(f)
��

� � �� GX

Gf

��
FY �� �� %(τ)(Y) � � �� GY

where f : X → Y ∈ C was arbitrary.

We are now ready for the definition of a lifting of a Set-endofunctor to Stone.

Definition 7. Given T : Set → Set and a set Λ of predicate liftings λ : V Qnλ → V QT
define

T̂ := S(〈%(τΛ)〉BA)

where τΛ := [(λU ◦ inλ)λ∈Λ] :
∐

λ∈Λ V P nλ → V QT denotes the natural transfor-
mation obtained by cotupling of all the transformations λU ◦ inλ and the maps inλ

X
are

the embeddings V P nλX → V QnλUX.

Ultrafilter Extensions for Coalgebras 271

Proposition 8. T̂ is a functor.

Proof. Clearly τΛ = [(λU ◦ inλ)λ∈Λ] is a natural transformation from
∐

V P nλ to
V QTU . Therefore %(τ) is a functor from Stoneop → Set and there is a natural trans-
formation j : %(τ) → V QTU . But then by Lemma 5 〈%(τ)〉BA is a functor from
Stoneop to BA. Therefore T̂ is a functor from Stoneop to Stoneop or, equivalently,
T̂ : Stone → Stone.

The previous definition pre-supposes a set Λ of predicate liftings to define the lifted
functor T̂ : Stone → Stone. The next proposition, which was stated in [19] and which
is an instance of the Yoneda lemma, shows that there is a canonical choice for the set of
liftings.

Proposition 9. There is a 1-1 correspondence

{n-ary predicate liftings λX : (2n)X → 2TX} ∼= { subsets of T (2n)}
given by S ⊆ T (2n) �→ λ where

λ(C) : (P1, . . . , Pn) ∈ P(C)n �→ {t ∈ TC | S ◦ T 〈 P1 , . . . , Pn〉(t) = 1}
where, for Y ⊆ X , Y : X → 2 is the characteristic function of Y .

Given this canonical choice of liftings, it is instructive to look at some concrete
examples.

Example 10. 1. Suppose TX = K is constant with some finite set K as its value.
Then T̂ ∼= K where K is the set K with the discrete topology. To see that, note that
every lifting is determined by a subset k ⊆ K , which gives rise to the algebra QK
of all subsets of K , which in turn induces the lifted functor T̂X = SQK ∼= K.

2. For TX = X , i.e. T = Id, we get T̂ ∼= Id. For n = 1, we obtain a unary lifting λS

for every S ⊆ 2; this gives rise to the liftings

λ1 = id λ2 = ¬ λ3 = tt λ4 = ff

where λi(C) : P(C) → P(C). One can show, that all n-ary liftings can be obtained
as Boolean combinations of λ1. Hence the generated Boolean algebra 〈%(τΛ)〉BAX

is isomorphic to PX, whence Îd ∼= Id.
3. For TX = P(X), we obtain T̂ ∼= V where V : Stone → Stone denotes the

Vietoris functor. Invoking Proposition 9, we obtain 8 unary liftings of type V QC →
V QTC, which are generated by Boolean combinations of � and �, where �(C) :
2C → 2TC is given by c �→ {d ⊆ C | d ⊆ c} and � = ¬◦�◦¬. Similarly, all n-ary
liftings can be defined, and one obtains that for the case TX = PX , 〈%(τΛ)〉BAX

is the Boolean algebra generated by {�a | a ∈ PX} ∪ {�a | a ∈ PX} quotiented
by the axioms of standard modal logic, i.e. �ϕ ↔ ¬�¬ϕ and �(ϕ1, . . . , ϕn) ↔
(�ϕ1 ∧ · · · ∧�ϕn). From this it follows that T̂ ∼= V , see [10] for details.

Remark 11. It is possible to prove that ·̂ commutes with the formation of products,
coproducts and the composition of functors, i.e.

T̂1 × T2 ∼= T̂1 × T̂2, T̂1 + T2 ∼= T̂1 + T̂2 and T̂1 ◦ T2 ∼= T̂1 ◦ T̂2.

272 C. Kupke, A. Kurz, and D. Pattinson

Combining this fact with the above mentioned examples one can show that for every
Kripke polynomial functor T the corresponding Vietoris polynomial functor is isomor-
phic to the functor T̂ .

We will now show that we can extend the functor SQ : Set → Stone to a functor
Coalg(T) → Coalg(T̂). As a first step of this construction let us see how we can trans-
form ultrafilter of QTUX naturally into ultrafilter of 〈%(τΛ)〉BAX by simply forgetting
the sets in QTUX \ 〈%(τΛ)〉BAX.

Definition and Lemma 12. The function π̂X defined by

π̂X : SQTUX → T̂X

u �→ u ∩ (〈%(τΛ)〉BAX
)

is well-defined and continuous. The family of functions π̂X∈Stone gives rise to a natural
transformation π̂ : SQTU → T̂ .

Proof. Let j be the natural embedding of 〈%(τΛ)〉BAX into QTUX. Then it is easy
to see that Sj = π̂X. Hence π̂X is well defined and continuous. Naturality of π̂ then
follows from the naturality of j.

With the help of π̂ we can turn T -coalgebras into T̂ -coalgebras.

Definition 13. Let (X, γ) ∈ Coalg(T). Then we define a function γ̂ : SQX →
T̂ SQX by letting γ̂ := π̂SQX ◦ SQTηX ◦ SQγ.

SQX
SQγ ��

γ̂

��
SQTX

SQTηX �� SQTUSQX
π̂SQX �� T̂ SQX

The operation of turning a T -coalgebra into a T̂ -coalgebra is functorial.

Proposition 14. The mapping

(X, γ) ∈ Coalg(T) �→ (SQX, γ̂) ∈ Coalg(T̂)
f ∈ Coalg(T) �→ SQf ∈ Coalg(T̂)

defines a functor S̃Q̃ : Coalg(T) → Coalg(T̂).

Proof. The claim follows from the fact that η and π̂ are both natural.

The semantics of the logic w.r.t. T̂ -coalgebras is given by the following predicate
liftings.

Definition 15. A predicate lifting λ : (V Q)n → V QT for T induces a predicate lifting
λ̂ : (V P)n → V P T̂ for T̂ via

λ̂X = V k〈�(τΛ)〉BAX ◦ λUX ◦ inX

where in
X

: (V PX)n → (V QUX)n and k〈�(τΛ)〉BAX : 〈%(τΛ)〉BAX → PS〈%(τΛ)〉BAX

is the isomorphism given by Stone duality.

Ultrafilter Extensions for Coalgebras 273

Remark 16. T̂ can be described more abstractly. Let δ′ : L′Q → QT describe the
semantics of the logic L given as above by predicate liftings (and no axioms). We can
define ‘an improved version’ L of L′ ‘with axioms’ by factoring L′A → LQUSA →
QTUSA through its image as L′A � LA ↪→ QTUSA. One then shows the following.

1. L is a functor.

2. LQX is obtained by factoring δ′ : L′QX → QTX through its image. The image
δX : LQX → TQX gives the interpretation of L w.r.t. T -coalgebras whereas,
intuitively, the quotient L′QX → LQX describes the axioms added to L. That δ
is injective corresponds to the completeness of the logic described by L, see [9].

3. L is dual to T̂ , that is, there is an isomorphism SL → T̂ S, or, equivalently, δ̂ :
LP → P T̂ . The iso δ̂ gives a T̂ -coalgebra semantics to the logic L which agrees
with the one from Definition 15.

4. The functor S̃Q̃ : Coalg(T) → Coalg(T̂) can now be described as mapping X →
TX to SQX → SQTX

SδX−→ SLQX
∼=→ T̂ SQX .

Proposition 17. 1. Consider a state x of a T -coalgebra and the state ηX(x) in the
corresponding T̂ -coalgebra. x and ηX(x) have the same theory.

2. Two states of a T̂ -coalgebra are bisimilar iff they have the same theory.

Proof. 1. Let ι : LI → L be the initial L-algebra and ϕ ∈ I . The semantics of ϕ
w.r.t. a coalgebra X → TX and its ultrafilter extension SQX → T̂ SQX is given
by the initial algebra maps as in the following diagram (see Remark 16).

I

[[·]]Set

��
[[·]]Stone

��

LI
ι��

L[[·]]Set

��
L[[·]]Stone

QX

∼=
��

QTX��

∼=
��

LQX
δX��

∼=
��

PSQX PSQTX�� PSLQX
PSδX�� PT̂SQX

∼=�� LPSQX
∼=��

The left column means that u ∈ [[ϕ]]Stone iff [[ϕ]]Set ∈ u (note the similarity with the
truth lemma of the canonical model known in modal logic). This implies the claim.

2. This follows from T̂ being dual to L.

The following corollary reconciles logical equivalence and bisimilarity. Although
two logically equivalent states in a Set-coalgebra may fail to be bisimilar, they will be
bisimilar in the corresponding Stone-coalgebra:

Theorem 18. Given T : Set → Set and a logic L for T -coalgebras, let T̂ : Stone →
Stone be the lifted functor. Then, given (X, γ) ∈ Coalg(T) and x, y ∈ X , we have that
x and y have the same theory iff ηX(x) is bisimilar to ηX(y) in S̃Q̃(X, γ).

274 C. Kupke, A. Kurz, and D. Pattinson

5 The Ultrafilter Extension of a Coalgebra

In this section we define Ũ , thus lifting Diagram (1) to algebras and coalgebras2

Alg(L) S̃ �� Coalg(T̂)

Ũ!!---

--

Coalg(T)
Q̃

""........

(10)

Ũ S̃Q̃(X
ξ→ TX) will be the ultrafilter extension of ξ. Although SQ is left-adjoint

to U , this will not hold in general for the lifted functors. The reason is that the unit
ηX : X → USQX may fail to be a coalgebra morphism. This is the observation that
gives rise to Theorem 27.

We need a transformation t : U T̂ → TU . This can be done if ultrafilters in T̂ have
non-empty intersection, that is, if for all Stone spaces X and all ultrafilters u ∈ U T̂X

we have
⋂
u �= ∅. We then define

tX : U T̂X → TUX

u �→ tX(u) ∈
⋂
u

Remark 19. Using T̂ S ∼= SL, we see that tX appeared already as hPX in (7). Similarly,
hA is tSA. Note that naturality was not required in Section 3.

Under the assumption that t is natural, we can now lift U : Stone → Set to a functor

Ũ : Coalg(T̂) → Coalg(T)

mapping ξ : X → T̂X to UX
Uξ→ ÛTX

tX→ TUX. In the following proposition we prove
two useful properties of t.

Proposition 20. For all X ∈ Stone let tX be defined as above. Then

1. tX is injective for all X.
2. If for all X and for all u ∈ U T̂X we have that

⋂
u is a singleton set, then t is a

natural transformation.

Proof. The first item follows from the fact that for two ultrafilters u �= u′ we always
have

⋂
u ∩ ⋂

u′ = ∅. To prove that t is natural we have to show that TUf ◦ tX =
tY ◦ U T̂f for some arbitrary f : X → Y. Let u ∈ U T̂X . Then

tY(U T̂f(u)) = tY((TUf−1)−1(u)) = F

⇔ F ∈
⋂

(TUf−1)−1(u) = (TUf−1)−1(F ′)

for the F ′such that (
⋂
u) = {F ′}

⇔ F = TUf [F ′]⇔ TUf(tX(u)) = F.

2 S̃(LA → A) = SA → SLA ∼= T̂SA, see Remark 16.3.

Ultrafilter Extensions for Coalgebras 275

Kripke polynomial functors fulfill this criterion, for example:

Example 21. Let T = P and Λ the canonical set of liftings. Then it is easy to see that
〈%(τΛ)〉BAX = PVX and therefore we have for all u ∈ U T̂X = S(〈%(τΛ)〉BAX) that⋂
u = {F} for some F ∈ VX by Stone duality. Therefore t is natural according to

Proposition 20. The reader is invited to check that in fact VX = (%(t)X, τt) where%(t)
is defined as in 6 and τ is the quotient topology induced by tX. Therefore our definition
of an ultrafilter extension for P-coalgebras coincides with the one used in modal logic.

Remark 22. The construction sketched in the example works also for other functors:
If t is natural, the mapping T̄ : Stone → Stone, X �→ (%(t)X, τt), can be extended
to a functor with the property that T̂ ∼= T̄ and that U T̄X ⊆ TUX for all X. We can
then use the inclusion U T̄X ⊆ TUX which simply forgets the topology in place of the
t-map to define the ultrafilter extension. This works in particular for a KPF T where we
get that T̄ is equal to the corresponding VPF.

There are also functors for which we cannot define an ultrafilter extension.

Example 23. Let T = Pω and Λ = {�} wherePω denotes the finite power set functor
and �(Y) := {Y ′ | Y ′ is finite and Y ′ ∩ Y �= ∅}. Then t cannot be defined in general.
For a counterexample consider X = (ω ∪ {∗}, τ) where τ is generated by the Boolean
set algebra of all finite subsets of ω and all cofinite subsets of ω ∪ {∗} that contain ∗.
Then X is a Stone space. If we define U := {�({n}) | n ∈ ω} ⊆ 〈%(τΛ)〉BAX one can
easily check that U has the finite intersection property. Therefore we can extend U to
an ultrafilter u ∈ U P̂ωX. But obviously

⋂
U = ∅ and hence also

⋂
u = ∅.

Of course, finitely branching Kripke frames, ie coalgebras for Pω, do have ultrafilter
extensions. The point of the example above is that these ultrafilter extensions are P-
coalgebras but not Pω-coalgebras.

The important property we need is that t preserves the semantics. The semantics of
the logic w.r.t. T̂ -coalgebras was given in Definition 15 and Remark 16.3.

Proposition 24. t : U T̂ → TU preserves the semantics. That is, the subsets of UX

determined by interpreting a formula on ξ : X → T̂X and on tX ◦ Uξ : UX → TUX

are identical.

Proof. The claim is proven by induction on the structure of formulas. We only provide
the inductive step for formulas of the form [λ]ϕ. Let x ∈ X and ψ = [λ]ϕ, then

x ∈ [[ψ]]tX◦Uξ ⇔ x ∈ (tX ◦ Uξ)−1(λUX([[ϕ]]tX◦Uξ))
I.H.⇔ x ∈ (tX ◦ Uξ)−1(λUX([[ϕ]]ξ))

(∗)⇔ x ∈ Uξ−1
(
{u ∈ U T̂X |

⋂
u ⊆ λUX([[ϕ]]ξ)}

)
⇔ x ∈ Uξ−1

(
{u ∈ U T̂X | λUX([[ϕ]]ξ) ∈ u}

)
= Uξ−1

(
λ̂X([[ϕ]]ξ)

)
⇔ x ∈ [[ψ]]ξ,

where the ⇒-part of (∗) is true because⋂
u �⊆ λUX([[ϕ]]ξ) ⇒ λUX([[ϕ]]ξ) �∈ u⇒ −λUX([[ϕ]]ξ) ∈ u ⇒

⋂
u ⊆ −λUX([[ϕ]]ξ).

276 C. Kupke, A. Kurz, and D. Pattinson

Remark 25. That t preserves the semantics means that the left-hand column of the
diagram

I

[[·]]ξ
��

[[·]]tX◦Uξ

��

LI
ι��

L[[·]]ξ
��

L([[·]]tX◦Uξ)

PX�

��

P T̂X
��

��

LPX
δ̂X��

��
QUX QU T̂X�� QTUX

QtX�� LQUX
δUX��

commutes. We can therefore allow as transformation t : U T̂ → TU any transformation
making the lower right square commute, or, redrawing it a bit, making the following
commute.

LQUX
δUX �� QTUX

QtX

��
LPX ∼=

��

��

P T̂X
�� QU T̂X

(11)

This diagram appeared already as the upper square of Diagram (9), compare Remark 19.

Proposition 26. Assume that t is natural. Then Stone-bisimilarity equals Set-
bisimilarity. That is, two states in ξ : X → T̂X are bisimilar iff they are bisimilar
in Ũξ.

Proof. ⊆ follows from t being natural. ⊇: If two states in Ũξ are bisimilar than they
have the same theory. Now apply Propositions 24 and 17.2.

We can now improve on the bisimulation-somewhere-else result of Theorem 18.
Together with the proposition above, it implies that two states in X → TX that have
the same theory are in fact bisimilar in some other Set-coalgebra, namely the ultrafilter
extension of X → TX .

Theorem 27. Given T : Set → Set and a logic L for T -coalgebras, let T̂ : Stone →
Stone be the lifted functor. Assume that ultrafilters in T̂ have non-empty intersection
and that t : U T̂ → TU is natural. Then, given (X, γ) ∈ Coalg(T) and x, y ∈ X , we
have that x and y have the same theory iff ηX(x) is bisimilar to ηX(y) in Ũ S̃Q̃(X, γ).

Remark 28. The result holds, in particular, for all Kripke polynomial functors.

6 Conclusion and Future Work

The focus of this paper was on the relationship between Stone-coalgebras and Set-
coalgebras. This is a special instance of a more general phenomenon in computer sci-
ence where topology-based structures and set-based structures interact. This was ob-
served already in Abramsky [1] where powerdomain-coalgebras and powerset-

Ultrafilter Extensions for Coalgebras 277

coalgebras were compared. We believe that the methods used here will generalise to
other such situations.

First, we can treat other logics than classical ones by replacing the duality between
BA and Stone by one for, e.g. Heyting algebras or distributive lattices. Infinitary logics
can be treated as well, see e.g. [4]. Second, we can replace Set by other categories
of interest in semantics. Third, we can make algebraic tools available by upgrading
the triangle of Diagram (1) to a square where Set is now accompanied by its dual
category of complete atomic Boolean algebras. This will enable the use of methods
developed in the study of perfect or canonical extensions of Boolean algebras (see e.g.
[20, Section 7]).

There are also a number of more immediate open questions. Formulate a finitary de-
finability result for classes of coalgebras in the style of Goldblatt-Thomason [5], based
on ultrafilter extensions. If T preserves finite sets than it has a canonical lifting to from
Set to Stone; show that then this lifting agrees with T̂ . Find nice conditions guarantee-
ing that ultrafilters in T̂ have non-empty intersection.

References

1. S. Abramsky. A domain equation for bisimulation. Information and Computation, 92, 1991.
2. S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in Computer Science. OUP,

1994.
3. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CSLI, 2001.
4. M. Bonsangue and A. Kurz. Duality for logics of transition systems. In V. Sassone, editor,

FoSSaCS’05, volume 3441 of LNCS, 2005.
5. R. Goldblatt. Metamathematics of modal logic I. Reports on Mathematical Logic, 6, 1976.
6. B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform.

Appl., 35, 2001.
7. P. Johnstone. Stone Spaces. Cambridge University Press, 1982.
8. B. Jónsson and A. Tarski. Boolean algebras with operators, part 1. Amer. J. Math., 73, 1951.
9. C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. In

CMCS’04, ENTCS, 2004.
10. C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoret. Comput. Sci., 327, 2004.
11. A. Kurz. A co-variety-theorem for modal logic. In Advances in Modal Logic 2. CSLI, 2001.

Selected Papers from AiML 2, Uppsala, 1998.
12. A. Kurz. Specifying coalgebras with modal logic. Theoret. Comput. Sci., 260, 2001. Earlier

version appeared in the Proceedings of CMCS’98, ENTCS, Vol. 11, 1998.
13. A. Kurz and J. Rosický. Operations and equations for coalgebras. Math. Structures Comput.

Sci., 15, 2005.
14. L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96, 1999.
15. D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local

consequence. Theoret. Comput. Sci., 309, 2003.
16. D. Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame

Journal of Formal Logic, 45, 2004.
17. M. Rößiger. From modal logic to terminal coalgebras. Theoret. Comput. Sci., 260, 2001.
18. J. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput. Sci., 249, 2000.
19. L. Schroeder. Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In V. Sas-

sone, editor, FoSSaCS’05, volume 3441 of LNCS, 2005.
20. Y. Venema. Handbook of Modal Logic, chapter Algebras and Coalgebras. To appear. Elec-

tronically available.

Equational Logic of Recursive Program Schemes

John G. Mersch

Department of Mathematics, Northwestern State University of Louisiana,
Natchitoches LA 71497, USA

merschj@nsula.edu

Abstract. In this paper we present FLRS, a sound and complete equa-
tional logic for proving the equivalence of recursive program schemes.
We use extended versions of the Solution Theorems from [1] and [2] to
provide coalgebraic semantics to recursive program schemes. We end the
paper with a proof that FLRS is complete with respect to the coalgebraic
semantics.

This paper studies the equational logic of recursive program schemes. For
example, one takes a system of equations such as the following:

f (x) = G (x, f (g (x)))
g (x) = G (f (x) , g (g (x)))

(1)

where G is a given or base function and where f and g are defined in terms of G,
f, and g by (1). One could also consider the following recursive scheme:

f (x) = G (x, f (g (x)))
g (x) = G (G (x, f (g (x))) , g (g (x))) .

(2)

Since (2) is obtained from (1) by replacing f (x) in the second equation with
its definition, one would expect (1) and (2) to be provably equivalent in some
formal system. The goal of this paper is to provide such a system which is both
sound and complete. Along with the syntax , one needs to provide a semantics to
recursive program schemes. Traditional approaches to semantics involve putting
a partial order on the set of Σ-trees and then defining the semantics in terms
of least fixed-points (see [3]) or by putting a metric on the set of trees and
then defining semantics in terms of convergence of Cauchy sequences (see [4]).
More recent work use coalgebraic methods to develop semantics. Moreover, in
[5] Moss shows how coalgebraic semantics can be used to prove soundness and
completeness of the FLR0 fragment of the formal language of recursion (see [6]
and [7]). The logic presented in this paper extends FLR0 to include the operation
of taking second-order fixed-points and uses the coalgebraic methods developed
in [2] and [5] to provide soundness and completeness results.

1 Syntax

The Formal Logic of Recursive Schemes, FLRS, provides a framework for reason-
ing about the equivalence of uninterpreted recursive program schemes. As such,

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 278–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Equational Logic of Recursive Program Schemes 279

the logic will contain constructors for fixed-point definitions of functions. Since
FLRS is also intended to be an extension of FLR0, the language will contain
constructors for recursive definitions of first-order variables as well. Formally,
the syntax of FLRS is obtained by starting with a denumerable set of (first-
order) variables Var = {v1, v2, v3, . . .} and, for each arity n, a denumerable set of
function variables fVarn = {fn1 , fn2 , fn3 , . . .} of arity n. We denote by fVar the set⋃

n∈ω fVarn. When the arity is clear from context we write fi instead of fki . We
use lower case roman letters, x, y, z, and so on to denote first-order variables
and sans serif letters, f, g, h, G, and so on to denote function variables.

The terms of FLRS are defined recursively as follows:

1. Each variable vi is a term.
2. If E1, . . . , En are terms then fni (E1, . . . , En) is a term.
3. If A0, A1, . . . , An are terms, then A0 where{x1 = A1, . . . , xn = An} is also

a term.
4. Suppose that F0, F1, . . . , Fn are terms and that f1, . . . , fn are function sym-

bols. Suppose further that, for i = 1, . . . , n, Fi is not a variable and that the
free variables of Fi are contained in v1, . . . , varity(fi). Then the following is
also a term: F0 �f1 = F1, . . . , fi = Fi�.
Clauses 3 and 4 in the above definition correspond, respectively, to first-order

and second-order fixed-point operations. In FLRS we use ��-terms to represent
second-order function definitions. In particular

f (v1) �f = G (v1, f (g (v1))) , g = G (f (v1) , g (g (v1)))� (3)

is the representation of the solution of f according to (1).
Syntactic notions such as free and bound variables are defined in the usual

way: where{x1 = A1, . . . , xn = An} binds the first-order variables x1, . . . , xn

and �f1 = F1, . . . , fn = Fn� binds the function variables f1, . . . , fn. There are two
syntactic substitutions: one each for the first- and second-order variables. For
the first-order substitution we start with a map s : Var → Term. This extends to
a map [s] : Term → Term, which is defined recursively as follows:

1. [s] (vi) = s (vi).
2. [s] (f (E1, . . . , En)) = f ([s] (E1) , . . . , [s] (En)).
3. [s] (A where{x1 = A1, . . . , xn = An}) =

[t] (A) where{x1 = [t] (A1) , . . . , xn = [t] (An)} where t is the substitution
t (xi) = xi and t (y) = s (y) for all other variables.

4. [s] (F �f1 = F1, . . . , fn = Fn�) = [s] (F) �f1 = F1, . . . , fn = Fn�.
It is important to note that in the fourth clause of the above definition the

first-order substitution is not performed on the terms inside the recursive pro-
gram scheme; the variables in the Fi terms serve as place holders for arguments
of the unknown functions rather than as syntactic variables.

For the second-order substitution, we start with a map σ : fVar → Term with
the property that the only free variables in σ (fni) are v1, . . . , vn and define a map
[σ] : Term → Term which extends σ. The recursive definition of [σ] is as follows.

280 J.G. Mersch

1. [σ] vi = vi.
2. [σ] f (E1, . . . , Ek) = [s]σ (f) where s is the first-order substitution s (vi) =

[σ]Ei.
3. [σ]

(
A where

{−→x =
−→
A
})

= [σ] (A) where
{−→x =

−−−−→
[σ] (A)

}
.

4. [σ]F �f1 = F1, . . . , fk = Fk� = ([γ]F)
�−→

f =
−−→
[γ]F

�
where γ is the second or-

der substitution γ (fi) = fi (v1, . . . , vk) and γ (g) = σ (g) for g �= fi.

2 Semantics

In [8] and in this paper we use completely iterative monads to provide semantics
for recursive program schemes. In this section we recall the basic definitions and
present the major theorems of this theory.

Definition 1. Let (C,+) be a category with a coproduct. An endofunctor H :
C → C is said to be iteratable if the functor H (−) + a has a final coalgebra for
all objects a of C.

In this case we write TH (a) for the final coalgebra, and αa : TH (a) →
HTH (a) + a for the final coalgebra map. By Lambek’s lemma, αa is an iso-
morphism, and we write [τa, ηa] : HTH (a) + a → TH (a) for the inverse of αa.
In the case where no confusion is likely to occur, we will drop the subscript from
TH and simply write T (a) for the final H (−) + a-coalgebra.

Example 1. Given a signature, that is, given a set Σ and a map arity : Σ → IN,
the signature functor for Σ is the functor HΣ : Set → Set defined by

HΣ (X) = {〈f, s〉 : f ∈ Σ and s : arity (f) → X} .

For a morphism k : X → Z, HΣ (f) is the morphism which takes 〈f, s〉 to
〈f, k ◦ s〉. Since HΣ (−) + a is a bounded functor for any set a, HΣ (−) + a has
a final coalgebra. Therefore, signature functors are iteratable. We write TΣ (a)
for the final HΣ (−) + a-coalgebra. In the category Set, TΣ (a) is the set of
all finite and infinite Σ-trees with leaves labeled in a. In this case the map
ηΣ

a : a → TΣ (a) is the map which takes x ∈ a to the (degenerate) tree consisting
of one leaf labeled x. The map τΣ

a : HΣTΣ (a) → TΣ (a) is the map that takes
〈f, t1, . . . , tk〉 to its tree representation.

Theorem 1 (First-Order Substitution[1]). Let f : a → T (b). Then there is
a unique f� : T (a) → T (b) such that

1. f� is a morphism of H-algebras. That is, f� ◦ τa = τb ◦H (f�).
2. f = f� ◦ ηa

It is not without reason that Theorem 1 is given the name First-Order Sub-
stitution. Let f : a → TΣ (b). Intuitively, a and b are interpreted as sets of vari-
ables and the elements of TΣ (b) are interpreted as where{}- and ��-free terms of

Equational Logic of Recursive Program Schemes 281

FLRS1, and the map f can be viewed as defining a first-order substitution on the
variables in a. Theorem 1 gives us the existence of a map f� : TΣ (a) → TΣ (b).
Given t ∈ TΣ (a), that is, given a where{}- and ��-free term with variables con-
tained in the set a, the element f� (t) is the result of performing the first-order
substitution f on t.

In the special case of signature functors, the map f� allows us to model
first-order substitutions. In a general category the � operation allows us to put a
monad structure on the functor T . This fact is contained in the following lemma.

Lemma 1 ([9]). (T , η, �) is a Kleisli triple.

Definition 2. Given an iteratable functor H, the Kleisli triple from Lemma 1
is called the Kleisli triple associated with H. Standard results from the literature
on monads give us that (T , η, μ), where μa is defined to be

(
idT (a)

)�, is a monad.
This monad is called the free completely iterative monad on H.

Definition 3. Let (C,+) be a category with a coproduct and let H : C → C be
iteratable. The ideal monad generated by H is the tuple (T , η, μ,HT , τ,H (μ))
where (T , η, μ) is the free completely iterative monad on H and [τ, η] is the point-
wise inverse of the final coalgebra map.

We also define a natural transformation κ : H → T by κ = τ ◦H (η).

Example 2. In the case of signature functors, HΣ

(
ηΣ

a

)
is the map which takes

〈f, x1, . . . , xn〉, where the xi are considered as variables, to 〈f, x1, . . . , xn〉, where
the xi are considered to be trees and τΣ

a takes 〈f, x1, . . . , xk〉 to itself consid-
ered as a tree. Combining these two facts we see that κΣ is the canonical map,
that is, the natural transformation which takes function symbols to the trees
representing the function symbols.

Theorem 1 gave us an operation on morphisms which corresponded to the
operation of extending a first-order substitution defined on variables to a first-
order substitution defined on terms. The following theorem gives us an operation
on natural transformations which corresponds to extending a second-order sub-
stitution.

Theorem 2 (Second-Order Substitution[2]). Given two iteratable functors,
H and H ′ and the ideal monads they generate, let ν : H → T ′ be a natural
transformation which factors as

H
ν0 �� H ′T ′ τ ′

�� T ′

Then there is a unique natural transformation ν∗ : T → T ′ such that

1. ν = ν∗ ◦ κ; and
2. ν∗ is a morphism of monads.

1 More precisely, only the finite elements of TΣ (b) can be interpreted as where {}- and
��-free terms. However, this distinction is not important for the present discussion.

282 J.G. Mersch

The previous discussion suggests that ideal monads generated by signature
functors can be used to model the syntax of FLRS. In particular, the natural
transformations η and κ allow us to model vi and f (t1, . . . , tn). The map f�

models the syntax of first-order substitution and the natural transformation ν∗

models second-order substitution. We now show how ideal monads can be used
to model the where{}- and ��-terms of FLRS.

Theorem 3 (Solution Theorem [1]). Let H be an iteratable monad and let
(T , η, μ,HT , τ,H (μ)) be the ideal monad generated by H. Suppose f : a →
T (a+ b) factors as

a
f0 �� HT (a+ b) + b

[τa+b,ηa+b◦inr] �� T (a+ b) .

Then there is a unique f † : a → T (b) such that f † =
[
f †, ηb

]� ◦ f .
Example 3. Let Σ be a signature which contains binary connectives × and ∗,
let a be the set {x, y}, let b be the set {p, q}, and consider the following set of
recursive equations:

x = y × p y = q ∗ x (4)

We now define a map f : a → TΣ (a+ b) by

f (x) = ×
''
' &&

&

y p

f (y) = ∗
��
� &&

&

q x

Clearly f factors through HΣTΣ (a+ b) + b. Thus we let f † be the map given
by Theorem 3. The goal of this example is to compute the value of f † (x). In
order to do so, we use the fact that f † =

[
f †, ηb

]� ◦ f . In particular, f † (x) =[
f †, ηb

]� (y × p). We can now use the fact that
[
f †, ηb

]� is an HΣ-algebra homo-
morphism to conclude f † (x) =

[
f †, ηb

]� (y)× [
f †, ηb

]� (p) = f † (y)× p. Using a
similar argument we see that f † (y) = q ∗ f † (x). Therefore, we conclude that

f † (x) = ×
���

�� ,,,
,,

∗
��
�� (((

(p

q f † (x)

However, unwinding x according to (4) yields the following equation:

x = ×
''
' &&

&

∗
//
/ &&&

& p

q x

This shows that f † (x) is a solution of x according to the recursive definition (4).
Moreover, the uniqueness condition of Theorem 3 guarantees that the solution
to (4) is unique.

Equational Logic of Recursive Program Schemes 283

In the statement of Theorem 3, we require that the map f factor through
HT (a+ b)+b. This is a guardedness requirement. In terms of signature functors,
this requirement states that the right-hand side of each first-order recursive
definition must be either a compound term, that is, not a variable, or a variable
that is distinct from the variables being defined. In particular, the following set
of recursive equations is not guarded:

x = y y = f (x,w) z = w (5)

The first equation of (5) violates the guardedness requirement. The third equa-
tion, on the other hand, does not violate the guardedness requirement as w is
not one of the variables being recursively defined. In Theorem 5 we will remove
the guardedness requirement for systems of recursive equations.

Now that we have an operation which models the where{}-terms of FLRS
using ideal monads, we turn our attention to modeling the ��-terms. The follow-
ing theorem is the second-order analog of Theorem 3 and gives us the solution
to a recursive program scheme provided that the scheme is in Greibach normal
form, that is, provided that the right-hand sides of the recursive definitions are
complex terms where the head of the term is a base function symbol.

Theorem 4 (Second-Order Solution Theorem [2]). Let H and H ′ be it-
eratable functors such that H + H ′ is also iteratable. Write Ĥ for the functor
H+H ′ and consider the ideal monads generated by H, H ′, and Ĥ. Let ν : H → T̂
be a natural transformation which factors as

H
ν0 �� H ′T̂

inrT̂ �� ĤT̂
τ̂ �� T̂ .

Then there is a unique natural transformation ν‡ : H → T ′ which factors
through H ′T ′ such that ν‡ =

[
ν‡, κ′

]∗ ◦ ν.
Again, the factorization requirement is the guardedness requirement: all second-
order systems of recursive equations must be in Greibach normal form.

3 Extended Solution Theorems

Our goal in this section is to provide, in the category Set, extended versions of
the solution theorems of the previous section. To see why these extensions are
necessary, consider the following recursive program scheme:

f (x) = g (x)
g (x) = H (x, h (x))
h (x) = G (h (x) , h (g (x)))

(6)

Clearly (6) should have a solution since we could replace the equation f (x) =
g (x) with f (x) = H (x, h (x)) and obtain an equivalent scheme that is in Greibach

284 J.G. Mersch

normal form. However, we cannot use Theorem 4 to provide this solution. Now
consider a slight modification to (6):

f (x) = f (x)
g (x) = H (x, h (x))
h (x) = G (h (x) , h (g (x)))

(7)

Clearly (7) should have a solution. In fact, there are infinitely many solutions to
the equation f (x) = f (x). However, given a choice of a canonical solution, called
the ungroundedness scapegoat, for the equation f (x) = f (x), (7) should have a
unique solution. Again, Theorem 4 does not provide this solution.

Our other goal is to establish an extended version of Theorem 3 which, again
provided we have fixed an ungroundedness scapegoat, provides a solution to the
following set of equations.

x = x y = p× z z = x ∗ q (8)

Before we are able to provide solutions to systems such as (8), we need to
discuss ungrounded equations and to define the ungroundedness scapegoat.

Definition 4. Let f : a → T (a+ b) and let x ∈ a. Write f0 for the composition
αa+b ◦ f . The f -sequence of x is defined as follows:

1. x0 = x.
2. xn+1 is defined if xn is defined and f0 (xn) ∈ a ⊆ HT (a+ b) + (a+ b). In

this case xn+1 = f0 (xn).
3. xn+1 is undefined in all other cases.

An element x is said to be grounded if the f -sequence of x is finite. x is
ungrounded otherwise.

Definition 5 (Ungroundedness Scapegoat). Let H be an iteratable functor
such that T (0) is non-empty. Pick some element ⊥0 ∈ T (0), and for each object
a of C define ⊥a = T (!a) (⊥0) where !a is the unique morphism from 0 to a. ⊥a

is called the ungroundedness scapegoat for a.

Theorem 5 (Extended Solution Theorem [8]). Let a be a finite set and let
f : a → T (a+ b). Then there exists a unique f † : a → T (b) such that

1. f † =
[
f †, ηb

]� ◦ f ; and
2. f † (x) = ⊥b if x is ungrounded for f .

Having removed the factorization requirement of Theorem 3, Theorem 5 is
able to provide a solution to (8). In particular, the solution is

x = ⊥b y = p× (⊥b ∗ q) z = ⊥b ∗ q,
where a is the set {x, y, z}, b is the set {p, q} and the signature contains some
0-ary function symbol which was chosen as the ungroundedness scapegoat.

Equational Logic of Recursive Program Schemes 285

We also have and extended version of Theorem 4. Again, we begin with a
discussion of ungroundedness. Let H and H ′ be two iteratable functors such that
Ĥ = H +H ′ is also iteratable. Assume that T ′ (0) is non-empty and pick some
⊥′′

0 ∈ T ′ (0). We define the ungroundedness scapegoat for second-order systems
as follows: ⊥′′

a ∈ T ′ (a) is T ′ (!a) (⊥′′
0).

Let ν : H → T̂ be a natural transformation which factors as ν = τ̂ ◦ γ and
define a natural transformation σ : HT̂ +H ′T̂ → ĤT̂ by σ =

[
Ĥ (μ̂) ◦ γT̂ , inrT̂

]
.

Let w ∈ H ({∗}). We say that w is grounded with respect to ν if there is some
n ≥ 0 such that σn

{∗} ◦γ{∗} (w) ∈ H ′T̂ ({∗}) ⊆ ĤT̂ ({∗}). Otherwise, we say that
w is ungrounded. For w ∈ H (a), we say that w is grounded with respect to ν if
H (↓a) (w) is grounded, where ↓a is the unique map from a to {∗}.

Theorem 6 (Extended Second-Order Solution Theorem [8]). Given two
iteratable functors, H and H ′, such that Ĥ = H +H ′ is also iteratable and the
ideal monads they generate, let ν : H → T̂ be a natural transformation which
factors as

H
γ �� ĤT̂

τ̂ �� T̂

Then there is a unique natural transformation ν‡ : H → T ′ which factors through
H ′T ′ such that

1. ν‡ =
[
ν‡, κ′

]∗ ◦ ν; and
2. ν‡a (x) = ⊥′′

a if x is ungrounded with respect to ν.

4 The Denotation Map Λ

In this section we define a denotation map, Λ, for the terms of FLRS. This
denotation map is parameterized by the free variables and free function variables
of the term A. To wit: for every non-repeating list of variables x1, . . . , xn which
contains all the free variables of A and for every signature Σ containing all the
free function symbols of A, Λ (x1, . . . , xn;Σ) (A) will be defined to be a function
from 1 to TΣ (n). The map Λ is defined recursively on the construction on A.

1. Λ (−→x ;Σ) (xi) is the function ηn ◦ ni, where ni is the ith coproduct injection
which makes n a coproduct of 1.

2. Λ (−→x ;Σ)
(
fk (E1, . . . , Ek)

)
= [. . . , Λ (−→x ;Σ) (Ei) , . . .]

� ◦ κk (〈f, idk〉). In this
clause, 〈f, idk〉 is taken to be a map from 1 to HΣ (k) in the obvious way.

3. Λ (−→x ;Σ) (A where{y1 = A1, . . . , yk = Ak}) =
[
s†, ηn

]� ◦ Λ (−→y ,−→x ;Σ) (A)
where s : k → TΣ (k + n) is the map s (i) = Λ (y1, . . . , yk, x1, . . . , xn;Σ) (Ai)
and s† is the map given by Theorem 5. In the above definition we must
assume that the yi’s are distinct from the xj ’s.

4. Λ (−→x ;Σ)
(
A

�−→
f =

−→
F

�)
=

[
ν‡n, κn

]∗ ◦ Λ (x1, . . . , xn;Δ+Σ) (A) where Δ is
the signature {f1, . . . , fm}, ν : HΔ → TΔ+Σ is the natural transformation
whose component at n takes

〈
fki , s

〉
to TΔ+Σ (s) ◦Λ (v1, . . . , vk;Δ+Σ) (Fi),

286 J.G. Mersch

and ν‡ is the natural transformation given by Theorem 6. The natural trans-
formation ν defined in this clause is referred to as the natural transformation
induced by

�−→
f =

−→
F

�
.

Let φ and ψ be terms and let Γ be a set of equations of terms. We define
the semantic relation Γ |= φ = ψ to hold if, for any substitutions σ and s,
for any list of variables −→x and any signature Σ for which the following deno-
tations are defined, we have Λ (−→x ;Σ) ([σ][s]φ) = Λ (−→x ;Σ) ([σ] [s]ψ) whenever
Λ (−→x ;Σ) ([σ] [s]χ1) = Λ (−→x ;Σ) ([σ] [s]χ2) for all χ1 = χ2 ∈ Γ .

5 The Logic FLRS

In this section we present the axioms of FLRS. Throughout this section we use
φ, ψ, and χ as variables standing for terms in Term. We use Γ and Δ for sets of
equations.

Equational Axioms

! φ = φ φ = ψ ! ψ = φ φ = ψ, ψ = χ ! φ = χ

Logical Inference Rules

Weakening. If Γ ! φ = ψ, then Γ ∪Δ ! φ = ψ.
Substitution. If Γ ! φ = ψ and s is a first-order substitution, then [s] (Γ) !

[s] (φ) = [s] (ψ). If σ is a second-order substitution, then [σ] (Γ) ! [σ] (φ) =
[σ] (ψ).

Recursion Axioms

Head. ! fi (v1, . . . , vn)
�−→

f =
−→
F

�
= Fi

�−→
f =

−→
F

�
.

Fixpoint. Consider the term F
�−→
f =

−→
F

�
and define a second-order substitu-

tion by σ (fi) = fi
(−→v)�−→

f =
−→
F

�
. Given this second-order substitution we

have ! F
�−→

f =
−→
F

�
= [σ] (F).

Bekič-Scott. ! F
�−→

f =
−→
F ,−→g =

−→
G

�
=

(
F

�−→g =
−→
G

�)�−→
f =

−−−−−−−−−→
F

�−→g =
−→
G

�	
.

Bottom. In order to apply this axiom, a 0-ary function symbol must have be
designated as the ungroundedness scapegoat. Suppose that ⊥ is the function
symbol so designated. If E1, . . . , Ek are any terms, then we have the following
equality.

! A
�−→

f =
−→
F , g = g (E1, . . . , Ek)

�
= A

�−→
f =

−→
F , g = ⊥

�
.

Mix. Consider a term of the form A where{x1 = A1, . . . , xn = An} with free
variables z1, . . . , zm. Let h1, . . .hn be n new function variables of arity n+m
and define a first-order substitution by s(xi) = hi (x1, . . . , xn, z1, . . . , zn).
Then

! A where{x1 = A1, . . . , xn = An} = [s] (A) �. . . , hi = [s] (Ai) , . . .� .

Equational Logic of Recursive Program Schemes 287

Recursion Inference Rule

Strong Recursion Inference. In order to apply this inference rule, we start
with two terms of the form fi

(−→v)�−→
f =

−→
F

�
and gj

(−→v)�−→g =
−→
G

�
. Let Σ′

be the signature
{−→

f
}
, let Σ′′ be the signature

{−→g }
, let Σ be the signature

of functions free in either term, and let n be such that all the free variables
in either term are contained in {v1, . . . , vn}. We assume that Σ and Σ′ are
disjoint signatures. By a basic term over Σ′ we mean a where{}- and ��-free
term over Σ′, that is, we mean a finite element of TΣ′ (n). Suppose that each
Fi is in the form G (t1, . . . , tk) where G ∈ Σ and each ti is a basic term over
Σ′ and that each Gi is in a similar form. For each basic term, t, over Σ′ with
t = 〈fi, s〉, let unf (t) = [s]Fi. unf (w) is similarly defined for basic terms
over Σ′′. Now let Δ be a set of equations of the form t = w where t and w are
basic terms over Σ′ and Σ′′, respectively. Suppose Γ,Δ ! fi

(−→v)
= gj

(−→v)
,

and for each equation t = w ∈ Δ we have Γ,Δ ! unf (t) = unf (w). Under all
these assumptions, the Strong Recursion Inference Rule allows us to conclude
Γ ! fi

(−→v)�−→
f =

−→
F

�
= gj

(−→v)�−→g =
−→
G

�
.

We also have first order versions of the Head, Fixpoint, and Bekič-Scott ax-
ioms. These axioms are not formally member of the system as they are derivable
from their second-order counterparts via the Mix Axiom.

Theorem 7 (Soundness [8]). The logic FLRS is sound with respect to the
semantics presented in Section 4.

6 Normal Form

We are now in a position to prove the completeness of FLRS with respect to
the coalgebraic semantics. As is customary, completeness is proved in two steps.
First we prove that every term can be written in a normal form and then we
use the normal form to prove completeness. We begin with a definition and a
“flattening” type lemma.

Definition 6. A term is said to be in semi-normal form if it is either a variable
or written in the form hi

(−→v)�−→
h =

−→
H

�
where each of the Hi is of the form

G (t1, . . . , tk) where all the tj are ��- and where{}-free terms all of whose func-
tion symbols are one of the hi. The function symbol G may be, but is not required
to be, one of the hj.

Lemma 2.

! fi
(−→v)�−→

f =
−→
F

� �
. . . , hj = gj

nj

(−→v)�−→
gj =

−→
Gj

�
, . . .

�
=

fi
(−→v)�−→

f =
−→
F , . . . , hj = Gj

nj
, . . . ,

−→
gj =

−→
Gj , . . .

�

288 J.G. Mersch

Proof. We may assume that all the gj
k, hk, and fk are distinct. We may also

assume that no fj appears in the recursive program scheme�
. . . , hj = gj

nj

(−→v)�−→
gj =

−→
Gj

�
, . . .

�

and that no gj
k appears in the recursive program scheme

�−→
f =

−→
F

�
.

We start the proof with a derivation. In lines 5 and 6 of the derivation we let
A be the term fi

(−→v)�−→
f =

−→
f

� �−→g =
−→
G

�
.

1) ! gj
nj

(−→v)�−→
gj =

−→
Gj

�
= Gj

nj

�−→
gj =

−→
Gj

�
Head

2) ! fi
(−→v)�−→

f =
−→
F

� �
. . . , hj = gj

nj

(−→v)�−→
gj =

−→
Gj

�
, . . .

�
=

fi
(−→v)�−→

f =
−→
F

��
. . . , hj = Gj

nj

�−→
gj =

−→
Gj

�
, . . .

�
1, Substitution

3) ! fi
(−→v)�−→

f =
−→
F

� �−→
gj =

−→
Gj

�
= fi

(−→v)�−→
f =

−→
F

�
Fixpoint

4) ! fi
(−→v)�−→

f =
−→
F

� �
. . . , hj = Gj

nj

�−→
gj =

−→
Gj

�
, . . .

�
=

fi
(−→v)�−→

f =
−→
F

��−→
gj =

−→
Gj

��
. . . , hj = Gj

nj

�−→
gj =

−→
Gj

�
, . . .

�
3, Symmetry, Substitution

5) ! A
�
. . . , hi = gi

ni

(−→v)�−→
gi =

−→
Gi

�
, . . . , hj = Gj

nj

�−→
gj =

−→
Gj

�
, . . .

�
= A

�
. . . , hi = gi

ni

(−→v)�−→
gi =

−→
Gi

� �−→
gj =

−→
Gj

�
, . . . , hj = Gj

nj

�−→
gj =

−→
Gj

�
, . . .

�
Lemma 5.2 of [8]

6) ! A
�
. . . , hi = gi

ni

(−→v)�−→
gi =

−→
Gi

��−→
gj =

−→
Gj

�
, . . . , hj = Gj

nj

�−→
gj =

−→
Gj

�
, . . .

�
= fi

(−→v)�−→
f =

−→
F

��
.., hi = gi

ni

(−→v)�−→
gi =

−→
Gi

�
, . . . , hj = Gj

nj
, ..,
−→
gj =

−→
Gj

�
Beckič-Scott

If we continue in the same manner, we see that

! fi
(−→v)�−→

f =
−→
F

� �
. . . , hj = gj

nj

(−→v)�−→
gj =

−→
Gj

�
, . . .

�
=

fi
(−→v)�−→

f =
−→
F

��
. . . , hj = Gj

nj
, . . . ,

−→
gj =

−→
Gj , . . .

�
Since none of the fi appear in

�
. . . , hj = gj

nj

(−→v)�−→
gj =

−→
Gj

�
, . . .

�
, we can

use the Fixpoint Axiom and Substitution to conclude that

Equational Logic of Recursive Program Schemes 289

! fi
(−→v)�−→

f =
−→
F

��
. . . , hj = Gj

nj
, . . . ,

−→
gj =

−→
Gj , . . .

�
=

fi
(−→v)�−→

f =
−→
F

��
. . . , hj = Gj

nj

�−→
f =

−→
F

�
, . . . ,

−→
gj =

−−−−−−−−−→
Gj

�−→
f =

−→
F

�
, . . .

	
The desired result then follows from an application of the Bekič-Scott Axiom.

��
Theorem 8. Any term with the property that all the where{}-fragments do
not contain any equations of the form vi = vj can be written in semi-normal
form.

Proof. This theorem is proved by induction on the construction of A. The base
case is trivial and the inductive steps, while not trivial, are consequences of
Lemma 2. ��

The requirement that no where{}-fragment contains an equation of the form
vi = vj is a result of our syntactical restriction on the ��-terms. Recall that none

of the Fi in the term F
�−→

f =
−→
F

�
are allowed to be variables. If we were to allow

equations of the form vi = vj in the where{}-term, the Mix Axiom would yield
a ��-term which does not satisfy the syntactical restriction.

Unfortunately, the semi-normal form is not sufficient for proving complete-
ness. Thus, we turn our attention to defining and finding a normal form for the
terms of FLRS.

Definition 7. A term is said to be in normal form if it is either a variable
or written in the form hi

(−→v)�−→
h =

−→
H

�
with each of the Hi is of the form

G (t1, . . . , tk) where G is not one of the hi and all the tj are ��- and where{}-
free terms all of whose function symbols are one of the hi.

The only difference between the definition of normal form and the definition
of semi-normal form is that the function symbol G is not allowed to be one of
the hi in the definition of normal form. This restriction does not apply to terms
written in semi-normal form.

Lemma 3 ([8]). Consider the term A
�−→

f =
−→
F , g = fi (t1, . . . , tk)

�
. If s is the

first-order substitution s (vi) = ti, then

! A
�−→

f =
−→
F , g = fi (t1, . . . , tk)

�
= A

�−→
f =

−→
F , g = [s] (Fi)

�
.

In order to write terms in normal form we need to assume that we have a
signature which contains an ungroundedness scapegoat. Thus, for the remainder
of this section we fix a 0-ary function symbol, written ⊥, to serve as such a
scapegoat. We assume that ⊥ does not appear on the left-hand side of any
equation in the recursive program schemes that follow.

Suppose that fi
(−→v)�−→

f =
−→
F

�
is in semi-normal form. If all the head symbols

of the Fi are distinct from the fis, then the term is already in normal form. If
not, there are three possible cases.

290 J.G. Mersch

Case I In this case we consider a recursive program scheme in the following
form:

h
(−→v)�−→

f =
−→
F , g1 = g2

(−→
t
)
, g2 = g3 (−→w) , . . . , gl = G (−→u)

�

where G �∈
{−→

f ,−→g
}

and h ∈
{−→

f ,−→g
}

. In this case we apply Lemma 3 to rewrite
our term in the form

h
(−→v)�−→

f =
−→
F , g1 = G (−→r) , g2 = g3 (−→w) , . . . , gl = G (−→u)

�

where all of the ri are ��- and where{}-free terms over
{−→

f ,−→g
}

. Using the
same procedure, we can write the recursive definitions of g2, . . . , gl−1 in the
appropriate form.

Case II In this case we consider a recursive program scheme in the following
form:

h
(−→v)�−→

f =
−→
F , g1 = g2

(−→
t
)
, g2 = g3 (−→w) , . . . , gl = g1 (−→u)

�

where h ∈
{−→

f ,−→g
}
. In this case we apply Lemma 3 to rewrite our term in the

form
h
(−→v)�−→

f =
−→
F , g1 = g1 (−→r) , g2 = g3 (−→w) , . . . , gl = g1 (−→u)

�
.

We can then use the Bottom Axiom to rewrite this as

h
(−→v)�−→

f =
−→
F , g1 = ⊥, g2 = g3 (−→w) , . . . , gl = g1 (−→u)

�
.

Since ⊥ is not in
{−→

f ,−→g
}

, the recursive definition of g1 is now in the appropriate
form. The next case shows how to write the definitions of g2, . . . , gl in normal
form.

Case III In this case we consider a recursive program scheme in the following
form:

h
(−→v)�−→

f =
−→
F , g1 = g2

(−→
t
)
, g2 = g3 (−→w) , . . . , gl = ⊥

�
where h ∈

{−→
f ,−→g

}
. In this case we can apply Lemma 3 l − 1 times to rewrite

our term in the form

h
(−→v)�−→

f =
−→
F , g1 = ⊥, g2 = ⊥, . . . , gl = ⊥

�
.

Since the three cases above are the only cases in which a term in semi-normal
form is not in normal form we have established the following theorem.

Theorem 9. Any term with the property that none of its where{}-fragments
contain equations of the form vi = vj can be written in normal form.

Equational Logic of Recursive Program Schemes 291

7 Completeness

In this section we prove completeness of the system FLRS with respect to the
final coalgebra semantics. Towards that end we start with two terms, A and B
with the property that none of their where{}-fragments contain equations of
the form vi = vj . If A is a variable and |= A = B, then clearly B must be
the same variable. Therefore we focus on the case where neither A nor B is a
variable. By Theorem 9 we may assume that A and B are both written in normal
form and are not variables. That is we may assume that

A = fi
(−→v)�−→

f =
−→
F

�
and B = gj

(−→v)�−→g =
−→
G

�
where all the Fi are of the form 〈G, t1, . . . , tk〉 with each ti ∈ TΣ′ (k) and all
the Gi are of the form 〈G,w1, . . . , wk〉 with each wi ∈ TΣ′′ (k). Further, we may
assume that no fi appears in the normal form of B and that no gj appears in
the normal form of A. We let Σ be the signature of functions which appear free
in either A or B, Δ′ be the signature

{−→
f
}

, Δ′′ be the signature
{−→g }

, and Δ
be the signature Δ′ +Δ′′. We write H for the functor HΣ , H ′ for the functor
HΔ, and Ĥ for the functor H ′ +H . Finally, we let ν : H ′ → T̂ be the natural
transformation induced by the recursive program scheme

�−→
f =

−→
F ,−→g =

−→
G

�
.

Since all the Fi and Gj are in normal form, the natural transformation ν
factors as follows

HΔ
ν0 �� HΣTΔ

HΣ((κ◦inl)∗)�� HΣTΣ+Δ

inrTΣ+Δ �� ĤT̂
τ̂ �� T̂

We now define an HΣ-coalgebra as follows

TΔ
αΔ �� HΔTΔ + 1

ν0TΔ
+id

�� HΣTΔTΔ + 1
HΣ(μ)+id �� HΣTΔ + 1

Now we let β be the unique natural transformation such that the following
diagram commutes

TΔ
αΔ ��

β ��

HΔTΔ + 1
ν0TΔ

+id
�� HΣTΔTΔ + 1

HΣ(μ)+id �� HΣTΔ + 1
HΣ(β)+id��

TΣ αΣ

�� HΣTΣ + 1

Lemma 4. β =
(
ν‡

)∗
Proof. We show that β =

(
ν‡

)∗
by showing that the relation βa (t)R

(
ν‡

)∗
a
(t)

is a bisimulation for any a. First, if t = vi, then we have βa (t) =
(
ν‡

)∗
a
(t) = vi.

Otherwise we have t = 〈f, s : k → TΔ (a)〉. Suppose νa (f) = 〈G, s′ : k → TΔ (k)〉.
Using the definition of β above we see that αΣa ◦βa (t) = 〈G, βa ◦ s� ◦ s′〉. Using
the standard properties of second-order substitution we see that αΣa◦

(
ν‡

)∗
a
(t) =〈

G,
(
ν‡

)∗
a
◦ s� ◦ s′

〉
. This shows that βa (t) and

(
ν‡

)∗
a
(t) have the same head

and that their children stand in the same relation. Since equality is the largest
bisimulation on a final coalgebra, we conclude that β =

(
ν‡

)∗
. ��

292 J.G. Mersch

We now show ! A = B via an application of the Strong Recursion Inference
Rule. Let l be such that all the free variables in A and B appear in {v1, . . . , vl}.
Now let Γ be the set of equations {t = w : t, w ∈ TΔ (l) and βl (t) = βl (w)}.
Since we assume that |= fi

(−→v)�−→
f =

−→
F

�
= gj

(−→v)�−→g =
−→
G

�
, we can use the

soundness of the Fixpoint Axiom and the fact that
�−→

f =
−→
F

�
and

�−→g =
−→
G

�
are disjoint recursive program schemes to conclude

|= fi
(−→v)�−→

f =
−→
F ,−→g =

−→
G

�
= gj

(−→v)�−→
f =

−→
F ,−→g =

−→
G

�
.

From this we conclude that[
ν‡, κΣ

]∗
l
◦ κΔ+Σ

l (〈fi, idk1〉) =
[
ν‡, κΣ

]∗
l
◦ κΔ+Σ

l (〈gj, idk2〉) .

Thus we have ν‡l (〈fi, idk〉) = ν‡l (〈gj , idk〉). Finally, since β ◦ κΔ = ν‡, we have
fi
(−→v)

= gj

(−→v) ∈ Γ . This shows Γ ! fi
(−→v)

= gj

(−→v)
.

Now suppose that t = w ∈ Γ with t = 〈f, s〉 and w = 〈g, p〉. Since βl (t) =
βl (w) and since the recursive program scheme

�−→
f =

−→
F ,−→g =

−→
G

�
is in normal

form, we may assume that νl (〈f, idk3〉) = 〈G, s′〉 and νl (〈g, idk4〉) = 〈g, p′〉. We
need to show Γ ! unf (t) = unf (w), that is, we need to show Γ ! 〈G, s� ◦ s′〉 =
〈G, p� ◦ p′〉. However, as in the proof of the lemma above, we may use the defi-
nition of β to conclude that 〈G, βl ◦ s� ◦ s′〉 = 〈G, βl ◦ p� ◦ p′〉. In particular, for
i = 0, . . . , arity (G)− 1 we have βl ◦ s� ◦ s′ (i) = βl ◦ p� ◦ p′ (i), and hence we have
s� ◦ s′ (i) = p� ◦ p′ (i) ∈ Γ . This shows that Γ ! unf (t) = unf (w).

This shows that the hypotheses of the Strong Recursion Inference Rule are
satisfied. Therefore, we show ! A = B with an application of this rule.

References

1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: A coalgebraic view. Theoretical Computer Science 300 (2003) 1–45

2. Milius, S., Moss, L.S.: The category theoretic solution of recursive program schemes.
preprint available at http://www.iti.cs.tu-bs.de/˜milius/ (2004)

3. Guessarian, I.: Algebraic Semantics. Volume 99 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin (1981)

4. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Sci-
ence 25 (1983) 95–169

5. Moss, L.S.: Recursion and corecursion have the same equational logic. Theoretical
Computer Science 294 (2003) 233–267

6. Hurkens, A.J.C., McArthur, M., Moschovakis, Y.N., Moss, L.S., Whitney, G.T.: The
logic of recursive equations. The Journal of Symbolic Logic 63 (1998) 451–478

7. Moschovakis, Y.N.: The formal language of recursion. The Journal of Symbolic
Logic 54 (1989) 1216–1252

8. Mersch, J.G.: Equational Logic of Recursive Program Schemes. PhD thesis, Indiana
University (2004)

9. Moss, L.S.: Parametric corecursion. Theoretical Computer Science 260 (2001) 139–
163

The Category Theoretic Solution of Recursive
Program Schemes

Stefan Milius1 and Lawrence S. Moss2

1 Institute of Theoretical Computer Science,
Technical University, Braunschweig, Germany

milius@iti.cs.tu-bs.de
2 Department of Mathematics, Indiana University, Bloomington, IN, USA

lsm@cs.indiana.edu

Abstract. This paper provides a general account of the notion of recur-
sive program schemes, their uninterpreted and interpreted solutions, and
related concepts. It can be regarded as the category-theoretic version of
the classical area of algebraic semantics. The overall assumptions needed
are small indeed: working only in categories with “enough final coal-
gebras” we show how to formulate, solve, and study recursive program
schemes. Our general theory is algebraic and so avoids using ordered, or
metric structures. Our work generalizes the previous approaches which
do use this extra structure by isolating the key concepts needed to study
recursion, e. g., substitution in infinite trees, including second-order sub-
stitution. As special cases of our interpreted solutions we obtain the usual
denotational semantics using complete partial orders, and the one using
complete metric spaces. Our theory also encompasses implicitly defined
objects which are not usually taken to be related to recursive program
schemes at all. For example, the classical Cantor two-thirds set falls out
as an interpreted solution (in our sense) of a recursive program scheme.
In this short version of our paper we can only sketch some proofs.

1 Introduction

The theory of recursive program schemes is a topic at the heart of semantics.
One takes a system of equations such as

ϕ(x) ≈ F (x, ϕ(Gx)) ψ(x) ≈ F (ϕ(Gx), GGx)) (1.1)

where F and G are given functions and where ϕ and ψ are defined in terms of
them by (1.1). The problems are: to give some sort of semantics to schemes, and
to say what it means to solve a scheme. Actually, we should distinguish between
interpreted schemes, where one also has an algebra A with operations for all the
given operation symbols, and uninterpreted schemes.

This paper presents a generalization of the classical theory based on Elgot
algebras and coalgebras. The point in a nutshell is that knowing that the infinite

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 293–312, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

trees are the final coalgebra of a functor on sets leads to a purely algebraic

294 S. Milius and L.S. Moss

account of first-order substitution and (co-)recursion, as shown in [1,28]. One
does not need to assume any metric or order to study infinite trees: the finality
principle is sufficient. However, to extend the result to second-order substitution,
we need additional ideas. In this paper we show that corecursion allows us to
give an uninterpreted semantics to a scheme; i. e., we show how to solve a scheme
in final coalgebras.

For our interpreted semantics we work with Elgot algebras, a simple and
fundamental notion introduced in [5]. We show how to give an interpreted solu-
tion to recursive program schemes in arbitrary Elgot algebras. We believe that
our results in this area generalize and extend the previous work on this topic.
Our method for obtaining interpreted solutions easily specializes to the usual
denotational semantics using complete partial orders. As a second application
we show how to solve recursive program schemes in complete metric spaces. Fi-
nally, we also provide examples of recursive program schemes and their solutions
which cannot be treated with the classical theory: recursive definitions of oper-
ations satisfying equations like commutativity, examples in non-well founded
sets (solving x = {Pf(x)}), and fractal self-similarity (the Cantor set c solves
c = 1

3c ∪ (2
3 + 1

3c)). In some cases, one could use the classical theory (but even
in those our application appears new). Our overall claim is that we have a uni-
fied view of solution principles for a large class of implicit definitions including
recursive program schemes.

Our theory is based on notions from category theory (monads, Eilenberg-
Moore algebras, Elgot algebras) and coalgebra (finality, solution theorems, com-
pletely iterative algebras). Our overall assumptions are weak: there must be finite
coproducts, and all functors we deal with must have “enough final coalgebras”.
More precisely, we work in a category A with finite coproducts and with func-
tors H : A → A such that for all objects X a final coalgebra TX of H() + X
exists. The price we pay for working in such a general setting is that our theory
takes somewhat more effort to build. But this is not excessive, and perhaps our
categorical proofs reveal more conceptual clarity than the classical ones.

Related Work. The classical theory of recursive program schemes is compactly
presented by Guessarian [20]. There one finds results on uninterpreted solutions
of program schemes and interpreted ones in continuous algebras.

The realization that solutions of formal recursive equations can be studied
with coalgebraic methods goes back to the second author [28], and appears also
in the work of Aczel et al. [1], which generalizes and extends results of Elgot
et al. [17,18], see also [26] of the first author. From [1,26] it also follows how
to generalize second order substitution of infinite trees (see Courcelle [16]) to
final coalgebras. The types of recursive equations studied in [28,1] did not go
as far as program schemes. It is thus an important test problem for coalgebra
to see if work on solving systems of equations can extend to (un)interpreted
recursive program schemes. We are pleased that this paper reports a success in
this matter.

The Category Theoretic Solution of Recursive Program Schemes 295

Ghani et al. [19] obtained a general solution theorem with the aim of provid-
ing a categorical treatment of uninterpreted program scheme solutions. Part of
our proof for the solution theorem for uninterpreted schemes is inspired by their
proof of the same fact. However, the connection to (generalized) second order
substitution as presented in [1] is new here.

Complete metric spaces as a basis for the semantics of recursive program
schemes have been studied by Arnold and Nivat, see e. g. [10]. Bloom [14] stud-
ied interpreted solutions of recursive program schemes in so-called contraction
theories. The semantics of recursively defined data types as fixed points of func-
tors on the category of complete metric spaces has been investigated in [9,7]. We
build on this with our treatment of self-similar objects. These have also recently
been studied in a categorical framework by Leinster, see [22,23,24]. The example
in this paper uses standard results on complete metric spaces, see e.g. [11].

In this short abstract we can only present sketches of proofs and we are forced
to omit most of the technical detail. We refer the interested reader to the full
version [27] of this paper.

2 Preliminaries

Assumption 2.1. Throughout this paper we assume that a category A with
finite coproducts (having monomorphic injections) is given. In addition, all end-
ofunctors H on A we consider are assumed to be iteratable [sic]: for each object
X , the functor H() + X has a final coalgebra.

These are fairly mild conditions. However, we admit that iteratability is not
a very nice notion with respect to closure properties of functors—for example,
iteratable functors need not be closed under coproducts or composition. In the
concrete categories we consider here there are stronger yet much nicer conditions
that ensure iteratability:
Examples 2.2. (i) In the category Set of sets and maps any accessible (equiva-
lently, bounded, see [6]) endofunctor is iteratable, see [12].

(ii) Consider the category CPO of complete partial orders; i. e., posets (not
necessarily with a least element) in which every ascending chain has a join,
and continuous maps. Notice that coproducts in CPO are disjoint unions with
elements of different summands incompatible. Usually, one considers locally con-
tinuous endofunctors on categories of cpos, i. e., endofunctors H where each
derived function CPO(X, Y) → CPO(HX, HY) is continuous. Unfortunately, on
CPO not every locally continuous functor has a final coalgebra. For a counterex-
ample consider the endofunctor assigning to a cpo X the powerset of the set
of order components of X . This is a locally continuous endofunctor but it does
not have a final coalgebra. However, any accessible endofunctor H on CPO has
a final coalgebra, see [12], and moreover, H is iteratable.

(iii) Let CMS be the category of complete metric spaces with distances mea-
sured in the interval [0, 1] together with non-expanding maps f : X → Y ; i. e.,
dY (fx, fy) ≤ dX(x, y) for all x, y ∈ X . A functor H on CMS is called contracting
if there exists a constant ε < 1 such that each derived function CMS(X, Y) →

296 S. Milius and L.S. Moss

CMS(HX, HY) is a contracting map; i. e., dHX,HY (Hf,Hg) ≤ ε · dX,Y (f, g)
for all non-expanding maps f, g : X → Y . Contracting functors are iteratable,
see [7].

Remark 2.3. We denote for an endofunctor H on A by T(H)X the final coalge-
bra, of H()+X . Whenever confusion is unlikely we will drop the parenthetical
(H) and simply write T for T(H). By the Lambek Lemma [21], the structure map
of the final coalgebra is an isomorphism, and consequently, TX is a coproduct
of HTX and X with injections

ηH
X : X → TX and τH

X : HTX → TX .

Again, the superscripts will be dropped if confusion is unlikely.
It has been shown in the previous work [1,26] that the object assignment

T gives rise to a monad on A. And this monad is characterized by a universal
property—it is the free completely iterative monad on H .

Examples 2.4. (i) Given any signature Σ = (Σn)n<ω there is an associated poly-
nomial endofunctor HΣX = Σ0 + Σ1 × X + Σ2 × X2 + · · · on Set, which is
iteratable. Consider the algebra TΣX of finite and infinite Σ-trees over the set
X . That is, (ordered and rooted) trees labelled so that a node with n children,
n > 0, is labelled by an n-ary operation symbol, and leaves are labelled by
constant symbols or elements of X .

Notice that TΣX is the final coalgebra ofHΣ()+X . The coalgebra structure
is given by the inverse of tree tupling. Finally, notice that TΣ is a monad on Set.

(ii) A functor H : Set → Set is finitary (i. e., it preserves filtered colimits)
iff it is a quotient of some polynomial functor HΣ, see [8], III.4.3. The latter
means that we have a natural transformation ε : HΣ → H with epimorphic
components εX , which are fully described by their kernel equivalence whose
pairs can be presented in the form of so-called basic equations

σ(x1, . . . , xn) = ρ(y1, . . . , ym)

for σ ∈ Σn, ρ ∈ Σm and σ(x1, . . . , xn), ρ(y1, . . . , ym) ∈ HΣX for some set X
including all xi and yj . Adámek [2] has proved that the final coalgebra TX
of H() + X is given by the quotient TΣX/∼X where ∼X is the following
congruence: for every Σ-tree t denote by ∂nt the finite tree obtained by cutting
t at level n and labelling all leaves at that level by some symbol ⊥ not from
Σ. Then we have s ∼X t for two Σ-trees s and t iff for all n < ω, ∂ns can be
obtained from ∂nt by finitely many applications of the basic equations describing
the kernel of εX . Example: The functor H which assigns to a set X the set of
unordered pairs of X is a quotient of HΣX = X × X expressing one binary
operation b where εX is presented by commutativity of b; i. e., by the basic
equation b(x, y) = b(y, x). And TX is the coalgebra of all unordered binary trees
with leaves labelled in the set X .

(iii) Consider the finite power set functor Pf : Set → Set. Under the Anti-
Foundation Axiom (AFA), its final coalgebra is the set HF1 of hereditarily finite

The Category Theoretic Solution of Recursive Program Schemes 297

sets; see [13]. Analogously, the final coalgebra of Pf()+X is the set HF1(X) of
hereditarily finite sets generated from the set X . Even without AFA, the final
coalgebra of Pf may be described as in Worrell [30]; it is the coalgebra formed
by all strongly extensional trees; i. e., unordered trees so that for every node the
subtrees defined by any two different children are not bisimilar. Analogously,
the final coalgebra of Pf()+X is the coalgebra of all strongly extensional trees
where some leaves have a label from the set X .

(iv) For our later applications we shall find it convenient to work with an
iteratable endofunctor H : Set → Set that has a locally continuous lifting H ′ on
CPO; i. e., U ·H ′ = H ·U where U : CPO → Set is the forgetful functor. It can be
proved analogously as in [8], Theorem IV.5.3, that H ′ is iteratable. Moreover, for
every CPO X , there is a cpo structure on the final coalgebra T(H)X of H()+X
on Set; and this yields the final coalgebra of H ′() + X on CPO. It follows that
U · T(H ′) = T(H) · U . For example, every polynomial functor HΣ has a locally
continuous lifting H ′, and T(H ′)X is the Σ-tree algebra TΣX with the order
induced by the order of the cpo X .

(v) For a set endofunctor H with a contracting lifting H ′ on CMS; i. e.,
U · H ′ = H · U for U : CMS → Set the forgetful functor, we have that H is
iteratable and U · T(H ′) = T(H) · U . In fact, this follows from the results of [7]
since U preserves limits. Any polynomial functor H on Set has a contracting
lifting to CMS. ForHX = Xn, defineH ′(X, d) = (Xn, 1

2dmax) (where dmax is the
maximum metric) which is a contracting functor with ε = 1

2 . And coproducts of
1
2 -contracting liftings are 1

2 -contracting liftings of coproducts. The final coalgebra
T(H ′)X is the Σ-tree algebra TΣX equipped with a suitable metric, see [27] for
details.

Example 2.5. The classical treatment of recursive program schemes fits into our
work in the following way: Suppose we have a signature Σ of given operation
symbols. Let Φ be a (finite) signature of new operation symbols. Classically a
recursive program scheme (or shortly, RPS) gives for each operation symbol
f ∈ Φn a term tf over Σ +Φ in n variables. That is, a scheme is a set of formal
equations

f(x1, . . . , xn) ≈ tf (x1, . . . , xn), f ∈ Φn, n ∈ . (2.2)

Now a signature is the same as a functor → Set, where is understood as the
discrete category with natural numbers as objects. Now observe that the names
of the variables in (2.2) do not matter. More precisely, any RPS as in (2.2)
gives rise to a natural transformation Φ → TΣ+Φ · J , where J : → Set is
the inclusion functor mapping any number n to the set { 0, . . . , n − 1 }. Notice
that there is no need to consider only finite signatures Φ here. Moreover, this
natural transformation extends the classical notion of RPS in the sense that by
taking TΣ+Φ we allow infinite trees on the right-hand sides of systems like (2.2).
Here is how we render this example in our approach: Observe that TΣ+Φ =
T(HΣ +HΦ) where HΣ and HΦ denote the polynomial functors associated to Σ
and Φ, respectively. Thus, to give the above natural transformation is the same
as to give a natural transformation HΦ → T(HΣ +HΦ).

298 S. Milius and L.S. Moss

Example 2.6. Let Σ contain a unary operation symbol G and a binary one F .
The signature Φ of recursively defined operations contains two unary symbols
ϕ and ψ. Consider the recursive program scheme (1.1). The polynomial functor
expressing the givens isHΣ = X+(X×X) and the recursively defined operations
Φ are expressed by HΦX = X + X . Thus, the scheme (1.1) gives a natural
transformation HΦ → T(HΣ +HΦ).

In this paper we will abstract away from signatures and sets and study the
uninterpreted and the interpreted semantics of recursive program schemes con-
sidered as natural transformations of the form V → T(H +V) where H , V , and
H + V are iteratable endofunctors of the category A.

3 Completely Iterative Algebras and Complete Elgot
Algebras

For interpreted solutions of recursive program schemes we need a suitable notion
of algebras which can serve as interpretation of the givens. In the classical theory
one works with continuous algebras; i. e., algebras carried by a cpo such that all
operations are continuous maps. Here we work with completely iterative algebras,
see [26], and complete Elgot algebras, see [5].

Definition 3.1. Let H : A → A be an endofunctor. By a flat equation mor-
phism in an object A (of parameters) we mean a morphism e : X → HX + A.
If a : HA → A is an H-algebra, a solution of e in A is a morphism e† : X → A
such that e† = [a,A] · (He† + A) · e. We call A a completely iterative algebra
(CIA) if every flat equation morphism has a unique solution.

We explain this notion in the classical setting. Let Σ be a signature of givens.
A flat recursive system of equations is given by a set X of variables and for each
variable x ∈ X a formal equation

x ≈ t where t = σ(x1, . . . , xn), σ ∈ Σn, xi ∈ X or t ∈ A.

The system corresponds to e : X → HΣX +A, and a solution e† assigns to every
variable an element of A such that the formal equations become identities in A.

Examples 3.2. (i) Final coalgebras. In [26] it is shown that for a finalH-coalgebra
α : T → HT the inverse τ : HT → T of the structure map yields a CIA.
Analogously, for every object X of A a final coalgebra TX of H()+X yields a
CIA, see Theorem 3.9 below. Furthermore, the algebras TΣX of all Σ-trees over
a set X are CIAs, see Example 2.4(i).

(ii) Let Pf be the finite power set functor on Set, and assume the Anti-
Foundation Axiom. Let HF1 be the set of hereditarily finite sets. Let τ be the
inclusion of Pf(HF1) into HF1. This map τ turns HF1 into a CIA with respect
to Pf . This is a special case of the first example.

(iii) Let H be a contracting endofunctor of the category CMS of complete
metric spaces, see Example 2.2(iii). Then any non-emptyH-algebra is completely
iterative; see [5] for this and further examples.

The Category Theoretic Solution of Recursive Program Schemes 299

Remark 3.3. In order to define Elgot algebras below we will need two operations.
The first one formalizes the renaming of parameters in a flat equation morphism.
For a flat equation morphism e : X → HX + A and a morphism h : A → B we
define

h • e ≡ X
e ��HX +A

HX+h
��HX +B .

The second operation allows us to combine two flat equations morphisms e :
X → HX + Y and f : Y → HY + A where the parameters of the first are the
variables of the second into one “simultaneous” flat equation morphism:

f e ≡ X + Y
[e,inr]

��HX + Y
HX+f

��HX +HY +A
can+A

��H(X + Y) +A .

Definition 3.4. A (complete) Elgot H-algebra is a triple (A, a, ()†), where
(A, a) is an H-algebra, and ()† assigns to every flat equation morphism e :
X → HX +A a solution e† : X → A such that the following two laws hold:

Functoriality: Solution respects renaming of variables. Given two flat equation
morphisms e : X → HX +A and f : Y → HY +A and a morphism h : X → Y
of equations between them; i. e., f · h = (Hh+A) · e, we then have e† = f † · h.
CIA-identity. Simultaneous recursion may be performed sequentially. For every
flat equation morphisms e : X → HX + Y and f : Y → HY + A, the solution
of the combined equation morphism f e may be obtained by first solving f and
then solving e, “plugging in” f † for the parameters: (f † • e)† = (f e)† · inl.

Remark 3.5. (i) Notice that there is a notion of (non-complete) Elgot algebra,
see [5]. However, since we are only concerned with complete Elgot algebras here,
we will henceforth abuse terminology and just speak of Elgot algebras in lieu of
complete ones.

(ii) The axioms of Elgot algebras are inspired by the axioms of iteration
theories of Bloom and Ésik [15]. In fact, the two laws above are essentially “flat”
versions of the functorial dagger implication and the left pairing identity (also
known as Bekić-Scott identity) from [15].

One justification for the above axioms is that Elgot algebras turn out to be
the Eilenberg-Moore category of the monad T , see Remark 2.3. We shall mention
this result at the end of this section. Applied to a polynomial functor HΣ on Set
that means a Σ-algebra A is an Elgot algebra precisely if all Σ-trees over A can
be canonically interpreted in A.

Examples 3.6. (i) Completely iterative algebras are Elgot algebras. Cf. [5].
(ii) Continuous algebras. Let H be a locally continuous endofunctor on CPO,

see Example 2.2(ii). It was shown in [5] that any H-algebra (A, a) with a least
element ⊥ is an Elgot algebra when to a flat equation morphism e : X → HX+A
the least solution e† is assigned.

(iii) Suppose that H : Set → Set is a functor with a locally continuous lifting
H ′ : CPO → CPO, see Example 2.4(iv). We call an H-algebra α : HA → A
CPO-enrichable if there exists a complete partial order (on A such that A

300 S. Milius and L.S. Moss

becomes a continuous algebra α : H ′(A,() → (A,() with a least element.
Any CPO-enrichable algebra A is an Elgot algebra: to every equation morphism
e : X → HX + A assign the least solution of e : (X,≤) → H ′(X,≤) + (A,(),
where ≤ is the discrete order on X ; i. e., x ≤ y iff x = y.

Definition 3.7. A homomorphism h from an Elgot algebra (A, a, ()†) to an
Elgot algebra (B, b, ()‡) is a morphism h : A → B preserving solutions: for
each e : X → HX +A we have (h • e)‡ = h · e†.
Proposition 3.8. Every homomorphism h : (A, a, ()†) → (B, b, ()‡) of Elgot
algebras is a homomorphism of H-algebras; i. e., h · a = b ·Hh. The converse is
false in general. If, however, A and B are CIAs then any H-algebra morphism
is a homomorphism of Elgot algebras.

The classical theory of recursive program schemes rests on the fact that in
any continuous algebra A all Σ-trees over A can be interpreted; i. e., there is a
canonical map TΣA→ A. In a suitable category of cpos the structures TΣX play
the rôle of free algebras. The freeness is used to define maps out of those algebras.
In our setting, the Σ-trees are the final coalgebra. So in order to generalize the
classical theory, we need a setting in which the final coalgebras TY are free
algebras. The following result gives such a setting. It is fundamental for the
rest of the paper and collects the results of Theorems 2.8 and 2.10 of [26] and
Theorem 5.6 of [5].

Theorem 3.9. The following are equivalent:
(i) TY is a final coalgebra of H() + Y ,
(ii) TY is a free completely iterative H-algebra on Y , and
(iii) TY is a free (complete) Elgot H-algebra on Y .

In more detail: if (TY, αY) is a final coalgebra of H()+Y , the inverse [τY , ηY] :
HTY + Y → Y of αY gives a CIA, which as an Elgot algebra is free on Y .
Conversely, given a free Elgot H-algebra (TY, τY , ()†) with a universal arrow
ηY : Y → TY , then this is a CIA, whence a free CIA on Y , and [τY , ηY] is an
isomorphism whose inverse is the structure map of a final coalgebra of H()+Y .

Recall that we assumeH is iteratable, soH()+Y does have a final coalgebra
for all Y . The next result gives the dramatis personae for the rest of the paper.

Theorem 3.10. There is a left adjoint to the forgetful functor from Alg†H, the
category of Elgot algebras and their homomorphisms, to the base category A;
in symbols, L) U : Alg†H → A. The left-adjoint L assigns to each object Y
of A a free Elgot algebra (TY, τY , ()†) on Y . The components of the unit η
are the universal arrows ηY : Y → TY of the free Elgot algebras. The counit ε
gives for each Elgot algebra (A, a, ()‡) the unique homomorphism ã : TA → A

such that ã · ηA = id , and we also have ã = (αA)‡ where the coalgebra structure
αA : TA→ HTA+A is considered as a flat equation morphism.

Moreover, we obtain additional structure:

(i) A monad (T(H), ηH , μH) on A such that for all objects Y of A,
(a) T(H)Y = TY is the carrier of a final coalgebra of H() + Y ;

The Category Theoretic Solution of Recursive Program Schemes 301

(b) μY is the (unique) solution of αTY , considered as a flat equation mor-
phism with parameters in TY .

(ii) A natural transformation αH : T → HT + Id expressing the coalgebra struc-
tures of TY .

(iii)A natural transformation τH : HT → T such that [τH , ηH] is the pointwise
inverse of αH .

(iv) A “canonical embedding” κH of H into T : κH ≡ H HηH

��HT
τH

��T .

As always, we just write T(H), or even just T , to denote the monad of 3.10(i)
above, and we shall frequently drop the superscripts when dealing with the
structure coming from a single endofunctor H .

Theorem 3.11. [5] The category Alg†H of Elgot algebras is isomorphic to the
Eilenberg-Moore category AT of monadic T -algebras. The isomorphism assigns
to an Elgot algebra (A, a, ()‡) the Eilenberg-Moore algebra ã : TA→ A.

4 Second Order Substitution

In [1,26] it is proved that the monad T(H) of Theorem 3.10 is characterized by
an important universal property—it is the free completely iterative monad on
H . In this short abstract we will not need the full strength of this result in order
to present our results on recursive program schemes. However, the freeness of
T(H) specializes to second order substitution. We will first recall this concept for
Σ-trees, see e.g. [16], and then present a generalization to the final coalgebras
T(H).

Example 4.1. Let Σ and Γ be signatures. Each symbol σ ∈ Σ(n) is considered as
a flat tree in n variables. A second order substitution gives an “implementation”
to each such σ as a Γ -tree in the same n variables. We model this by a natural
transformation Σ → TΓ ·J between signatures (considered as functors → Set),
and this gives rise to a natural transformation λ : HΣ → TΓ . Now for any set X
of variables the action of the second order substitution λX : TΣX → TΓ X is to
replace every Σ-symbol in a tree t from TΣX by its implementation according
to λ; i. e., if t = σ(t1, . . . , tn) with σ ∈ Σ(n) and if t′(x1, . . . xn) ∈ TΓ X is the
implementation of σ, then λX(t) = t′(λX(t1), . . . , λX(tn)) . Example: Suppose
that Σ consists of two binary symbols + and ∗ and a constant 1, and Γ consists
of a binary symbol b, a unary one u and a constant c. Furthermore, let λ be given
by the assignment x+ y �→ b(x, u(y)), x ∗ y �→ b(u(x), y), and 1 �→ u(c). For the
set Z = { z, z′ }, the second order substitution morphism λZ acts for example
as follows: (z + z′) ∗ 1 �→ b(u(b(z, u(z′))), u(c)). Notice that although in this
example we assigned finite trees to all Σ-symbols in general we may assign also
infinite Γ -trees. When infinite trees are involved there is usually the restriction
to so-called non-erasing substitutions; i. e., all Σ-symbols are assigned to trees
which are not just single node trees labelled by a variable. Finally, the reader
may check that λ is again natural in X and that it is in fact a monad morphism
from TΣ to TΓ .

302 S. Milius and L.S. Moss

Theorem 4.2. [1] Let H and K be iteratable functors. Suppose that λ : H →
T(K) is an ideal natural transformation; i. e., there exists some natural trans-
formation λ′ : H → KT(K) with τK · λ′ = λ. Then there exists a unique monad
morphism λ : T(H) → T(K) such that λ · κH = λ.

Second-order substitution is not trivial to define in the classical setting, and
so it is significant that it generalizes to our setting.

5 Uninterpreted Recursive Program Schemes

In the classical treatment of recursive program schemes one gives an uninter-
preted semantics to systems as in (2.2) which are in Greibach normal form; i. e.,
every term on the right-hand side of the system has as its head symbol a symbol
from the given signature Σ. The semantics assigns to each of the new operation
symbols a tree over Σ. These trees are obtained as the result of unfolding the
recursive specification of the RPS.

We have seen in Example 2.4(i) that Σ-trees can be characterized as the
final coalgebra of the polynomial endofunctor associated to Σ. It is the universal
property of this final coalgebra which allows one to give a semantics to the given
RPS. We will in this section provide a conceptually easy and general way to
give an uninterpreted semantics to recursive program schemes considered more
abstractly as natural transformations, see our discussion in Example 2.5.

Definition 5.1. Let V and H be endofunctors on A. A recursive program
scheme (or RPS, for short) is a natural transformation e : V → T(H + V).

The RPS e is called guarded if it factors as follows:

e ≡ V f
��HT(H + V)

inl∗T(H+V)
��(H + V)T(H + V) τH+V

��T(H + V) ,

for some natural transformation f : V → HT(H + V).
A solution of e is an ideal transformation e† : V → T(H) such that the

following equation holds:

e† ≡ V e ��T(H + V)
[κH ,e†]

��T(H) .

Remark 5.2. Recall that [κH , e†] is the unique monad morphism extending σ =
[κH , e†] : H+V → T(H), see Theorem 4.2. Observe that therefore it is important
to require that e† be an ideal transformation since otherwise σ is not defined.

Remark 5.3. From Example 2.5, our definition is a generalization of the classical
notion of RPS (to the category-theoretic setting), and it extends the classical
work as well by allowing infinite trees on the right-hand sides of equations. Fur-
thermore, any recursive program scheme as in (2.2) which is in Greibach normal
form yields a guarded recursive program scheme in the sense of Definition 5.1.

Theorem 5.4. Any guarded recursive program scheme has a unique solution.

The Category Theoretic Solution of Recursive Program Schemes 303

Sketch of Proof. Let H : A → A be any iteratable functor. Then T = T(H) is
a final coalgebra of the functor H · + Id on the endofunctor category [A,A].
This result extends to the comma-category H/Mon(A) whose objects are pairs
(S, σ : H → S) where S is a monad on A and σ is a natural transformation,
and whose morphisms h : (S1, σ1) → (S2, σ2) are monad morphisms h : S1 → S2
with h · σ1 = σ2. In fact, we obtain a functor H on H/Mon(A) with H(S, σ) =
(HS + Id , inl ·Hη), where η : Id → S is the unit of the monad S. Furthermore,
T together with κH : H → T , see Theorem 3.10(iv), is the final H-coalgebra.

Now suppose we are given a guarded RPS e : V → T(H+V). Then we have a
natural transformation σ = inl · [HηH+V , f] : H+V → HT(H+V)+ Id which is
ideal in the sense that it factors throughHT(H+V). Notice thatHT(H+V)+Id
is obtained by applying the functor H to (T(H + V), κH+V · inl). Thus it is a
monad; in fact, it is a completely iterative monad in the sense of [1]. Use the full
universal property of the free completely iterative monad T(H + V) to obtain
a monad morphism e : T(H + V) → HT(H + V) + Id , see [1], Theorem 4.14.
It is easy to see that this gives rise to a H-coalgebra, and so there exists a
unique coalgebra homomorphism h from this coalgebra to the final one carried
by (T(H), κH), which gives a monad morphism. Now define

e† ≡ V
inr �� H + V κH+V

�� T(H + V) h �� T(H) .

A non-trivial proof shows that this is indeed the desired unique solution of e,
see the full version [27] for details.

Remark 5.5. (i) The first part of the proof of Theorem 5.4 showing the finality
of T(H) and defining the monad morphism h uses similar ideas than the proof
of the main result of [19]. However, the second part in which it is proved that e†

is a unique solution of e is new. It connects solutions to the (generalized) second
order substitution as presented in Theorem 4.2.

(ii) Notice that in the classical setting not every recursive program scheme
which has a solution needs to be in Greibach normal form. For example, consider
the system formed by the first equation in (1.1) and by the equation ψ(x) ≈
ϕ(ψ(x)). This system gives rise to an unguarded RPS. Thus, Theorem 5.4 does
not provide a solution of this RPS. However, the system is easily rewritten to
an equivalent one in Greibach normal form which gives a guarded RPS that we
can uniquely solve using our Theorem 5.4.

Example 5.6. Let us now present an example of RPSs which are not captured
in the classical setting. Sometimes one might wish to recursively define new op-
erations from old ones where the new operations should satisfy certain extra
properties automatically. We demonstrate this with an RPS defining recursively
a new operation which is commutative. Suppose the signature Σ of givens con-
sists of a ternary symbol F and a unary one G. Let us assume that we want
to require that F satisfies the equation F (x, y, z) = F (y, x, z) in any interpre-
tation. Then Σ is modelled by the endofunctor HX = X3/∼ + X where ∼ is
the smallest equivalence on X3 with (x, y, z) ∼ (y, x, z). To be an H-algebra

304 S. Milius and L.S. Moss

is equivalent to being an algebra A with a unary operation GA and a ternary
one FA satisfying FA(x, y, z) = FA(y, x, z). Suppose that one wants to define a
commutative binary operation ϕ by the formal equation

ϕ(x, y) ≈ F (x, y, ϕ(Gx,Gy)) . (5.3)

To do it we express ϕ by the endofunctor V assigning to a set X the set of
unordered pairs of X . It is not difficult to see that the formal equation (5.3)
gives rise to a guarded RPS e : V → T(H + V). In fact, to see the naturality
use the description of the terminal coalgebra T(H + V)Y given in [2], see Ex-
ample 2.4(ii). Notice that in the classical setting we are unable to demand that
(the solution of) ϕ is a commutative operation at this stage: this fact would be
proved separately once a solution has been obtained. Here we have encoded this
additional requirement into our RPS—any solution will be commutative. In fact,
the components of the uninterpreted solution e†X : VX → T(H)X assign to an
unordered pair { x, y } in VX the tree

F

x y F

Gx Gy F

GGx GGy

''
'' &&

&&

''
'' &&

&&

''
''

where for every node labelled by F the first two children are unordered.

6 Interpreted Recursive Program Schemes

We have seen in the previous section that for any guarded recursive program
scheme we can find a unique uninterpreted solution. In practice, however, one
is more interested in finding interpreted solutions. In the classical treatment of
RPS this means that a recursive program scheme defining new operation symbols
of a signature Φ from given ones in a signature Σ comes together with some Σ-
algebra A. An interpreted solution of the recursive program scheme in question
is, then, an operation on A for each operation symbol in Φ such that the formal
equations of the RPS become valid equations in A.

Of course, in general an algebra A will not admit interpreted solutions. We
shall show in this section that any Elgot algebra (A, a, ()∗) admits an inter-
preted solution of any guarded recursive program scheme. Moreover, if A is a
CIA, interpreted solutions are unique. We also state that uninterpreted solutions
and interpreted ones correspond to one another. This is a fundamental result for
algebraic semantics.

Definition 6.1. Let (A, a, ()∗) be an Elgot algebra w.r.t. H and let e : V →
T(H + V) be an RPS. An interpreted solution of e in A is a structure of a

The Category Theoretic Solution of Recursive Program Schemes 305

V -algebra e‡A : V A → A, such that the (H + V)-algebra [a, e‡A] : (H + V)A→ A
is an Elgot algebra and such that the equation

e‡A ≡ V A
eA ��T(H + V)A

[a,e‡
A]

��A (6.4)

holds, where the second arrow denotes the Eilenberg-Moore algebra structure as-
sociated to the Elgot algebra [a, e‡A], see Theorem 3.11.

Theorem 6.2. Let (A, a, ()∗) be an Elgot algebra w. r. t. H and let e : V →
T(H + V) be a guarded RPS. Then the following hold:

(i) there exists an interpreted solution e‡A of e in A,
(ii) if A is a completely iterative algebra, then e‡A is the unique interpreted

solution of e in A.

Sketch of Proof. Recall the H-coalgebra structure e from the proof of Theo-
rem 5.4. Let us write T for T(H+V). Then the component at A of e yields a flat
equation morphism eA : TA→ HTA+A w.r.t. the given Elgot algebra. Denote
its solution (eA)∗ by β, and define

e‡A ≡ V A inr ��(H + V)A
κH+V

A ��T(H + V)A
β

��A .

A non-trivial proof shows that this morphism is an interpreted solution of e, and
that it is the unique solution if A is a CIA. For details see [27].

Finally, we state the “Fundamental Theorem of Algebraic Semantics”, which
establishes that uninterpreted and interpreted solutions are connected in the
“proper way”.

Theorem 6.3. Let (A, a, ()∗) be an Elgot algebra considered as an Eilenberg-
Moore algebra ã : T(H)A → A, and let e be any guarded recursive program
scheme. If e‡A : V A → A is the interpreted solution of e in A of Theorem 6.2
and e† : V → T(H) is the (uninterpreted) solution of Theorem 5.4, then the
equation ã · (e†)A = e‡A holds.

Remark. Notice that (e†)A is the component at A of the natural transformation
e† whereas e‡A is not a component of some natural transformation but merely a
morphism from V A to A.

Sketch of Proof. Recall the morphisms h : T(H + V) → T(H) and β : T(H +
V)A → A from the proofs of Theorems 5.4 and 6.2. It is not difficult to show
that the equation β = ã · hA holds. Precompose both sides with κH+V

A · inr :
V A→ T(H + V)A to obtain the desired result.

6.1 Interpreted Solutions in CPOs

We shall show in this subsection that if we have A = CPO as our base category,
then interpreted solutions of a guarded RPS e in an Elgot algebra (A, a, ()∗)
are given as least fixed points of a continuous function on a function space.
In this way we recover denotational semantics from our categorical interpreted
semantics of recursive program schemes.

306 S. Milius and L.S. Moss

Example 6.4. The standard example in classical algebraic semantics is the fac-
torial function. So let Σ be a signature containing a constant zero, two unary
symbols succ and pred, a binary symbol ∗ and a ternary one if. The interpreta-
tion we have in mind is the natural numbers. The signature Φ of the recursively
defined operations consists just of one unary symbol f . Consider the formal
recursive equation

f(n) ≈ if(n, succ(zero), f(pred(n)) ∗ n)) (6.5)

defining the factorial function. It gives rise to a guarded recursive program
scheme e : HΦ → T(HΣ +HΦ) as demonstrated in Example 2.5.

To obtain a suitable Elgot algebra in which we can find an interpreted solution
of e, we turn the natural numbers into a CPO. Let ⊥ be the flat CPO obtained
from the discretely ordered set of natural numbers by adding a least element⊥. We
equip ⊥ with the obvious continuous operations corresponding to the names of
the operation symbols ofΣ. Hence we have a continuousΣ-algebra, and therefore

⊥ is an Elgot HΣ-algebra, as in Example 3.6(iii).
The interpreted solution e‡ ⊥ : HΦ ⊥ → ⊥ is given by a function on ⊥.

But how do we know that this function is the desired factorial function? Usually
one would simply regard the RPS (6.5) itself as a continuous function R which
maps every continuous operation f on ⊥ to if ⊥(, 1, f(pred ⊥() ∗ ⊥);
i. e., we interpret all the operation symbols of Σ in the algebra ⊥. It is clear
that the least fixed point of R is the desired factorial function. And we show
that this least fixed point coincides with the interpreted solution obtained from
Theorem 6.2.

In general any recursive program scheme can be turned into a continuous
function R on the function space CPO(V A,A) and the least fixed point of R is
the same as the interpreted solution obtained from Theorem 6.2.

We assume throughout this subsection that H and V are locally continuous
(and, as always, iteratable) endofunctors of CPO. We also consider a fixed guarded
RPS e : V → T(H+V), and anH-algebra (A, a) with a least element⊥. By Exam-
ple 3.6(ii), we know that this carries the structure of an Elgot algebra (A, a, ()∗),
where ()∗ assigns to every flat equation morphism a least solution. Furthermore,
for any continuous map f : V A → A we have an Elgot algebra on A with struc-
ture [a, f] : (H + V)A → A. Its associated Eilenberg-Moore algebra structure is
denoted by ˜[a, f], see Theorem 3.11.

Theorem 6.5. The following function R on CPO(V A,A)

f �→ V A
eA ��T(H + V)A

[a,f]
��A (6.6)

is continuous. Its least fixed point is the interpreted solution e‡A : V A → A of
Theorem 6.2.

Sketch of Proof. To see the continuity of R is suffices to prove that (̃) :
CPO(HA,A) → CPO(T(H)A,A) is continuous. Let us write T for T(H). Recall

The Category Theoretic Solution of Recursive Program Schemes 307

from Theorem 3.10 that for any continuous map a : HA → A the Eilenberg-
Moore algebra structure ã is the least solution of the flat equation morphism
αA : TA→ HTA+ A, i. e., ã is the least fixed point of the continuous function
F (a,−) : CPO(TA,A) → CPO(TA,A) with F (a, f) = [a,A] · (Hf + A) · αA.
Observe that F is continuous in the first argument a, and so F is a continuous
function on the product CPO(HA,A) × CPO(TA,A). It follows from standard
arguments that taking the least fixed point in the second argument yields a con-
tinuous map CPO(HA,A) → CPO(TA,A). But this is precisely the map (̃).

We prove that e‡A is the least fixed point of R. Notice that the least fixed point
of R is the join t of the increasing chain in CPO(V A,A) given by t0 = const⊥
and ti+1 = ˜[a, ti] · eA, for i ∈ .

Furthermore, recall that the interpreted solution e‡A is defined by β ·κH+V
A ·inr,

where β = g∗ is the least solution of the flat equation morphism g which is
obtained from the component at A of the H-coalgebra e, see Theorem 6.2. By
Example 3.6(ii), the solution β of g is the join of the chain given by β0 = const⊥
and βi+1 = [a,A] ·H(βi +A) · g, for i ∈ .

Observe that e‡A is a fixed point ofR, see (6.4). Thus, we have t (e‡A. To show
the reverse inequality one proves by induction on i the inequalities βi ([̃a, t],
for i ∈ , see [27]. This implies that β ([̃a, t] and therefore e‡A = β ·κH+V

A · inr (
[̃a, t] · κH+V

A · inr = t.

Remark 6.6. Suppose that H , V and H + V are iteratable endofunctors of Set,
which have locally continuous liftings H ′, V ′ and H ′ +V ′ to CPO. Then we have
T(H + V) · U = U · T(H ′ + V ′), see Example 2.4(iv). Furthermore, assume that
the guarded RPS e : V → T(H + V) has a lifting e′ : V ′ → T(H ′ + V ′); i. e.,
a natural transformation e′ such that U ∗ e′ = e ∗ U . Now consider any CPO-
enrichable H-algebra (A, a) as an Elgot algebra, see Example 3.6(iii). Then we
can apply Theorem 6.5 to obtain an interpreted solution e‡A of e in the algebra
A as a least fixed point of the above function R of (6.6).

Example 6.7. (i) Suppose we have signatures Σ and Φ. Then the polynomial
functors HΣ and HΦ satisfy the requirements of Remark 6.6. Consider any sys-
tem as in (2.2) in Greibach normal form, and form the associated guarded RPS
e : HΦ → T(HΣ +HΦ). Then e has a lifting e′. Let (A, a) be a CPO-enrichable
HΣ-algebra; i. e., a continuous Σ-algebra with a least element ⊥. We wish to
consider the continuous function R which assigns to any continuous algebra
structure ϕ : HΦA → A the algebra structure ˜[a, ϕ] · e′A. It maps for a given
continuous Φ-algebra structure ϕ on A any operation fA : An → A, f ∈ Φn, to
the operation that computes the right-hand side tfA, where operation symbols of
Σ are interpreted according to a and symbols of Φ according to the given ϕ.

Theorem 6.5 states that an interpreted solution e‡A of e in the algebra A is
obtained by taking the least fixed point of R; in other words the interpreted
solution e‡A gives the usual denotational semantics.

(ii) Apply the previous example to the RPS of Example 6.4. Then Theo-
rem 6.5 states that the interpreted solution of the RPS (6.5) in the Elgot algebra

308 S. Milius and L.S. Moss

⊥ is obtained as the least fixed point of the function R of Example 6.4. That
is, the interpreted solution gives the desired factorial function.

(iii) Recall the guarded RPS e from Example 5.6 and its uninterpreted solu-
tion. Consider again the algebra ⊥ together with the following two operations:

F ⊥(x, y, z) =
{
x if x = y
z else G ⊥(x) =

{ *x
2 + if x ∈
⊥ x = ⊥

Since the first operation obviously satisfies F ⊥(x, y, z) = F ⊥(y, x, z) we have
defined an H-algebra. It is not difficult to check that the set functor H has a
locally continuous lifting H ′ to CPO and that ⊥ is a continuous H ′-algebra.
In fact, the existence of the lifting H ′ follows from the fact that the unordered
pair functor V : Set → Set can be lifted to CPO; the lifting assigns to a cpo
(X,≤) the set of unordered pairs with the following order: { x, y } ({ x′, y′ }
iff either x ≤ x′ and y ≤ y′ or x ≤ y′ and y ≤ . Thus, we have defined
an Elgot algebra w.r.t. H : Set → Set, see Example 3.6(iii). The interpreted
solution e‡ ⊥ : V ⊥ → ⊥ is given by one commutative binary operation ϕ ⊥
on ⊥. We leave it to the reader to verify that for natural numbers x and y,
ϕ ⊥(x, y) is the natural number represented by the greatest common prefix in
the binary representation of x and y, e. g., ϕ ⊥(12, 13) = 6. Notice that we do
not have to prove separately that ϕ ⊥ is commutative. The way we have formed
the RPS e in Example 5.6 ensures that the interpreted solution will be given by
a commutative operation.

(iv) Least fixed points are RPS solutions. Let A be a poset with joins of all
subsets which are at most countable, and let f : A → A be a function preserving
joins of ascending chains. Take f and binary joins to obtain an algebra structure
on A of the polynomial set functor HΣX = X + X × X expressing a binary
operation symbol F and a unary one G. Obviously, this functor has a lifting
H ′ : CPO → CPO and A is a CPO-enrichable algebra; i. e., A is an Elgot algebra.
Turn the formal equations (1.1) into a recursive program scheme e : HΦ →
T(HΣ +HΦ), see Example 2.6. The RPS e has a lifting e′ : V ′ → T(H ′ + V ′),
where V ′ denotes the lifting of HΦ. The interpreted solution e‡A : V ′A→ A gives
two continuous functions ϕ†, ψ† : A→ A. Clearly, we have ϕ†(a) =

∨
n∈ fn(a),

and in particular ϕ†(⊥) is the least fixed point of f .

6.2 Interpreted Solutions in CMS

In [14] the interpreted semantics of classical recursive program schemes is studied
in certain interpretations arising from the use of complete metric spaces. It is
proved there that recursive program schemes which are in Greibach normal form
admit a unique interpreted solution in any contraction theory. We shall prove a
similar result in our categorical setting now.

Recall the category CMS of complete metric spaces from Example 3.2(iii),
and let H and V be contracting endofunctors. We shall show in this subsection
that for any guarded RPS e we can find a unique interpreted solution in any
non-empty H-algebra A. More precisely, assume that we have a guarded RPS e :

x′

The Category Theoretic Solution of Recursive Program Schemes 309

V → T(H+V), and let (A, a) be a non-empty H-algebra. Then A is a CIA, and
therefore it has the structure of an Elgot algebra, see Examples 3.2(iii) and 3.6(i).
Notice that for any non-expanding map f : V A → A we obtain an algebra
structure [a, f] : (H+V)A → A, thus we have an Eilenberg–Moore algebra ˜[a, f] :
T(H + V)A → A . As in CPO, the RPS e induces a function R on CMS(V A,A).
The standard procedure for obtaining an interpreted solution would be to prove
that R is a contracting map, and then invoke Banach’s Fixed Point theorem to
obtain a unique fixed point of R. Here we simply apply Theorem 6.2. Notice,
however, that we cannot completely avoid Banach’s Fixed Point theorem: it is
used in the proof that final coalgebras exist for contracting functors, see [7].

Corollary 6.8. The interpreted solution e‡A : V A→ A of e in A as obtained in
Theorem 6.2 is the unique fixed point of the function R defined as in (6.6).

Proof. In fact, being a fixed point of R is equivalent to being an interpreted
solution of e in the CIA A, whose unique existence we have by Theorem 6.2.

Example 6.9. (i) Self similar sets are solutions of interpreted program schemes.
Let (X, d) be a metric space. Then (C(X), h) is the complete metric space
formed by all non-empty compact subsets of X with the Hausdorff metric; i. e.,
for two compact subspaces A and B of X we have h(A,B) = max{ d(A →
B), d(B → A) }, where d(A → B) = maxa∈A minb∈B d(a, b). It is well-known
that any contracting map f on X gives rise to a contracting map f ′ : A �→ f [A]
on C(X), see [11]. Now consider the functor H ′ on CMS with H ′(X, d) =
(X3, 1

3dmax), where dmax is the maximum metric. It is a lifting of the poly-
nomial functor HΣ on Set expressing one ternary operation α. Let A = [0, 1]2

be equipped with the usual Euclidean metric. Consider the contracting maps
f(x, y) = (1

3x,
1
3y), g(x, y) = (1

3x + 1
3 ,

1
3y), and h(x, y) = (1

3x + 2
3 ,

1
3y) of A.

Then it follows that αA : C(A)3 → C(A) with αA(U,W,Z) = f [U]∪g[W]∪h[Z]
is a 1

3 -contracting map, whence a structure of an H ′-algebra. The formal equa-
tion ϕ(x) ≈ α(ϕ(x), x, ϕ(x)) gives rise to a guarded RPS on Set, viz. e : Id →
T(HΣ + Id), where the identity functor expresses the operation ϕ. Consider
the lifting of the identity to CMS given by V ′(X, d) = (X, 1

3d). Using this lift,
e gives rise to a natural transformation e′ : V ′ → T(H ′ + V ′). In fact, it is
easy to see that all components e′X are non-expanding maps once the metric on
T(H ′ + V ′)X is understood, see the full version [27] or [7] for more details on
this. The interpreted solution of e′ in the algebra (C(A), αA) is given by a map
ϕ† : C(A) → C(A) which maps a non-empty compact subspace U of A to a
space of the following form: ϕ†(U) has three parts, the middle one is a copy of U
scaled by 1

3 , and the left-hand and right-hand one look like copies of the whole
space ϕ†(U) scaled by 1

3 . For example we have the assignment

0 1

1

ϕ†
�−→

1

1
3

0

310 S. Milius and L.S. Moss

(ii) The Cantor “middle third” set c is the unique nonempty subset of the
interval [0, 1] which satisfies c = 1

3c ∪ (2
3 + 1

3c). So as in (i), there is an RPS
e on CMS whose interpreted solution in the algebra C(A), A = [0, 1], is the
Cantor set. More detailed, the functions f(x) = 1

3x and g(x) = 2
3 + 1

3x yield
a 1

3 -contraction αA : C(A)2 → C(A) with α(U,W) = f [U] ∪ g[W], whence an
algebra of the functor given by H ′(X, d) = (X2, 1

3dmax). The formal equation
c ≈ α(c, c) gives rise to a guarded RPS e′ : V ′ → T(H ′ + V ′) where V ′ is the
constant functor whose value is the trivial one point space 1, a lifting of the
set functor expressing the constant c. Its interpreted solution is given by the
function 1 → C(A) choosing the Cantor space.

6.3 Interpreted Solutions in Non-well Founded Sets

In this subsection we show that in hypersets unique solutions of recursive equa-
tions as discussed in [13] can be obtained as special instances of our Theorem 6.2.
For example, assuming the Anti-Foundation-Axiom there exists a unique set c
such that c = { p(c) } where p(c) denotes the finite power set of c, i. e., c uniquely
solves the formal equation x ≈ { p(x) }, where we understand p and the set brack-
ets as formal operation symbols.

Now in order to see how to obtain this and many other examples from our
results we shall work with the finite power set functor Pf : Set → Set whose initial
CIA (equivalently, final coalgebra) is HF1 with a structure map τ : Pf(HF1) →
HF1, see Example 3.2(ii). In the first step we extend this CIA by additional
operations needed for our examples. So consider the unary operation a �→ p(a)
and the binary ones (a, b) �→ a ∪ b and (a, b) �→ p(a)× b on HF1. If we describe
the type of these operations by the set functor KX = X +X×X +X×X , then
HF1 is a K-algebra with a structure b : K(HF1) → HF1.

Lemma 6.10. The algebra HF1 with the structure k = τ · Pfb : PfK(HF1) →
HF1 is a CIA of the functor PfK.

In fact, this follows from a general result from the theory of CIAs, see the full
version [27]. Here we do not have the space to present this in full generality.
However, let us point out that from the general result it follows that formal
equations with additional operations can be uniquely solved in HF1 as soon as
these additional operations “are guarded” by a set bracket and they “commute
with substitutions”.

Example 6.11. (i) The formal equation x ≈ { p(x) } gives rise to a flat equation
morphism X → PfKX + HF1, where X is a singleton set. Its unique solution
e† : X → HF1 is essentially a set c with the desired property. Notice that for
this example we do not need our machinery for recursive program schemes since
no recursive function definitions are made.

(ii) Consider the formal equation f(x) ≈ { f(x)∪x }. Take the functor V = Id
on Set describing the unary operation f . Then the above formal equation gives
rise to a recursive program scheme e : V → T(PfK + V) analogously as in

The Category Theoretic Solution of Recursive Program Schemes 311

Example 2.5. The unique interpreted solution e‡HF1
obtained by Theorem 6.2 is

given by a function f † on HF1 which satisfies f †(a) = { f †(a) ∪ a }.
(iii) Consider the system of formal equations f(x, y) ≈ { p(x)×f(gx, gy) }, g(x) ≈

{ x ∪ f(x, x) }. Describe the operations f and g by the set functor VX =
X × X + X . Then as before the given system gives rise to a guarded RPS
e : V → T(PfK + V). And the interpreted solutions e‡HF1

yields two functions
f † : HF 2

1 → HF1 and g† : HF1 → HF1 turning the formal equations into valid
identities as desired.

7 Conclusions and Future Research

We have presented a general and conceptually clear way of treating the unin-
terpreted and the interpreted semantics of recursive program schemes. For this
we have used recent results on Elgot algebras and from the theory of coalge-
bras. Now one must go forward in reinventing algebraic semantics with category
theoretic methods. We strongly suspect that there is much to be said about the
relation of our work to operational semantics. We have not investigated higher-
order recursive program schemes using our tools, and it would be good to know
whether our approach applies in that area as well. The paper [25] addresses vari-
able binding and infinite terms coalgebraically, and this may well be relevant.
Back to the classical theory, one of the main goals of the original theory is to
serve as a foundation for program equivalence. It is not difficult to prove the
soundness of fold/unfold transformations in an algebraic way using our seman-
tics; this was done in [29] for uninterpreted schemes. One would like more results
of this type. The equivalence of interpreted schemes in the natural numbers is
undecidable, and so one naturally wants to study the equivalence of interpreted
schemes in classes of interpretations. The classical theory proposes classes of in-
terpretations, many of which are defined on ordered algebras (see [20]). It would
be good to revisit this part of the classical theory to see whether Elgot algebras
suggest tractable classes of interpretations.

References

1. P. Aczel, J. Adámek, S. Milius and J. Velebil, Infinite Trees and Completely Iter-
ative Theories: A Coalgebraic View, Theoret. Comput. Sci., 300 (2003), 1–45.

2. J. Adámek, On a Description of Terminal Coalgebras and Iterative Theories, Elec-
tron. Notes Theor. Comput. Sci., 82.1 (2003).

3. J. Adámek, S. Milius and J. Velebil, Free Iterative Theories: A Coalgebraic View,
Math. Structures Comput. Sci., 13 (2003), 259–320.

4. J. Adámek, S. Milius and J. Velebil, From Iterative Algebras to Iterative Theories,
Electron. Notes Theor. Comput. Sci., 106 (2004), 3–24, full version submitted and
available at the URL http://www.iti.cs.tu-bs.de/~milius.

5. J. Adámek, S. Milius and J. Velebil, Elgot Algebras, to appear in Elec-
tron. Notes Theor. Comput. Sci., available at the URL http://www.iti.cs.tu-bs.
de/~milius.

312 S. Milius and L.S. Moss

6. J. Adámek and H. E. Porst, On tree coalgebras and coalgebra presentations, The-
oret. Comput. Sci., 311 (2004), 257–283.

7. J. Adámek and J. Reitermann, Banach’s Fixed-Point Theorem as a Base for Data-
Type Equations, Appl. Categ. Structures, 2 (1994), 77–90.

8. J. Adámek and V. Trnková, Automata and Algebras in Categories. Kluwer Acad-
emic Publishers, 1990.

9. P. America and J. Rutten, Solving Reflexive Domain Equations in a Category of
Complete Metric Spaces, J. Comput. System Sci., 39 (1989), 343–375.

10. A. Arnold and M. Nivat, The metric space of infinite trees. Algebraic and topolog-
ical properties, Fund. Inform. III, no. 4 (1980), 445–476.

11. M. F. Barnsley, Fractals everywhere, Academic Press 1988.
12. M. Barr, Terminal coalgebras in well-founded set theory, Theoret. Comput. Sci.,

114 (1993), 299–315.
13. J. Barwise and L. S. Moss, Vicious Circles, CSLI Publications, Stanford, 1996.
14. S. L. Bloom, All Solutions of a System of Recursion Equations in Infinite Trees

and Other Contraction Theories, J. Comput. System Sci. 27 (1983), 225–255.
15. S. L. Bloom and Z. Ésik, Iteration Theories: The equational logic of iterative

processes, EATCS Monographs on Theoretical Computer Science, Berlin: Springer-
Verlag (1993).

16. B. Courcelle, Fundamental properties of infinite trees, Theoret. Comput. Sci., 25
(1983), no. 2, 95–169.

17. C. C. Elgot, Monadic Computation and Iterative Algebraic Theories, in: Logic
Colloquium ’73 (eds: H. E. Rose and J. C. Shepherdson), North-Holland Publishers,
Amsterdam, 1975.

18. C. C. Elgot, S. L. Bloom and R. Tindell, On the Algebraic Structure of Rooted
Trees, J. Comput. System Sci., 16 (1978), 361–399.

19. N. Ghani, C. Lüth and F. De Marchi, Solving Algebraic Equations using Coalgebra,
Theor. Inform. Appl., 37 (2003), 301–314.

20. I. Guessarian, Algebraic Semantics. Lecture Notes in Comput. Sci., 99, Springer,
1981.

21. J. Lambek, A Fixpoint Theorem for Complete Categories, Math. Z., 103 (1968),
151–161.

22. T. Leinster, General self-similarity: an overview, e-print math.DS/0411343 v1.
23. T. Leinster, A general theory of self-similarity I, e-print math.DS/041344.
24. T. Leinster, A general theory of self-similarity II, e-print math.DS/0411345.
25. R. Matthes and T. Uustalu, Substitution in Non-Wellfounded Syntax with Variable

Binding. In H. P. Gumm, (ed.), Electron. Notes Theor. Comput. Sci., 82 (2003).
26. S. Milius, Completely Iterative Algebras and Completely Iterative Monads, In-

form. and Comput., 196 (2005), 1–41.
27. S. Milius and L. S. Moss, The Category Theoretic Solution of Recursive Pro-

gram Schemes, full version, available at the URL http://www.iti.cs.tu-bs.
de/~milius.

28. L. S. Moss, Parametric Corecursion, Theoret. Comput. Sci., 260 (2001), no. 1–2,
139–163.

29. L. S. Moss, The Coalgebraic Treatment of Second-Order Substitution and Unin-
terpreted Recursive Program Schemes, preprint, 2002.

30. J. Worrell, On the Final Sequence of a Finitary Set Functor, accepted for publica-
tion in Theoret. Comput. Sci.

A Categorical Approach to Simulations�

Miguel Palomino1, José Meseguer2, and Narciso Martı́-Oliet1

1 Departamento de Sistemas Informáticos, Universidad Complutense de Madrid
2 Computer Science Department, University of Illinois at Urbana-Champaign

Abstract. Simulations are a very natural way of relating concurrent systems,
which are mathematically modeled by Kripke structures. The range of available
notions of simulations makes it very natural to adopt a categorical viewpoint in
which Kripke structures become the objects of several categories while the mor-
phisms are obtained from the corresponding notion of simulation. Here we define
in detail several of those categories, collect them together in various institutions,
and study their most interesting properties.

1 Introduction

Simulations are a very natural way of relating concurrent systems. They are particularly
useful for proving temporal logic properties, because we can use simulations to shift our
ground; that is, to prove that a system A satisfies a property ϕ by considering a per-
haps much simpler system (for example a finite-state abstraction) B, proving that B
satisfies ϕ , and showing that B simulates A . This transfer result holds for the univer-
sal fragment ACTL∗ of CTL∗, and in particular for all linear temporal logic formulas.
Similarly, we may want to prove that a possibly more complex but more efficient con-
current system C is a correct implementation of another system A ; again this amounts
to showing that A simulates C , and will then allow transferring all ACTL∗ properties
already established for A to its implementation C . Obviously, the more flexibly we can
shift our ground by means of suitable simulations, the more easily we can reason about
concurrent systems, their abstractions, and their implementations. There are therefore
good practical reasons to look for the most general notions of simulation possible, as a
way to support very general and flexible reasoning methods.

The point of this paper is to systematically exploit a categorical point of view in
the quest for general notions of simulation. That is, we consider increasingly more gen-
eral categories whose objects are Kripke structures, and whose morphisms are adequate
simulations between them. There are several orthogonal dimensions along which sim-
ulations can be generalized as discussed in detail in [13,11]. We can extend them: (1)
from functions to relations; (2) from strictly preserving state predicates to only doing
so in a looser way; (3) from simulations in which one step is simulated by another to
“stuttering” simulations in which several steps in one system can correspond to several
steps in the other; and (4) from the case in which all systems we relate share the same

� Research supported by ONR Grant N00014-02-1-0715, NSF Grant CCR-0234524, by DARPA
through Air Force Research Laboratory Contract F30602-02-C-0130, and by the Spanish CI-
CYT projects MELODIAS TIC 2002-01167 and MIDAS TIC 2003–0100.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 313–330, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

314 M. Palomino, J. Meseguer, and N. Martı́-Oliet

set AP of atomic predicates to one in which systems with different atomic predicates
can be related among each other. All these extensions (1)–(4), and their possible com-
binations are mathematically characterized in this paper by increasingly more general
categories.

A theme running in parallel with such generalizations is characterizing correspond-
ing sets of temporal logic formulas that can be “reflected” by (that is, lifted along) in-
creasingly more general simulation maps. This is closely related to another theme also
developed in detail, namely the different temporal logic institutions involved. Indeed,
Kripke structures are the most frequently used models for temporal logic. From an in-
stitutional viewpoint we will expect, for a given signature, a corresponding category of
Kripke structures, which is precisely what we are investigating. The point then is that
different choices of increasingly more general categories give rise to a corresponding
family of temporal logic institutions, for which we study under what conditions the
amalgamation property (semi-exactness) holds.

Another theme also studied in detail is the issue of categorical constructions, in-
cluding limits, colimits, and epi-mono factorizations. As far as we know, most of the
constructions we give are new. They shed further light on Kripke structures and the
morphisms that we have available for relating them.

An extended version of this paper can be found at http://maude.sip.ucm.es/
miguelpt/papers/cap.pdf.

2 Kripke Structures and Simulations

When reasoning about computational systems, it is convenient to abstract from as many
details as possible by means of simple mathematical models that can be used to reason
about them. For a state-based system we can represent its behavior by means of a tran-
sition system, which is a pair A = (A,→A) with A a set of states and →A ⊆ A×A
a binary relation called the transition relation. A transition system, however, does not
include any information about the relevant properties of the system. In order to reason
about such properties it is necessary to add information about the atomic properties that
hold in each state. In what follows, we assume a fixed set AP of atomic propositions and
define a Kripke structure as a triple A = (A,→A ,LA), where (A,→A) is a transition
system with →A a total relation (this is a customary requirement, which simplifies the
semantics of the temporal logic), and LA : A → P(AP) is a labeling function associat-
ing to each state the set of atomic propositions that hold in it.

We use the notation a →A b to state that (a,b) ∈→A . A path in A is a function
π : IN−→ A such that, for each n ∈ IN, π(n) →A π(n + 1).

To specify system properties we use the logic ACTL∗(AP), which is a sublogic of
the branching-time temporal logic CTL∗(AP) (see for example [5, Sect. 3.1]). There
are two types of formulas in CTL∗(AP): state formulas, denoted by State(AP), and path
formulas, denoted by Path(AP). The semantics of the logic, specifying the satisfaction
relations A ,a |= ϕ and A ,π |= ψ for a Kripke structure A , an initial state a∈A, a state
formula ϕ , a path π , and a path formula ψ , is defined as usual [5]. ACTL∗(AP) is the
restriction of CTL∗(AP) to those formulas such that their negation-normal forms (with
negations pushed to atoms) do not contain any existential path quantifiers. To avoid

∼

A Categorical Approach to Simulations 315

introducing existential quantifiers implicitly, it is more convenient to restrict ourselves
to the negation-free fragment ACTL∗\¬(AP) of ACTL∗(AP), defined as follows:1

state formulas: ϕ = p ∈ AP | # | ⊥ | ϕ ∨ϕ | ϕ ∧ϕ |Aψ
path formulas: ψ = ϕ | ψ ∨ψ | ψ ∧ψ | Xψ | ψUψ | ψRψ |Gψ | Fψ .

We write State\¬(AP) and Path\¬(AP) for the sets of state and path formulas in
ACTL∗\¬(AP), respectively. When working with stuttering simulations, we also use
ACTL∗ \X, respectively ACTL∗\{¬,X}, for the fragment of the logic without the op-
erator X, respectively X and ¬.

2.1 Generalized Stuttering Simulations

In general, we are not only interested in the study of isolated systems, but would also
like to be able to study their interrelationships. To do that we introduce a very general
notion of simulation in increasingly more general steps; in a first step, we slightly extend
the simulations in [5] (which essentially correspond to our strict simulations). Examples
of simulations can be found in [13,12].

Given transition systems A = (A ,→A) and B = (B,→B), a simulation of tran-
sition systems H : A −→ B is a binary relation H ⊆ A×B such that if a →A a′ and
aHb then there is b′ such that b →B b′ and a′Hb′. A map of transition systems H is a
simulation such that H is a function. If both H and H−1 are simulations, then we call H
a bisimulation. We can extend a simulation of transition systems H to paths by defining
πHρ if π(n)Hρ(n) for each n ∈ IN.

Similarly, for Kripke structures A = (A,→A ,LA) and B = (B,→B,LB) over the
same set AP of atomic propositions, an AP-simulation H : A −→ B of A by B is
given by a simulation H : (A,→A) −→ (B,→B) between the underlying transition
systems such that if aHb, then LB(b) ⊆ LA (a). We say that H is an AP-map if its
underlying simulation of transition systems is a map. We call H strict if aHb implies
LB(b) = LA (a). Also, we call H an AP-bisimulation if H and H−1 are AP-simulations.

Simulations of transition systems and of Kripke structures compose and the identity
function 1A : A −→ A is trivially a simulation of transition systems and of Kripke
structures. Therefore, transition systems together with their simulations define a cat-
egory TSys with corresponding subcategories for maps and bisimulations. Similarly,
Kripke structures together with AP-simulations define a category KSimAP, with two
corresponding subcategories KMapAP and KBSimAP whose morphisms are, respec-
tively, AP-maps and AP-bisimulations. Of course, there is also a subcategory KSimstr

AP
of strict AP-simulations, and corresponding subcategories KMapstr

AP and KBSimstr
AP =

KBSimAP. Note that if H is an isomorphism in KSimAP then it must be a map and
a bisimulation. Note, finally, that the mapping (A,→A ,LA) �→ (A,→A) extends to a
forgetful functor TS : KSimAP −→ TSys, with corresponding restrictions to the appro-
priate subcategories.

The definition of simulation can be extended by allowing the presence of stuttering
[3,14,10]. For A = (A,→A) and B = (B,→B) transition systems and H ⊆ A× B

1 X, G, and F stand for the classic next (©), henceforth (�), and eventually (�) LTL operators.

316 M. Palomino, J. Meseguer, and N. Martı́-Oliet

a relation, we say that a path ρ in B H-matches a path π in A if there are strictly
increasing functions α,β : IN−→ IN with α(0) = β (0) = 0 such that, for all i, j,k ∈ IN,
if α(i)≤ j<α(i+1) and β (i)≤ k<β (i+1), it holds that π(j)Hρ(k). For example, the
following diagram shows the beginning of two matching paths, where related elements
are joined by dashed lines and α(0) = β (0) = 0, α(1) = 2, β (1) = 3, α(2) = 5.

π • ��

�
� • ��

�
� • �� • ��

�
� • �� · · ·

ρ • ��

�
�

� • ��

,
,

,
• ��

,
,

,

0 0 0 0 0 0 0 • ��

,
,

,
�

�
� • �� · · ·

Then, a stuttering simulation of transition systems H : A −→ B is a binary relation
H ⊆ A×B such that if aHb, then for each path π in A starting at a there is a path ρ
in B starting at b that H-matches π . If H is a function we say that H is a stuttering
map of transition systems. If both H and H−1 are stuttering simulations, then we call
H a stuttering bisimulation. Stuttering simulations of transition systems compose [10]
and together with transition systems define a category that we denote STSys and which
contains TSys as subcategory.

Given Kripke structures A = (A,→A ,LA) and B = (B,→B,LB) over AP, a stut-
tering AP-simulation H : A −→ B is a stuttering simulation of transition systems
H : (A,→A) −→ (B,→B) such that if aHb then LB(b) ⊆ LA (a). We call it strict if
aHb implies LB(b) = LA (a). Again, stuttering AP-simulations compose and define a
category KSSimAP with corresponding subcategories of strict and stuttering AP-maps.

We can generalize simulations even further by allowing them to relate Kripke struc-
tures over different sets of atomic propositions. This provides a very flexible way of re-
lating Kripke structures and will allow us to gather all the previous categories KSSimAP,
for different choices of AP, into a single one.

Given a function α : AP−→ State(AP′) and a Kripke structure A = (A,→A , LA)
over AP′, we define the reduct Kripke structure A |α = (A,→A ,LA |α) over AP, with
labeling function LA |α (a) = {p ∈ AP | A ,a |= α(p)}. α is extended in the expected,
homomorphic way to formulas ϕ ∈ CTL∗(AP), replacing each atomic proposition p
occurring in ϕ by α(p); we denote this extension by α(ϕ).

Proposition 1. Let α : AP → State(AP′) be a function and ϕ be a formula in CTL∗(AP).
Then, for all Kripke structures A = (A,→A ,LA) over AP′, states a ∈ A, and paths π:

– if ϕ is a state formula, A ,a |= α(ϕ) ⇐⇒ A |α ,a |= ϕ , and
– if ϕ is a path formula, A ,π |= α(ϕ) ⇐⇒ A |α ,π |= ϕ .

The definition of generalized stuttering simulations is now immediate. For Kripke
structures A over a set AP of atomic propositions and B over a set AP′, a stuttering
simulation (resp. strict stuttering simulation) (α,H) : (AP,A) −→ (AP′,B) consists
of a function α : AP −→ State\{¬,X}(AP′) (resp. α : AP −→ State \X(AP′)) and a
stuttering AP-simulation (resp. strict stuttering AP-simulation) H : A −→ B|α .

To simplify notation, from now on we will write (α,H) : A −→ B instead of
(α,H) : (AP,A)−→ (AP′,B), except in those cases where it could lead to confusion.

Composition of generalized stuttering simulations can be defined by (β ,G)◦(α,F)=
(β ◦α,G◦F). Using as objects pairs (AP,M) with AP a set of atomic propositions and

A Categorical Approach to Simulations 317

M a Kripke structure over AP, this immediately gives rise to categories KSSim and
KSMap of Kripke structures and stuttering simulations and simulation maps, respec-
tively. However, generalized strict simulations between Kripke structures over different
sets of atomic propositions do not compose, unless we only use functions of the form
α : AP−→ Bool(AP′), where Bool(AP′) is the set of Boolean formulas over AP′. (This
situation will recur in Sections 5 and 6.)

The relationships between some of the different categories of Kripke structures in-
troduced can be summarized in the following diagram, where the horizontal arrows are
inclusions while the vertical ones are the expected forgetful functors.

KMapAP
��

��

KSimAP
��

��

KSSimAP
��

��

KSSim

��
TSys �� TSys �� STSys �� STSys

The important fact about stuttering simulations is that they reflect satisfaction of ap-
propriate classes of formulas. Given Kripke structures A over AP and B over AP′, we
say that a stuttering simulation (α,H) : A −→ B reflects the satisfaction of a formula
ϕ ∈ CTL∗(AP) if either:

– ϕ is a state formula, and B,b |= α(ϕ) and aHb imply that A ,a |= ϕ ; or
– ϕ is a path formula, and B,ρ |= α(ϕ) and ρ H-matches π imply that A ,π |= ϕ .

Theorem 1 ([11]). Stuttering simulations always reflect satisfaction of ACTL∗\{¬,X}
formulas. Strict stuttering simulations also reflect satisfaction of ACTL∗ \X formulas.

Appendix B contains a summary of the categories presented in this section. The
“best” one is KSSim, the most general one, in that it provides the greater flexibility for
relating arbitrary Kripke structures which otherwise could not be related; on the other
hand, as we will see in Section 7, we know less about its categorical properties than for
most of the others.

3 Some Categorical Concepts

Almost all the notions from category theory [9,2] that we use are rather basic and we
only review those concepts that may not be so familiar. To try to avoid confusions with
simulation morphisms, we refer to the morphisms in a category simply as arrows.

Opfibrations. What determines an opfibration [8] is the capacity of “lifting” an arrow
in a base category to another category in an “initial” (and hence minimal) manner in an
appropriate sense.

Let F : C −→ D be a functor. An arrow f : X −→ Y in C is opcartesian over u
if F(f) = u and for every arrow g : X −→ Z in C such that F(g) = v ◦ u for some v :
F(Y)−→ F(Z) there exists a unique arrow h : Y −→ Z such that g = h◦ f and F(h) = v.
The functor F is an opfibration if there exists an opcartesian morphism over every arrow
u : F(X)−→ J. The dual notions are those of cartesian morphism and fibration.

Institutions. The notion of institution is due to Goguen and Burstall’s seminal work
[6]; their goal was to capture the notion of model in a formalism independent way. An
institution is a 4-tuple I = (Sign,sen,Mod, |=) such that:

318 M. Palomino, J. Meseguer, and N. Martı́-Oliet

– Sign is a category whose objects are called signatures,
– sen : Sign −→ Set is a functor that associates to each signature Σ a set of Σ -

sentences,
– Mod : Signop −→ Cat is a functor that associates to each signature Σ a category

whose objects are called Σ -models, and
– |= is a function that associates to each Σ ∈ |Sign| a binary relation |=Σ ⊆ |Mod(Σ)|×

sen(Σ) called Σ -satisfaction, in such a way that the following property holds for
every H : Σ −→ Σ ′, M′ ∈ |Mod(Σ ′)|, and every ϕ ∈ sen(Σ): M′ |=Σ ′ sen(H)(ϕ) ⇐⇒
Mod(H)(M′) |=Σ ϕ .

A theory morphism H : (Σ ,Γ) −→ (Σ ′,Γ ′) is a signature morphism H : Σ −→ Σ ′
such that every model in Mod(Σ ′) that satisfies Γ ′ also satisfies sen(H)(ϕ), for all
ϕ ∈Γ . By defining Mod(Σ ,Γ) as the full subcategory of Mod(Σ) determined by those
models that satisfy Γ , we can extend Mod to a functor Mod : Thop −→ Cat, where Th
is the category of theories and theory morphisms.

A property expressing the possibility of “putting theories together” by colimits is
the exactness of an institution. An institution is exact if its category of signatures is
cocomplete and the model functor Mod preserves limits, and is semiexact if Sign has
pushouts and Mod sends pushouts in Sign to pullbacks in Cat.

Monads and Kleisli categories. A monad (called a triple in [2]) is a tuple (T,η ,μ),
where T : C −→ C is a functor, and η : 1C −→ T and μ : T ◦ T −→ T are natural
transformations satisfying μ ◦ηT = μ ◦Tη = 1T and μ ◦ μT = μ ◦T μ .

All monads can be obtained from adjunctions. One possible construction makes
use of the so-called Kleisli category. The Kleisli category CT of a monad (T,η ,μ) has
as objects those of C . If X and Y are objects of C , an arrow X −→ Y in the Kleisli
category is an arrow X −→ T (Y) in C . Composition of two arrows f : X −→ T (Y) and
g : Y −→ T (Z) is defined as μZ ◦Tg ◦ f .

Grothendieck construction. Often we are interested in considering all the components
of an indexed category together in a “flat” category obtained by taking the disjoint
union of the components and adding some new arrows. This is called, for example in
[15], the Grothendieck construction. Given a functor C : I op −→ Cat, the associated
Grothendieck construction is defined by:

– its objects are pairs (I,X), where I is an object of I and X is an object of C(I);
– an arrow (I,X) −→ (J,Y) is a pair (u, f) with u : I −→ J in I and f : X −→

C(u)(Y) in C(I);
– the composition of arrows (u, f) : (I,X) −→ (J,Y) and (v,g) : (J,Y) −→ (K,Z) is

given by (v,g)◦ (u, f) = (v◦ u,C(u)(g)◦ f).

Regular epis and monos. As defined in [7], an arrow m : X −→Y is a regular monomor-
phism if there exist arrows f and g such that m is the equalizer of f and g. Dually,
e : X −→ Y is a regular epimorphism if it is the coequalizer of two arrows.

Given two classes E and M of epimorphisms and monomorphisms respectively,
closed under composition with isomorphisms, a (E ,M)-factorization of an arrow f is
a factorization f = m◦ e with e in E and m in M . A category is (univocally) (E ,M)-
factorizable if every arrow has a (unique up to isomorphism) (E ,M)-factorization.

A Categorical Approach to Simulations 319

A category is a (E ,M)-category if it is univocally factorizable and both E and M are
closed under composition.

4 Minimal Kripke Structures

Theorem 1 is the basis of the method of model checking by abstraction: given an infinite
(or too large) system M , one tries to find a system A with a finite set of reachable states
that simulates it and uses a model checker to prove properties of M by means of A .
But usually, one only has the concrete system M and a surjective function h : M −→ A
mapping concrete states to a simplified abstract domain A. In this situation, we are
interested in using h to find a Kripke structure that best simulates M under certain
conditions. In [4] the minimal transition system associated to a transition system M
and a surjective function h : M → A was defined; using our notion of simulation this can
be extended to the level of Kripke structures.

Definition 1. The minimal Kripke structure M h
min corresponding to a Kripke structure

M and the surjective function h : M −→ A is given by the triple (A,(h× h)(→M),
LM h

min
), where LM h

min
(a) =

⋂
x∈h−1(a) LM (x).

The following proposition is an immediate consequence of the definitions.

Proposition 2 ([13]). For any Kripke structure M and any surjective function h, h :
M −→ M h

min is an AP-map.

The use of the adjective “minimal” is appropriate since, as pointed out in [4], M h
min

is the most accurate approximation to M that is consistent with h. Within our frame-
work, the notion of minimality can be expressed in a precise categorical sense by means
of an opcartesian morphism.

Proposition 3. For a Kripke structure M and surjective function h : M −→ A, the AP-
map h : M −→ M h

min is an opcartesian morphism in the context of the forgetful functor
U : KMapAP−→ Set mapping a Kripke structure M = (M,→M ,LM) to its underlying
set M and an AP-map to itself.

Proof. Given f : M −→ N in KMapAP such that it can be factorized in Set as f =
g ◦ h for some function g : A−→ N, we have to find a unique g′ in KMapAP such that
g′ : M h

min −→ N , f = g′ ◦ h, and U(g′) = g. By definition of U , it must be g′ = g; we
have to check that g is actually an AP-map.

By definition of M h
min, if a →M h

min
b there exist x and y in M such that h(x) = a,

h(y)= b, and x →M y. Hence, since f is an AP-map, g(a)= g(h(x))= f (x) →N f (y) =
g(h(y)) = g(b). In addition, using again the fact that f is an AP-map, if p ∈ LN (s) then
p ∈ LM (x) for all x in M such that f (x) = s. Let then a ∈ A such that g(a) = s: for
all y in M such that h(y) = a, since f (y) = g(h(y)) = s, it is the case that p ∈ LM (y).
Therefore, p ∈ LM h

min
(a), and for all a with g(a) = s we have LN (s)⊆ LM h

min
(a). ��

Note that this result can be extended to the category KSMapAP: then, whenever f
is a stuttering AP-map, so will be g. The result also holds for generalized simulations in
which the set of atomic propositions may vary.

320 M. Palomino, J. Meseguer, and N. Martı́-Oliet

Proposition 4. The simulation (ηAP,h) : M −→ M h
min, where h : M −→ A is a surjec-

tive function and ηAP is the inclusion AP ↪→ State\¬(AP), is an opcartesian morphism
for the forgetful functor U : KMap−→ Set mapping a pair (AP,M) to the underlying
set M and a simulation map (α,h) to the corresponding function h.

Proof. The proof follows the same steps as the one for Proposition 3, despite the fact
that the set of atomic propositions now may vary from one Kripke structure to another.

��

5 Borrowing

Simulations, in all their different variants, require suitable preservation of transitions
and of atomic propositions. Sometimes, however, it is more natural and easier to think
just in terms of the underlying transition systems; in those cases we can still recover
a full-fledged simulation by borrowing the Kripke structure of the domain using the
labeling function of the codomain.

Definition 2. Let A = (A,→A) be a transition system and let B = (B,→B ,LB) be
a Kripke structure over a set AP of atomic propositions. If h : A −→ B is a stuttering
map between the underlying transition systems, then A can be extended to a Kripke
structure over AP with LA = LB ◦ h. We say that A borrows its properties from B.

Proposition 5. If A = (A,→A) borrows its properties from a Kripke structure B =
(B,→B, LB) over a set AP of atomic propositions through a stuttering map of transition
systems h : (A,→A)−→ (B,→B), then h becomes a strict stuttering AP-map. Further-
more, h is a cartesian morphism for the forgetful functor U : KSMapAP −→ STSys
mapping a Kripke structure to its underlying transition system.

Proof. h is clearly a strict stuttering AP-map because, by definition of LA , atomic
propositions are preserved. To show that it is a cartesian morphism, assume a stuttering
AP-map f : C −→ B and a stuttering map of transition systems g : U(C)−→ (A,→A)
such that f = h ◦ g: we have to show that there is a unique stuttering AP-map g′ such
that h ◦ g′ = f and U(g′) = g. The only possible candidate is g, and we have to check
that g : C −→ A is indeed a stuttering AP-map. By hypothesis, g is a map of transition
systems. Now, assume that g(c) = a and p ∈ LA (a). It follows that p ∈ LB(h(a)), and
since f (c) = (h◦g)(c) = h(a) and f is a stuttering AP-map, p ∈ LC (c) as required. ��

It is interesting to note that this proposition also holds even if h is not a function
(but the resulting AP-simulation may not be strict).

One could ask whether this result can be extended to the Grothendieck category
KSMap so that (ηAP,h) becomes a cartesian morphism for the forgetful functor U :
KSMap −→ STSys. The answer is no and the reason lies in the generality of the
functions α : AP −→ State(AP′) used to relate Kripke structures over different sets
of atomic propositions. However, the result can be recovered by working in the subcat-
egory KSMapbool of KSMap in which the codomain of the functions α is restricted to
Bool(AP′). That is the content of the following proposition.

A Categorical Approach to Simulations 321

Proposition 6. If A = (A,→A) borrows its properties from B = (B,→B,LB) through
a stuttering map of transition systems h : (A,→A)−→ (B,→B), then (ηAP,h) becomes
a strict stuttering map. Furthermore, (ηAP,h) is a cartesian morphism for the forget-
ful functor U : KSMapbool −→ STSys mapping a Kripke structure to its underlying
transition system.

Proof. (ηAP,h) is clearly a strict stuttering map because, by definition of LA , atomic
propositions are preserved. To show that it is a cartesian morphism, assume a stuttering
map (α, f) : C −→ B and a stuttering map of transition systems g : U(C)−→ (A,→A)
such that f = h ◦ g. We have to show that there is a unique stuttering map (α ′,g′) such
that (ηAP,h)◦(α ′,g′) = (α, f) and U(α ′,g′) = g. The only possible candidate is (α,g),
and therefore we have to check that g : C −→ A |α is indeed a stuttering AP′-map,
where AP′ is the set of atomic propositions of C . By hypothesis, g is a map of transition
systems. Now, assume that g(c) = a and p ∈ LA |α (a); it follows that A ,a |= α(p).
Since LA (a) = LB(h(a)), it is immediate to show that for all ϕ ∈ Bool(AP), A ,a |= ϕ
iff B,h(a) |= ϕ . Therefore, B,h(a) |= α(p), and since f (c) = (h ◦ g)(c) = h(a) and
(α, f) is a stuttering map, C ,c |= p by Theorem 1, that is, p ∈ LC (c) as required. ��

6 Temporal Logic Institutions

It is not hard to notice that the result in Proposition 1 has a distinct institutional flavor.
Indeed, Kripke structures can be organized as the models of a temporal logic institu-
tion [6] in which Proposition 1 corresponds to the property required of the satisfaction
relation. Other institutions for temporal logics are discussed in [1], but their notions of
signature morphism and of simulation are more restricted. Some of the ideas in this
section were presented in [11]: we also include them here for the sake of completeness.

Let us first define the category of signatures. For that, let State\¬ : Set−→ Set be the
functor mapping a set AP to the set of state formulas State\¬(AP), and a function α :
AP −→ AP′ to its homomorphic extension α : State\¬(AP)−→ State\¬(AP′). Then,
the triple 〈State\¬,η ,μ〉 is a monad (Section 3), where η : IdSet ⇒ State\¬ and μ :
State\¬ ◦ State\¬ ⇒ State\¬ are natural transformations such that ηAP(p) = p and
μ “unnests” a formula into its basic atomic propositions. Our category of signatures
will be SetState\¬, the Kleisli category of the monad; its objects are just sets, and the
morphisms AP−→ AP′ are functions α : AP−→ State\¬(AP′).

Definition 3. The institution of Kripke structures is given by:

– SignK = SetState\¬.
– senK is the functor mapping a set AP to State\¬(AP), and a function α : AP −→

State\¬(AP′) to its homomorphic extension α : State\¬(AP)−→ State\¬(AP′).
– ModK : SetState\¬ −→ Catop is given by ModK(AP) = KSimAP and, for α : AP−→

AP′ in SetState\¬, ModK(α)(A) = A |α and ModK(α)(H) = H.
– The satisfaction relation is defined as A |= ϕ iff A ,a |= ϕ for all a ∈ A.

Proposition 7. IK = (SignK,senK,ModK, |=) is an institution.

322 M. Palomino, J. Meseguer, and N. Martı́-Oliet

Analogously, we could think of defining an institution for Kripke structures and
strict morphisms. However, the fact that α can map an atomic proposition to an arbitrary
formula makes it impossible. The problem is that the putative model functor is not such:
the reduct of a strict simulation may not itself be strict. As happened in Sections 2.1 and
5, to solve this problem and get an institution for strict simulations it is enough to restrict
the signature morphisms to be functions of the form α : AP−→ Bool(AP).

Notice also that the category KSim can be obtained by means of the Grothendieck
construction [15]. Indeed, KSim is just the Grothendieck category corresponding to the
indexed category ModK. (The same would happen for strict simulations if we were to
work with the restricted α functions.) Similarly, KMap and KBSim can be obtained by
modifying ModK so that AP is mapped to KMapAP and KBSimAP, respectively.

Of course, analogous results exist for the general case of stuttering simulations. Now
the functor used to define the Kleisli category of signatures is State\{¬,X}, mapping
AP to the set of state formulas State\{¬,X}(AP) (and to Bool(AP) for the strict case).
Similarly, the model functor maps the set of atomic propositions AP to the correspond-
ing category of sttutering AP-simulations, KSSimAP. Actually, as the proof reveals, the
construction also applies to any temporal logic whose formulae are reflected by simu-
lations; in particular, we could restrict the institutions to the LTL sublogic of ACTL∗.

The institutions just introduced use the most general notion of signature morphism
compatible with the reflection of suitable temporal formulas. But precisely because of
this generality, they do not have the exactness property. To see this, it is enough to
consider the set of atomic propositions AP = {p,q} and signature morphisms α1,α2 :
AP −→ State\¬(AP) such that α1(p) = p∧ q and α2(p) = p∨ q. Then, for any sig-
nature morphisms β1,β2 : AP −→ State\¬(AP′), (β1 ◦α1)(p) = β1(p)∧β1(q), which
is different from (β2 ◦α2)(p) = β2(p)∨β2(q). This shows that SignK does not have
pushouts. The situation, however, changes when the signature morphisms are restricted
to mapping atomic propositions to atomic propositions. Note that the counterexample
shows also that this time it is not enough to consider Bool(AP): we have to map atomic
propositions to atomic propositions.

Proposition 8. Let I ′K be obtained from the institution IK by replacing SetState\¬ by
Set as the category of signatures. Then I ′K is a semiexact institution.

The same result also applies to the institutions of strict and stuttering simulations
described above.

7 Limits and Colimits in Categories of Simulations

We collect in this section categorical properties about existence of limits and colimits
in some of the categories of Kripke structures that have been presented in Section 2. We
focus on the categories over a fixed set of atomic propositions. For the Grothendieck cat-
egories, colimits can be obtained by mimicking the constructions presented below; how-
ever, we conjecture that in such Grothendieck categories limits do not exist in general.

7.1 Products and Coproducts

Proposition 9. For all sets of atomic propositions AP, the category KMapAP has finite
products.

A Categorical Approach to Simulations 323

Proof. Given Kripke structures A and B, define A ×B = (A×B,→A×B,LA ×B),
where (a,b) →A×B (a′,b′) iff a →A a′ and b →B b′, and LA ×B(a,b) = LA (a)∪
LB(b), with the usual projections πA : A ×B −→ A and πB : A ×B −→ B. The
relation →A ×B is total and thus A ×B is well-defined, and it is immediate to check
that πA and πB are AP-maps.

Now, if f : C −→ A and g : C −→ B are AP-maps, the unique arrow 〈 f ,g〉 : C −→
A ×B such that πA ◦〈 f ,g〉= f and πB ◦〈 f ,g〉= g is given by 〈 f ,g〉(c) = (f (c),g(c)).
Uniqueness is clear: we have to check that 〈 f ,g〉 is indeed an AP-map. If c →C c′ then
f (c) →A f (c′) and g(c) →B g(c′), and therefore 〈 f ,g〉(c) →A×B 〈 f ,g〉(c′). And if
p ∈ LA×B(〈 f ,g〉(c)) then p ∈ LA (f (c)) or p ∈ LB(g(c)): either way, p ∈ LC (c). ��

Note that this construction can be extended to infinite products in the expected way
and, since the Kripke structure with a single state *, single transition ∗→ ∗, and L(∗) =
/0 is a final object, KMapAP has arbitrary products.

This result is also true for the category of strict AP-maps, but the constructions
are slightly more involved. The final object in KMapstr

AP is (P(AP),P(AP)×P(AP),
idP(AP)). The construction of finite products is shown in the proof of the next result;
this is sometimes called the synchronous product of Kripke structures in the literature.

Proposition 10. For all sets of atomic propositions AP, the category KMapstr
AP has finite

products.

Proof. Given Kripke structures A and B, let A ×B be the Kripke structure defined
in the proof of Proposition 9. Let us define

Path(A ×B)= = {π ∈ Path(A ×B) | for all i, LA (πA (π(i))) = LB(πB(π(i)))} ,
D = {(a,b) | there exists π ∈ Path(A ×B)= and i ∈ IN such that (a,b) = π(i)} .

The product of A and B in KMapstr
AP is given by A ×st B = (D,→A ×B|D2 ,LA ×B|D)

with the expected projections. By construction, →A×B|D2 is total. Note that for arbi-
trary strict AP-maps f : C −→ A and g : C −→ B, the function 〈 f ,g〉 : C −→ A ×st B
is well-defined. For each c ∈C, let π be a path with π(0) = c (it must exist because →C

is total). Since both f and g are strict, LA (f (π(i))) = LB(g(π(i))) and the path

(f (π(0)),g(π(0))) →A ×B (f (π(1)),g(π(1))) →A×B · · ·
belongs to Path(A ×B)=; thus, (f (c),g(c)) ∈ D. And 〈 f ,g〉 is clearly strict. ��

Note that in some cases we may have A ×str B = /0 even though neither A nor B
are empty. This simply means that the only Kripke structure C from which there exist
strict AP-simulations to both A and B is the empty one. Note also that the construction
can be extended in the expected way to infinite products.

If we take a look at what happens when considering AP-simulations instead of just
maps, it turns out that finite producs also exist in KSimAP although its definition is quite
different from the previous ones.

Proposition 11. For all sets of atomic propositions AP, the category KSimAP has finite
products.

324 M. Palomino, J. Meseguer, and N. Martı́-Oliet

Proof. Define the product of A and B to be A ×B = (A.B,→A .→B,LA ×B),
where LA ×B(x) is LA (x) if x ∈ A or LB(x) if x ∈ B, with projections ΠA and ΠB

defined by aΠA a for all a ∈ A and bΠBb for all b ∈ B. Then, for AP-simulations F :
C −→ A and G : C −→ B, the unique 〈F,G〉 is defined by c〈F,G〉a iff cFa, and
c〈F,G〉b iff cGb. ��

Again, the above construction can be extended to arbitrary families {Ai}i∈I of
Kripke structures, and since the empty Kripke structure is trivially a final object, the
category KSimAP has arbitrary products.

By contrast, there are no products in the category KSMapAP of stuttering AP-
simulations. To see this, consider A given by a1 →A a2 →A . . . and B by b1 →B

b2 →B . . ., where both labeling functions are empty. Now, assume C is given by c1 →C

c2 →C Consider now stuttering AP-simulations f : C −→ A with f (c1) = a1,
f (c2∗i) = ai+1, and f (c2∗i+1) = ai+1 for i ≥ 1, and g : C −→ B with g(c2∗i+1) = ai+1

and g(c2∗i+2) = ai+1 for i≥ 0. Assume that D is the product of A and B with projec-
tions πA and πB, and let d1 →D d2 →D . . . be the path in D 〈 f ,g〉-matching the path
in C that starts at c1. We have 〈 f ,g〉(c1) = d1, πA (d1) = a1, and πB(d1) = b1. Now,
〈 f ,g〉(c2) must be equal to d1 or to d2. But the first alternative cannot hold because then
πA (〈 f ,g〉(c2)) �= f (c2); therefore 〈 f ,g〉(c2) = d2, and πA (d2) and πB(d2) have to be
a2 and b1, respectively. And we are done, because if we swap the definitions of f and g
the same argument leads to πA (d1) = πB(d2) = a1: a contradiction.

Coproducts exist in all the categories mentioned in the previous section and their
definition is the same in all cases. Here we present the details for KSimAP.

Proposition 12. For all sets of atomic propositions AP, the category KSimAP has finite
coproducts.

Proof. Given Kripke structures A and B, define A +B as (A.B,→A .→B,LA +B),
where LA +B(x) is LA (x) if x ∈ A or LB(x) if x ∈ B, and with inclusions IA and IB
defined by aIA a for all a ∈ A and bIBb for all b ∈ B. A + B is clearly well-defined
and it is trivial to check that IA and IB are AP-simulations. Now, for F : A −→ C and
G : B −→ C arbitrary AP-simulations, define [F,G] : A +B by a[F,G]c iff aFc, and
b[F,G]c iff bGc. It is easy to check that [F,G] so defined is the only AP-simulation that
satisfies IA ◦ [F,G] and IB ◦ [F,G]. ��

Note that the Kripke structure A +B is the same as the Kripke structure A ×B
of Proposition 11, and that the construction also applies to infinite families. The initial
object corresponds to the empty Kripke structure.

7.2 Equalizers and Coequalizers

Proposition 13. For all sets of atomic propositions AP, the category KMapAP has
equalizers.

Proof. Let f ,g : A −→ B be AP-maps. Let us define

Path(A) f ,g = {π ∈ Path(A) | f ◦π = g ◦π} ,
E = {a ∈ A | there exists π ∈ Path(A) f ,g and i ∈ IN such that a = π(i)} .

A Categorical Approach to Simulations 325

The equalizer of f and g is given by the Kripke structure E = (E,→A |E2 ,LA |E) and
the inclusion e : E −→ A . By definition, →E is total and thus E is a well-defined
Kripke structure; e is trivially a (strict) AP-map. Now, suppose that h : D −→ A is
an AP-map such that f ◦ h = g ◦ h. Define m : D −→ E by m(d) = h(d). Obviously
f (h(d)) = g(h(d)) and, since →D is total, there is a path π in D such that π(0) = d:
its image by h belongs to Path(A) f ,g and therefore h(d) ∈ E and m is well-defined.
It is clear that m is unique and that h = e ◦m. Finally, m is an AP-map: if d →D d′
then h(d) →A h(d′) and by definition of m and →E it is m(d) →E m(d′); and if p ∈
LE (m(d)) then p ∈ LA (h(d)) and hence p ∈ LD(d). ��

It is easy to check that the same construction gives equalizers in the categories
KMapstr

AP and KSMapAP. As for KSimAP, we have not been able to prove or disprove
the existence of equalizers.

Proposition 14. For all sets of atomic propositions AP, the category KMapAP has co-
equalizers.

Proof. Assume that f ,g : A −→ B are AP-simulations, and define ≡ to be the least
equivalence relation over B containing {(f (a),g(a)) | a∈ A}. Then the coequalizer of f
and g is given by the quotient Kripke structure B/≡ and the projection c : B−→ B/≡.
For assume that h : B −→ D is an AP-map such that h ◦ f = h ◦ g; we can define
m : B/≡ −→ D by m([b]) = h(b) with h = m ◦ c. We have to check that m is well-
defined and that it is an AP-map. The first part is proved by showing that if b1 ≡ b2

then h(b1) = h(b2), by induction on the definition of ≡. The base case corresponds to
f (a) ≡ g(a), and by hypothesis it is h(f (a)) = h(g(a)). And it is immediate that the
result also holds for b≡ b, for b2 ≡ b1 if it holds for b1 ≡ b2, and for b1 ≡ b3 if it holds
for b1 ≡ b2 and for b2 ≡ b3. For the second part, if [b1] →B/≡ [b2] it must be b′1 →B b′2
for some b′1 ≡ b1 and b′2 ≡ b2 and hence h(b′1) →D h(b′2). And if p ∈ LD(m([b])) then
p ∈ LB(b′) for all b′ ∈ [b] and therefore p ∈ LB/≡([b]). ��

Again, this construction also applies to the category KMapstr
AP but we do not know

what happens in KSimAP or KSMapAP.

7.3 Satisfaction for Products and Coproducts

At this point, it is interesting to ask ourselves whether there is any relation between
the formulas satisfied by two Kripke structures A and B and those satisfied by their
product A ×B, or more generally, whether there is any relation between the properties
satisfied by a family of Kripke structures and those of their corresponding limits and
colimits. Unfortunately, there is no general pattern.

Let us consider products. In one direction, the relation is immediate: there exist
simulations from A ×B to both A and B (the projections) and therefore any property
that holds in any of the latter will also be true of A ×B. In the other direction, since
products and coproducts coincide in KSimAP there are also simulations from A and
B to A ×B (the inclusions) and thus properties of A ×B can be transferred to both
A and B. This relation however does not hold when simulations are restricted to be
maps. For example, in the category KMapAP for AP = {p,q}, if A = ({a},a →A

326 M. Palomino, J. Meseguer, and N. Martı́-Oliet

a,LA) with LA (a) = {p}, and B = ({b},b →B b,LB) with LB(b) = {q}, we have
A ×B,(a,b) |= G(p∧q) but A ,a �|= G(p∧q) and B,b �|= G(p∧q).

The same reasoning applies in general and hence it follows that limits inherit the
properties of their objects while these satisfy those of their colimits, but the converse
implications do not always hold.

8 Factorizations in Categories of Simulations

First we characterize the classes of AP-simulations that correspond to the (regular) epi-
morphisms and monomorphisms.

Proposition 15. A morphism in KMapAP, KMapstr
AP, or KSMapAP is an epimorphism

if and only if it is a surjective function.

Proof. Assume that f : A −→ B is surjective. Then, if g◦ f = h◦ f it must be the case
that g = h, and hence f is epi, because the range of f is B.

Conversely, assume now that f is an epimorphism. If f were not surjective there
would be an element b ∈ B not in the image of f . Define a Kripke structure B′ which
is like B but with b replaced by b1 and b2 with the same labeling as b and such that
bi →B′ b′ iff b →B b′ and b′ →B′ bi iff b′ →B b. Now, if g : B −→ B′ maps b to
b1 and the other elements to themselves, and h : B −→ B′ maps b2 to b and is the
identity elsewhere, we have that g and h are well-defined (strict/stuttering) AP-maps,
g◦ f = h◦ f , but g �= h: a contradiction with the assumption that f was an epimorphism.

��
Proposition 16. A morphism in KMapAP, KMapstr

AP, or KSMapAP is a monomorphism
if and only if it is injective over paths (which is weaker than just injectivity).

Proof. Assume that f : A −→ B is injective over paths, that is, that the function f
from Path(A) to Path(B) defined by f (π) = f ◦π is injective. Let g,h : C −→ A be
morphisms such that f ◦ g = f ◦ h. Let c ∈ C and π be a path starting at c: then it is
f (g(π)) = f (h(π)) from where it follows g(π) = h(π) and therefore g(c) = h(c).

Conversely, assume that f is mono but there are paths π and π ′ in A such that
f (π) = f (π ′) and π �= π ′. Let us define a Kripke structure C with a single path c1 →C

c2 →C . . . and with LC (ci) = LA (π(i))∪LA (π ′(i)). Then, if g,h : C −→ A are defined
by f (ci) = π(i) and g(ci) = π ′(i), g and h are AP-maps by construction (and strict, if f
is so), and it is f ◦ g = f ◦ h and g �= h: a contradiction. ��

The characterization of regular monomorphisms is now immediate.

Proposition 17. A morphism f : A −→ B is a regular mono in KMapAP, KMapstr
AP,

or KSMapAP if and only if f is injective, LA (a) = LB(f (a)) for all a∈ A, and a →A a′
iff f (a) →B f (a′).

Proof. The implication from left to right follows from the construction in the proof
of Proposition 13. In the other direction, let C be the Kripke structure obtained from
B by splitting each state b into b1 and b2, with LC (b1) = LC (b2) = LB(b), and with

A Categorical Approach to Simulations 327

bi →C b′j iff b →B b′. Now, define f ,g : B −→ B′ by g(b) = b1 and h(b) = b1 if
b ∈ f (A) and h(b) = b2 otherwise: f and g so defined are (strict) AP-maps and, since
f (A) is a Kripke substructure of B and it is isomorphic to A due to the assumptions,
it is easy to check that the result of the construction of the equalizer in Proposition 13
is (isomorphic to) f . ��

There is also a rather more involved characterization of regular epis which is de-
scribed in the next proposition.

Proposition 18. A morphism f : A −→ B is a regular epi in KMapAP or KMapstr
AP if

and only if: (1) f (a) = f (a′) implies that there are paths π and π ′ such that π(0) = a,
π ′(0) = a′, and f (π) = f (π ′); (2) if b →B b′ there exist a,a′ ∈ A with f (a) = b, f (a′) =
b′, and a →A a′; (3) for all b, LB(b) =

⋂
f (a)=b LA (a).

Proof. The implication from left to right follows from Proposition 14; item (2) is proved
by induction over≡. In the other direction, we define a Kripke structure C and two AP-
maps g,h : C −→ A as follows. For each pair of states a,a′ such that f (a) = f (a′) let π
and π ′ be paths as in (1). Now, add to C a fresh path ρ in such a way that g(ρ(i)) = π(i)
and h(ρ(i)) = π ′(i). Then, if we apply the construction in Proposition 14 that returns
the coequalizer of g and h through a quotient Kripke structure A /≡, the result is, by
items (2) and (3), isomorphic to f : A −→ B. ��

Proposition 19. KMapAP,KMapstr
AP,andKSMapAP are(epi, regularmono)-categories.

Proof. Let f : A −→ B be a morphism in any of these categories, and let us write
f (A) for (f (A),→B | f (A),LB| f (A)). Then, define e : A −→ f (A) to be like f and
m : f (A) −→ B to be the obvious inclusion: (e,m) is the unique (epi, regular mono)-
factorization of f (up to isomorphism).

By Propositions 15 and 17, e and m are indeed epi and regular mono respectively.
Now, assume that e′ : A −→ C , m′ : C −→ B is another (epi, regular mono)-factorization
of f . Define g : f (A)−→ C by g(b) = e′(a) where e(a) = b (recall that e is surjective),
and h : C −→ f (A) by h(c) = e(a) where e′(a) = c. Let us check that they are well-
defined. If e(a) = e(a′) then m(e(a)) = m(e(a′)) and therefore m′(e′(a)) = m′(e′(a′));
now, since m′ is regular mono, e′(a) = e′(a′) and g is well-defined, and analogously
for h. It is also clear that they are inverses of each other and that g ◦ e = e′ and m′ ◦ g,
so we are only left with checking that they are simulations; we present the arguments
for g: those for h are symmetric. If b → f (A) b′, where e(a) = b and e(a′) = b′, then
m(e(a)) →B m(e(a′)) or, equivalently, m′(e′(a)) →B m′(e′(a′)) and thus, since m′ is a
regular mono, e′(a) →B e′(a′) and hence g(a)−→ f (A) g(a′). In the case of stuttering
simulations, a path π in f (A) translates to a path m(π) in B which is m′-matched by
ρ in C ; this same ρ also h-matches π . Finally, Lf (A)(b) = LB(e(a)) = LB(m(e(a))) =
LB(m′(e′(a))) = LC (e′(a)) = LC (g(b)). The first equality assumes that b = e(a), and
the second and the fourth one hold because m and m′ are regular monos. ��

Although we do not have a counterexample we believe that (regular epi, mono)
factorizations do not exist in general. When they do, however, they are unique: the
argument is similar to that for (epi, regular mono)-factorizations.

328 M. Palomino, J. Meseguer, and N. Martı́-Oliet

9 Conclusions

In previous papers [13,11] we have studied the suitability of different kinds of simula-
tions between transition systems and Kripke structures for the study of the relationships
between formal models of concurrent systems. The range of available notions of simu-
lations makes it very natural to adopt a categorical viewpoint in which Kripke structures
become the objects of several categories while the morphisms are obtained from the cor-
responding notion of simulation. In this paper we have defined in detail several of those
categories and studied their most interesting properties: minimal Kripke structures as
opcartesian morphisms, borrowing of properties as cartesian morphisms, temporal logic
institutions, constructions of limits and colimits, and factorizations.

There are two main directions left open for future work. On the one hand, we would
like to finally prove or disprove the existence of limits in the Grothendieck categories.
On the other hand, as briefly discussed in [11], rewriting logic theories representing
Kripke structures can also be organized in categories: we plan to organize them in an
institution and to study its relationship with IK.

Acknowledgments. We would like to thank the anonymous referees for very interesting
and useful comments.

References

1. M. Arrais and J. L. Fiadeiro. Unifying theories in different institutions. In M. Haveraaen,
O. Owe, and O.-J. Dahl, editors, Recent Trends in Data Type Specification. 11th Workshop on
Specification of Abstract Data Types, volume 1130 of LNCS, pages 81–101. Springer, 1996.

2. M. Barr and C. Wells. Category Theory for Computing Science. Third Edition. Centre de
Recherches Mathématiques, 1999.

3. M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing finite Kripke structures in
propositional temporal logic. Theoretical Computer Science, 59:115–131, 1988.

4. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Trans-
actions on Programming Languages and Systems, 16(5):1512–1542, Sept. 1994.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
6. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and program-

ming. Journal of the Association for Computing Machinery, 39(1):95–146, 1992.
7. H. Herrlich and G. E. Strecker. Category Theory: An Introduction. Advanced Mathematics.

Allyn and Bacon, Boston, 1973.
8. B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the

Foundations of Mathematics. North-Holland, 1999.
9. S. Mac Lane. Categories for the Working Mathematician. Second Edition. Springer, 1998.

10. P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis, University of Texas
at Austin, Aug. 2001.

11. N. Martı́-Oliet, J. Meseguer, and M. Palomino. Theoroidal maps as algebraic simulations. In
J. L. Fiadeiro and P. Mosses and F. Orejas, editors, Recent Trends in Algebraic Development
Techniques, WADT 2004, volume 3423 of LNCS, pages 126–143. Springer, 2005.

12. N. Martı́-Oliet, J. Meseguer, and M. Palomino. Algebraic simulations. Submitted.
http://maude.sip.ucm.es/∼miguelpt/bibliography, 2005.

13. J. Meseguer, N. Martı́-Oliet, and M. Palomino. Equational abstractions. In F. Baader, editors,
Automated Deduction - CADE-19, volume 2741 of LNCS, pages 2–16. Springer, 2003.

A Categorical Approach to Simulations 329

14. K. S. Namjoshi. A simple characterization of stuttering bisimulation. In S. Ramesh and
G. Sivakumar, editors, Foundations of Software Technology and Theoretical Computer Sci-
ence, 17th Conference, volume 1346 of LNCS, pages 284–296. Springer, 1997.

15. A. Tarlecki, R. M. Burstall, and J. A. Goguen. Some fundamental algebraic tools for
the semantics of computation. Part 3: Indexed categories. Theoretical Computer Science,
91(2):239–264, 1991.

A Proofs of Some of the Results

Proposition 7. IK = (SignK,senK,ModK, |=) is an institution.

Proof. It is a routine exercise to check that the purported functors are actually so. For
example, let us check that ModK is well-defined. Given α : AP −→ AP′, ModK(α)
is a functor. It is well-defined over objects and preserves identities and composition:
we only need to check that ModK(α)(H) : A |α −→ B|α is an AP-simulation when-
ever H : A −→ B is an AP′-simulation. Since the transition systems do not change,
ModK(α)(H) preserves the transition relation. Now, if aHb and p ∈ LB|α (b), then by
definition we have B,b |= α(p) and, by Theorem 1, this yields A ,a |= α(p), which
again by definition implies that p ∈ LA |α (a), as required. Thus, ModK is well-defined
over both objects and morphisms. It clearly preserves identities, so we are only left
with showing that it preserves composition, for which it is enough to show that, given
arrows α : AP −→ AP′ and β : AP′ −→ AP′′, and a Kripke structure A over AP′′,
Aβ◦α = (A |β)|α . The equality at the level of transition systems is immediate. For the

labeling function, p ∈ LA |β◦α (a) iff A ,a |= β (α(p)) (by definition) iff A |β |= α(p)
(by Proposition 1) iff p ∈ L(A |β)|α (a) (by definition). Finally the property required of
the satisfaction relation follows from Proposition 1. ��
Proposition 8. Let I ′K be obtained from the institution IK by replacing SetState\¬ by
Set as the category of signatures. Then I ′K is a semiexact institution.

Proof. That I ′K is an institution is immediate, and since the category of signatures is
Set we know that it has pushouts. Therefore, we are left with checking that pushouts
are transformed into pullbacks by the model functor. Consider then a pushout

AP0
α2 ��

α1

��

AP2

β2
��

AP1
β1 �� AP3 = (AP1.AP2)/≡

where≡ is the least equivalence relation on AP1.AP2 verifying α1(p)≡ α2(p), and β1

and β2 take each element to its quotient class. To see that it is mapped to a pullback, let
F1 : C −→ KSimAP1 and F2 : C −→ KSimAP2 be functors such that |α1 ◦F1 = |α2 ◦F2;
we have to find a unique functor F :C−→ KSimAP3 such that |β1

◦F = F1 and |β2
◦F =

F2.
Let c be an object in C and f : c −→ c′ an arrow, with F1(c) = A and F2(c) = B.

It follows from the hypothesis that A is equal to B, →A equal to →B , and F1(f) equal

330 M. Palomino, J. Meseguer, and N. Martı́-Oliet

to F2(f). This leads us to define F(c) = (A,→A ,LF(c)) and F(f) = F1(f), where we
choose to define the labeling function as LF(c) = β1(LA)∪β2(LB). Since it is straight-
forward to check that F(f) is an AP3-simulation, F is well-defined, and it is a functor
because F1 (or F2) is so.

We are left with checking that F satisfies the commutativity condition and proving
that it is the only one that does it. For the first part, note that by the definition of the
pushout it is not possible for any two p and p′ in AP1 to be such that β1(p) = β1(p′) and
p ∈ LA (a) but p′ /∈ LA (a) (a detailed proof proceeds by induction on the definition of
≡). We need to use this property to show that F(c)|β1

= F1(c). We already know that
their objects and transition relations are the same; as for the atomic predicates:

p ∈ LF(c)|β1
(a) ⇐⇒ F(c),a |= β1(p) ⇐⇒ β1(p) ∈ LF(c)(a) ⇐⇒ p ∈ LF1(c)(a) ,

where the property is required for the last implication to the right. The result for F2 is
symmetric. Uniqueness follows from the definitions of the functors and the previous
equivalences. ��

B Summary of Categories

The following table summarizes most of the categories introduced in this paper; for
each of them, the third column contains the (co)limits for which explicit constructions
have been given.

Categories Objects Arrows (Co)limits
TSys transition systems simulations of transition systems (Co)products

KSimAP Kripke str. over AP AP-simulations (Co)products
KMapAP Kripke str. over AP AP-simulation maps (Co)products, (co)equalizers
KMapstr

AP Kripke str. over AP strict AP-simulations (Co)products, (co)equalizers
KSSimAP Kripke str. over AP stuttering AP-simulations ?
KSMapAP Kripke str. over AP stuttering AP-simulation maps Equalizers

KSim arbitrary Kripke str. simulations ?/colimits as above
KSSim arbitrary Kripke str. stuttering simulations ?/colimits as above

Behavioral Extensions of Institutions�

Andrei Popescu and Grigore Roşu

Department of Computer Science,
University of Illinois at Urbana-Champaign

{popescu2, grosu}@cs.uiuc.edu

Abstract. We show that any institution I satisfying some reasonable
conditions can be transformed into another institution, Ibeh, which cap-
tures formally and abstractly the intuitions of adding support for be-
havioral equivalence and reasoning to an existing, particular algebraic
framework. We call our transformation an “extension” because Ibeh has
the same sentences as I and because its entailment relation includes that
of I. Many properties of behavioral equivalence in concrete hidden logics
follow as special cases of corresponding institutional results. As expected,
the presented constructions and results can be instantiated to other log-
ics satisfying our requirements as well, thus leading to novel behavioral
logics, such as partial or infinitary ones, that have the desired properties.

1 Introduction

Many approaches to behavioral equivalence are defined as extensions of more
standard algebraic frameworks, following relatively well understood methodolo-
gies. For example, hidden algebra is defined as an extension of algebraic specifi-
cation: it adds appropriate machinery for experiments and then uses it to define
behavioral equivalence as “indistinguishability under experiments”, also known
to be the largest behavioral congruence consistent with the visible data.

Here we explore this problem from an abstract model theoretical perspective.
We investigate conditions under which an institution admits behavioral exten-
sions. The intuition of a behavioral signature extending an algebraic signature is
captured categorically in a general way covering all cases of operations in current
use, including the ones that tend to be problematic: constants of hidden sorts and
operations with multiple arguments of hidden sort. Let the original institution
be I = (Sign,Sen,Mod, |=), let Ψ be a fixed signature in Sign called the visible
signature, and let D be a Ψ -model called the data model. Then we build the
behavioral extension of I over (Ψ,D), say Ibeh = (Signbeh,Senbeh,Modbeh, |≡),
as follows. The objects in Signbeh are those in the comma category Ψ/Sign; the
(ϕ : Ψ → Σ,Σ)-sentences in Ibeh are exactly the Σ-sentences in I, while the
(ϕ : Ψ → Σ,Σ)-models in Ibeh are the data-consistent Σ-models in I; finally,

� Supported in part by joint NSF/NASA grant CCF-0234524, by NSF CAREER grant
CCF-0448501, and by NSF grant CNS-0509321.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 331–347, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

332 A. Popescu and G. Roşu

satisfaction A |≡ (ϕ,Σ)ρ in Ibeh is defined as Aϕ |=Σ ρ in I, for a carefully chosen
model Aϕ that symbolizes the “quotient” of A by its behavioral equivalence. An
appropriate novel notion of quotient system is introduced for this purpose.

The abstract relationship between behavioral and normal satisfactions is
studied via a model-theoretic notion of “visibility”, and some structural proper-
ties preserved by the behavioral extension are pointed out. We show that many of
the relevant properties of particular hidden logics can be proved at institutional
level. The motivation for such a generalization is, as usual, its logic-independent
status: a plethora of concrete algebraic logics formalizable as institutions satisfy
our mild restrictions, so they all admit behavioral extensions.

Notice that from the way we define the concepts, we restrict ourselves to the
fixed-data approach. An adaptation of our construction to the loose-data setting
seems possible, and we shall sketch it in Section 7. Due to space limitations,
proofs of our results are omitted, but they can all be found in [24].

Preliminaries. We assume the reader familiar with basic categorical notions:
functor, colimit, etc. We use the terminology and notation from [23], with the
following exceptions: we let “;” denote the morphisms’ composition, which is
considered in diagrammatic order; by colimit and limit we mean small colimit
and small limit; by a filtered (chain) colimit we mean a colimit of a functor
defined on a non-empty filtered (total respectively) ordered set. We use the
following comma category notations: if A ∈ |C|, A/C denotes the category whose
objects are pairs (h,B), where h : A → B is a morphism in C, and whose
morphisms u : (h,B) → (g, C) are such that u : B → C is a morphism in C with
h;u = g; there is a canonical forgetful functor U from A/C to C, which maps each
object (h,B) to B and each morphism u : (h,B) → (g, C) to u : B → C; when
u : A→ A′ is a morphism in C, there is a canonical comma functor u/C between
A′/C and A/C, mapping each object (h,B) to (u;h,B) and each morphism to
itself; to each functor F : C → D and object A in C, one can associate a functor
between comma categories FA : A/C → F (A)/D, which maps each object (h,B)
to (F (h), F (B)) and each morphism g to F (g).

Since we need a special notion of quotient object, we define a parameterized
notion of co-well-powered-ness: let C be a category and E be a class of morphisms
in C. |C| is said to be E-co-well-powered if for each A ∈ |C| there is some set D
of morphisms in E of source A, such that any morphism of source A in E is
isomorphic in A/C to some morphism in D. If E is taken to be the class of all
epimorphisms, we get the usual notion of co-well-powered-ness. If C is a category,
Cop denotes its dual. We let Set denote the category of sets and functions and
Cat the category of categories and functors.

2 Institutions

In this section, we discuss several institutional concepts, many already known.
An institution [17] consists of: a category Sign, whose objects are called

signatures; a functor Sen : Sign→ Set, giving for each signature Σ a set whose
elements are called Σ-sentences; a functor Mod : Sign → Catop giving for each

Behavioral Extensions of Institutions 333

signature Σ a category whose objects are called Σ-models and whose arrows
are called Σ-morphisms; a Σ-satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ)
for each Σ ∈ |Sign|, such that for each morphism ϕ : Σ → Σ′ in Sign, the
satisfaction condition “M ′ |=Σ′ Sen(ϕ)(e) iff Mod(ϕ)(M ′) |=Σ e” holds for all
M ′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ). As usual, we may let �ϕ denote the reduct
functor Mod(ϕ) and ϕ denote Sen(ϕ). When M = M ′�ϕ we say that M ′ is a
ϕ-expansion of M and M is the ϕ-reduct of M ′.

The satisfaction relation is extended to sets of Σ-sentences and classes of Σ-
models: if E ⊆ Sen(Σ) and M ⊆ |Mod(Σ)|, then we write M |=Σ E whenever
M |=Σ e for each e ∈ E andM ∈ M. We let E∗ denote the class {M |M |=Σ E}
and dually, M∗ the set of Σ-sentences {e | M |=Σ e}. The two “∗” operators
form a Galois connection [17]; we let “•” denote the two corresponding closure
operators. The satisfaction relation is also extended to a (semantic) consequence
relation, for which we use the same symbol, following classical logic tradition: if
E,E′ ⊆ Sen(Σ), we write E |=Σ E′ whenever E∗ ⊆ E′∗. To simplify notation,
we may write |= instead of |=Σ. A presentation [17] is a pair (Σ,E), where
E ⊆ Sen(Σ). A theory [17] is a presentation (Σ,E) with E with E• = E.
A presentation morphism ϕ : (Σ,E) → (Σ′, E′) is a signature morphism ϕ :
Σ → Σ′ with ϕ(E) ⊆ E′•. A presentation morphism between theories is called
a theory morphism. We let Mod(Σ,E) denote the full sub-category of Mod(Σ)
having as objects all the Σ-models which satisfy E. An institution is ω-exact if
Mod preserves colimits of functors defined on the ordered set of natural numbers.

A signature morphism ϕ : Σ → Σ′ is representable [10] if there exists a
Σ-model T[ϕ] (called the representation of ϕ) and an isomorphism of cate-
gories Iϕ : Mod(Σ′) → T[ϕ]/Mod(Σ) such that Iϕ;U = Mod(ϕ), where U :
T[ϕ]/Mod(Σ) → Mod(Σ) is the usual forgetful functor. Representable signature
morphisms capture the idea of first-order variable. For instance, in the institution
of first-order predicate logic with equality (FOPL=; see Example 1.(1)), given a
set of constant symbols X , the inclusion of Σ = (S, F,P) into Σ′ = (S, F ∪X,P)
is represented by TΣ(X), the term algebra over variables X and operations in
F , with all the relations in P empty.

The sentences of an institution I can be naturally extended with first-order-
like constructions [29]: if ϕ : Σ → Σ′, ρ, δ ∈ Sen(Σ), ρ′ ∈ Sen(Σ′), and E ⊆
Sen(Σ), one can build the sentences

∧
E,

∨
E, ¬ρ, δ ⇒ ρ, (∀ϕ)ρ′, (∃ϕ)ρ′, with

the following semantics, for each Σ-model M : M |= ∧
E iff M |= E; M |= ∨

E
iff M |= e for some e ∈ E; M |= ¬ρ iff M �|= ρ; M |= δ ⇒ ρ iff M |= δ implies
M |= ρ; M |= (∀ϕ)ρ′ iff M ′ |= ρ′ for all ϕ-expansions M ′ of M ; M |= (∃ϕ)ρ′ iff
there exists some ϕ-expansion M ′ of M such that M ′ |= ρ′. It might be the case
that the newly constructed sentences are equivalent to some existing sentences
in I - we take the convention that whenever we mention such a sentence, say
(∀ϕ)ρ′, we tacitly assume that it is equivalent to an existing one in I and we
simply identify them, i.e., consider that (∀ϕ)ρ′ ∈ Sen(Σ).

Given a signature Σ, a Σ-sentence ρ is called: basic [10] if there exits a Σ-
model Tρ such that for each Σ-model M , M |= ρ iff there exists some morphism
Tρ → M ; universal if there exists a signature morphism ϕ : Σ → Σ′ and a basic
sentence ρ′ ∈ Sen(Σ′) such that ρ is of the form (∀ϕ)ρ′; positive if it is either ba-

334 A. Popescu and G. Roşu

sic or is obtained from basic sentences by a finite number of conjunctions (
∧
E),

disjunctions (
∨
E), universal quantification ((∀ϕ)ρ′), and existential quantifica-

tion ((∃ϕ)ρ′). The notion of basic sentence is an institutional generalization for
ground atom (equation, predicate etc.) - in our examples of institutions, the basic
sentences are the primary bricks used to construct the more complicated sen-
tences. For instance, in FOPL=, the basic sentences are just finite conjunctions
of ground term equalities t1 = t2 and/or of relational statements over ground
terms R(t1, . . . , tn); in the institution of equational logic (EQL - see Example
1.(2)), the basic sentences are just ground term equalities. Universal sentences
capture institutionally the universally quantified atoms. Universal sentences con-
tain basic sentences: any basic sentence ρ ∈ Sen(Σ) is equivalent to (∀1Σ)ρ. The
institution I is said to: have basic Horn implications iff for each signature Σ,
each set of basic sentences E ⊆ Sen(Σ), and each basic sentence ρ ∈ Sen(Σ),
the sentence (

∧
E) ⇒ e is in Sen(Σ); have finitary basic Horn implications if

the above condition is satisfied for E finite.
A signature morphism ϕ : Σ → Σ′ is called liberal [17] iff Mod(ϕ) has a

left adjoint. An institution is called liberal iff each of its signature morphisms is
liberal. Let I be an institution, U be a |Sign|-indexed class of model morphisms
closed under composition and images by reduct functors, and ϕ : Σ→Σ′ be
a morphism in Sign. We say that: ϕ creates U-morphisms iff for any A′ ∈
|Mod(Σ′)| and any h : A′�ϕ →B in UΣ , there exists f : A′→B′ in UΣ′ such that
f�ϕ= h; also, ϕ weakly creates U-morphisms iff for any A′ ∈ |Mod(Σ′)| and any
h : A′�ϕ →B in UΣ , there exist g : B→C in UΣ and f : A′→B′ in UΣ′ such that
f�ϕ= h; g. Morphism creation condition is used in [12] and [10] (under the name
lifting) for institution-independent interpolation and ultraproducts results. We
shall use weak creation at the bare definition of hidden signature morphisms.

Example 1. We briefly discuss two important institutions that will be used as
working examples. Their detailed descriptions, as well as several other examples
of institutions on which our results apply, are discussed in AppendixC of [24].

(1) FOPL= [17] - the institution of (many-sorted) first order predicate logic
with equality. The signatures are triples (S, F,P), where S is a set of sorts,
F =

⋃{Fw,s|w ∈ S∗, s ∈ S} is a set of (S-sorted) operation symbols, and P =⋃{Pw|w ∈ S∗} is a set of (S-sorted) relation symbols. A signature morphism is a
triple ϕ = (ϕsort, ϕop, ϕrel) : (S, F,P) → (S′, F ′,P ′), where ϕsort : S → S′, ϕop :
F → F ′, and ϕrel : P → P ′ are mappings such that ϕop(Fw,s) ⊆ F ′

ϕsort(w),ϕsort(s)

and ϕrel(Pw) ⊆ P ′
ϕsort(w) for each w ∈ S∗ and s ∈ S. (We may write ϕ instead

of ϕsort, ϕrel and ϕop.) Given a signature Σ = (S, F,P), a Σ-model is a triple
M = ({Ms}s∈S , {Mw,s(σ)}(w,s)∈S∗×S , {Mw(σ)}w∈S∗) interpreting each sort as a
set, each operation symbol as a function, and each relation symbol as a relation,
with appropriate arities. (We may write Mσ and Mπ instead of Mw,s(σ) and
Mw(π).) The model morphisms are S-sorted functions which preserve operations
and relations. The set of Σ-sentences and the satisfaction relation are the usual
first-order ones. Each Sen(ϕ) translates sentences symbol-wise, and Mod(ϕ) is
the usual forgetful functor.

Behavioral Extensions of Institutions 335

(2) EQL, the institution of equational logic [17], is a restriction of FOPL=,
with no relation symbols (its signatures are pairs (S, F)), and with only condi-
tional equations (∀X)t1 = t′1 ∧ . . . tn = t′n ⇒ t = t′) as sentences.

3 Hidden Algebra Logic and Behavioral Satisfaction

Hidden algebra extends algebraic specification to handle states naturally, us-
ing behavioral equivalence. Systems need only satisfy their requirements behav-
iorally, in the sense of appearing to satisfy them under all possible experiments.
Hidden algebra was introduced in [16] and developed further in [18,19,20,27]
among many other places. CafeOBJ [14] and BOBJ [20], are executable specifi-
cation languages that support behavioral specification and reasoning. One dis-
tinctive feature of hidden algebra logics is to split sorts into visible for data and
hidden for states. A model, or hidden algebra, is an abstract implementation of
a system, consisting of its possible states, with functions for operations. The
restriction of a model to the visible subsignature is called data. Hidden logics
refer to close relatives of hidden algebra, including both fixed-data and loose-data
variants. This paper is concerned with the fixed-data approach. Hidden algebra
is constructed on top of many-sorted algebra and equational logic - we shall use
the notations of EQL (see Example 1).

Given a set V of visible sorts, a V -sorted signature Ψ called the data signature,
and a Ψ -algebra D called the data algebra, then a fixed-data hidden (Ψ,D)-
signature is a (V ∪H)-sorted signature Σ with Σ�V = Ψ , where H is a set disjoint
from V of hidden sorts. Hereafter we write “hidden signature” instead of “fixed-
data hidden (Ψ,D)-signature”. The operations in Σ with one hidden argument
and visible result are called attributes, those with one hidden argument and
hidden result are called methods, those with two hidden arguments and hidden
result are called binary methods, and so on; those with only visible arguments and
hidden result are called hidden constants. Let Σ = (S, F) be a hidden signature,
where S = V ∪H . A hidden Σ-algebra is a Σ-algebra A with A�Ψ= D; it can
be regarded as a universe of possible states of a system. A system can be seen
as a “black-box,” the inside of which is not seen, one being only concerned with
its behavior under “experiments”. A hidden Σ-morphism between two hidden
Σ-algebras A and B is a usual Σ-homomorphism h : A→ B such that h�Ψ= 1D.

An experiment is an observation of a system after it has been perturbed; the •
below is a placeholder for the state being experimented upon. A context for sort
s is a term in TΣ({• : s}∪Z) having exactly one occurrence of a special variable •
of sort s, where Z is an S-indexed componentwise infinite set of special variables.
Let C[• : s] denote the S-indexed set of all contexts for sort s, and var(c) the
finite set of variables in a context c except •. A context with visible result sort
is called an experiment; let E[• : s] denote the V -indexed set of all experiments
for sort s. The interesting experiments are those for hidden sorts s ∈ H . We
sometimes say that an experiment or a context for sort s is appropriate for terms
or equations of sort s. Contexts can be “applied” as follows. If c ∈ Cs′ [• : s] and
t ∈ TΣ,s(X), then c[t] denotes the term in TΣ,s′(var(c) ∪X) obtained from c by

336 A. Popescu and G. Roşu

substituting t for •. Further, c generates a map Ac : As → [Avar(c) → As′] on
each Σ-algebra A, defined by Ac(a)(θ) = a∗θ(c), where a∗θ is the unique extension
of the map (denoted aθ) that takes • to a and each z ∈ var(c) to θ(z).

We recall the important notion of behavioral equivalence. Given a hidden Σ-
algebra A, the equivalence a ≡Σ a

′ iff Aγ(a)(θ) = Aγ(a′)(θ) for all experiments
γ and all maps θ : var(γ) → A is called behavioral equivalence on A. A hidden
congruence is a congruence which is the identity on visible sorts. The following
supports several important results in hidden logics. Since final models may not
exist when operations of zero or more than one hidden argument are allowed,
the existence of a largest hidden congruence does not depend on them.

Theorem 1. Given a hidden Σ-algebra A, the behavioral equivalence is the
largest hidden congruence on A (see [26] for a proof).

Given a hidden Σ-algebra A and a Σ-equation (∀X) t = t′, say ρ, then A
behaviorally satisfies ρ, written A |≡ Σρ, iff θ(t) ≡Σ θ(t′) for all θ : X → A. Let
E[ρ] be either the set {(∀X, var(γ)) γ[t] = γ[t′] | γ ∈ E[• : h]} when the sort
h of t, t′ is hidden, or the set {ρ} when the sort of t, t′ is visible. E[E] is the
set

⋃
e∈E E[ρ]. Behavioral satisfaction of an equation can be reduced to strict

satisfaction of a potentially infinite set of equations:

Proposition 1. If A is a hidden Σ-algebra then A |≡ ΣE iff A |=Σ E[E].

Behavioral satisfaction is “reflected” by hidden morphisms [19]:

Proposition 2. If h : A → B is a hidden Σ-morphism and ρ a Σ-equation,
then B |≡ ρ implies A |≡ ρ.

The notion of morphism of hidden signatures [16] reflects at a syntactic level
the object-oriented principles of data encapsulation. A morphism of (Ψ,D)-
hidden signatures χ : (V ∪ H,F) → (V ∪ H ′, F ′) of (Ψ,D)-hidden signatures
is a many sorted signature morphism such that: (C1) χ is an identity on Ψ ;
(C2) χsort(H) ⊆ H ′; (C3) for each operation σ′ ∈ F ′ having an argument sort
in χsort(H), it is the case that σ′ ∈ χop(F). These conditions have natural
interpretations in terms of information encapsulation: visible data remains un-
changed (C1); hidden states are not unhidden by imports (C2); and no new
methods or attributes are added on imported states (C3). Condition (C3), al-
though has a rather restrictive character, is quite faithful to the principle of
“behavior-protecting” inheritance mechanism. The above conditions ensure that
behavioral equivalence and satisfaction are preserved by the reduct functor:

Proposition 3. If χ :Σ→Σ′ is a hidden signature morphism with Σ = (V ∪
H,F) and A′ is a hidden Σ′-algebra, then: (1) for all h ∈ H and a, b ∈ A′

χsort(h),
a ≡Σ′ b iff a ≡Σ b; (2) (A′�χ)/≡Σ = (A′/≡Σ′)�χ; (3) A′ |≡ χ(ρ) iff A′�χ |≡ ρ, for
each Σ-equation ρ.

4 Quotient Systems

Image factorization systems [1] are a categorical generalization of the system
of injections and surjections from set theory. Unlike bare monics and epics, the

Behavioral Extensions of Institutions 337

morphisms of a factorization system work together to provide, up to an isomor-
phism, a unique factorization for each morphism. Inclusion systems [15] and weak
inclusion systems [8], modifications of factorization systems by dropping the ”up
to an isomorphism” relaxation, turn out to be more suitable for the categorical
study of algebraic specification concepts. In this paper, because of the coalge-
braic nature of the involved notions, we introduce a variant of a factorization
system that is dual to the weak inclusion system:

Definition 1. A quotient system for a category C is a pair (E ,M), where E
andM are subcategories of C such that: (1) E is a partial order, in the sense that
E(A,B) contains at most one morphism for any A,B ∈ |C|, and A = B whenever
E(A,B) �= ∅ and E(B,A) �= ∅; (2) Morphisms in C can be factored uniquely as
e;m, with e ∈ E, m ∈ M. The elements of E are called quotients and those of
M injections. B is called a quotient object of A when E(A,B) �= ∅.

Note that (E ,M) is a quotient system for C iff (M, E) is a weak inclusion
system for Cop. Thus, w.r.t. category theory, quotient systems bring nothing es-
sentially new. However, they model properly the important notion of congruence,
which is not to be considered, like in the case of factorization systems, up to an
isomorphism, but chosen in a unique, canonical way. This will have important
semantical and technical consequences when we define behavioral satisfaction:
first, we can model faithfully in an institutional framework the process of con-
structing the behavioral equivalence, originally defined in an internal fashion
within the set-theoretical structure of the algebras (see Section 3); second, by
regarding models as universes for congruences, we do not need to postulate the
existence of final objects; finally, delicate technical issues regarding lifting and
preserving properties can be elegantly treated using quotient systems.

The category of sets, as well as that of algebras, have natural quotient systems
if we allow a slight and non-problematic foundational modification: we assume
that all elements in the considered sets or carriers are sets themselves and in
addition they are mutually disjoint. That anything is a set is a harmless principle
of the Zermelo-Fraenkel Set Theory,1 but note that we only take this assumption
about algebras (models), and not about sentences. Moreover, any algebra can be
isomorphically and uniformly transformed into one satisfying the above condition
by simply replacing its elements x with singletons {x}. Now, we can take M
as the category of all injective morphisms and E as that of those surjective
morphisms f : A → B such that, for each element b ∈ B, the elements a ∈ A
with f(a) = b form a partition of b. Therefore, E provides canonical ways to factor
algebras by refining their carrier sets, viewed as partitions, in a dual manner to
inclusions that give a canonical way to embed an algebra into another. We next
list some properties of quotient systems, some of them dual to ones for weak
inclusion systems [8]. Let (E ,M) be a quotient system for C.
1 This set-theoretical assumption that we take should be regarded as a meta-level

setting, having nothing to do with the duality algebra-coalgebra. In particular, it does
not imply that we are planning to treat the coalgebraic phenomena with algebraic
methods; at least not to a greater extent than any other “mathematical” approach.

338 A. Popescu and G. Roşu

Proposition 4. (see Fact 5 in [8]) (1) Any e ∈ E in an epic; (2) M contains
all the isomorphisms in C; and (3) all isomorphisms in E are identities.

Proposition 5. (see also Corollary 26 in [8]) If e, e′ ∈ E of same source admit
pushout in C, then they have a unique pushout whose morphisms are in E. If (I,≤)
is a filtered set and c = (ei,j : Ai→Aj)i,j∈I,i≤j an I-diagram in E admitting a
colimit in C, then there is a unique colimit of c in C whose morphisms are in E.
In particular, if C is {pushout and filtered}-cocomplete, then so is E.
Example 2. For each signature (S, F) in EQL, E(S,F) consists of all surjective
morphisms h : A → B such that b =

⋃
a∈A,hs(a)=b a for each sort s ∈ S and

b ∈ Bs, andM(S,F) consists of all injective morphisms. In the case of FOPL=, we
can consider two canonical ways to provide quotient systems, following the idea
of inclusion systems for FOPL= [13]. Let (S, F,P) be a signature. An (S, F,P)-
morphism f : A → B is called strong if, for each (n-ary) relation symbol R ∈ P
and each (a1, . . . , an), it holds that (a1, . . . , an) ∈ AR iff (f(a1), . . . , f(an)) ∈ BR.
(1) The quotients are morphisms h : A → B such that h is a (S, F)-quotient
in EQL; the injections are the strong injective morphisms; (2) The quotients
are morphisms h : A → B such that h is a strong (S, F)-quotient in EQL; the
injections are the injective morphisms.

All the institutions that use some form of set-theoretical notion of model tend
to have quotient systems on models, although the choice is not always unique.

5 The Behavioral Extension of an Institution

Next we provide an institutional generalization of fixed-data hidden logic.

Definition 2. An institution with quotients is an institution equipped with
quotient systems (EΣ ,MΣ) on each category of models Mod(Σ), such that all
reducts Mod(ϕ) along signature morphisms ϕ : Σ → Σ′ preserve quotients and
injections. (That is, for each e in EΣ′ and m in MΣ′ , it holds that e�ϕ is in EΣ
and m�ϕ is in MΣ.) An institution with quotients is co-well-powered if each
Mod(Σ) is EΣ-co-well-powered.

Notice that the notion of EΣ-co-well-powered-ness becomes particularly sim-
ple thanks to Proposition 4.(3): one only asks that, for each A ∈ |Mod(Σ)|, the
class of morphisms in EΣ of source A is a set. All throughout this section, we
shall work inside the following framework:

Framework 1: A co-well-powered institution with quotients I, having fil-
tered colimits and pushouts of models, such that all reducts Mod(ϕ) along
signature morphisms ϕ : Σ → Σ′ preserve filtered colimits and pushouts of
quotient diagrams (i.e., diagrams consisting of morphisms in E).

Our examples of institutions with quotients all satisfy the above conditions.
While these institutions have not only filtered colimits and pushouts, but also
arbitrary colimits on models, the arbitrary colimits are usually not preserved by

Behavioral Extensions of Institutions 339

reduct functors. The only property that needs explanation is the preservation
of pushouts of quotients. In EQL, this follows from the fact that the supre-
mum of two congruences of a model does not depend on the signature where
the supremum is taken - see Appendix D of [24]. As for the case of the two
possible families of quotient systems in FOPL=, the quotient preservation prop-
erty follows from the equational case, using the fact that the forgetful functor
Mod(S, F,P) → Mod(S, F, ∅) creates colimits (and pushouts in particular).

Let Ψ be a fixed signature of I = (Sign,Mod,Sen, |=), that we call the
visible signature, and D be a fixed Ψ -model, that we call the data model. We
define an institution Ibeh(Ψ,D), the behavioral extension of I over (Ψ,D). We
let Ibeh = (Signbeh,Modbeh,Senbeh, |≡) denote Ibeh(Ψ,D) without forgetting
though that our construction is parameterized by Ψ and D.

Signatures. The signatures of Ibeh are pairs (ϕ : Ψ→Σ,Σ), where Σ is a sig-
nature in I. (Instead of the entire class of objects of Ψ/Sign, one could also
consider, without adding any technical difficulties, only a subclass, like the class
of inclusions [20].) We postpone the definition of signature morphisms.

Sentences. For a signature (ϕ,Σ) in Ibeh, let Senbeh(ϕ,Σ) be precisely Sen(Σ).
However, the sentences will get in Ibeh a different meaning than in I.
Models. For a signature (ϕ,Σ) in Ibeh, let Modbeh(ϕ,Σ) be the fiber category
[2] D�−1

ϕ of the functor �ϕ: Mod(Σ) → Mod(Ψ) over D: its objects are those
A ∈ |Mod(Σ)| with A�ϕ= D and its morphisms are those h : A → B in Mod(Σ)
with h�ϕ= 1D. Interestingly, this fiber category captures precisely the intuition
of hidden algebra: models protect data and morphisms are data-consistent.

We are next going to define behavioral satisfaction (in Ibeh) as satisfaction in
I on smallest data-consistent quotient objects. We first need to introduce some
notation and show that such objects indeed exist.

Definition 3. For a signature (ϕ,Σ) and a (ϕ,Σ)-model A in Ibeh, let A/DEΣ
be the category of data-consistent quotients of A: its objects are morphisms
e : A → B in EΣ with e�ϕ= 1D and its morphisms h : (e : A → B) → (e′ : A →
B′) are morphisms h : B → B′ with h�D= 1D and e;h = e′.

It follows from the above definition that all the mentioned morphisms h :
B → B′ are actually in EΣ (one can see that by decomposing h as eh; ih and
using the unique factorization property for e; eh; ih = e′). Moreover, the category
A/DEΣ is isomorphic to the full subcategory of EΣ having the class of objects
restricted to quotient objects of A.

Proposition 6. The category A/DEΣ has a unique final object, eA,ϕ : A→ Aϕ.

The morphism eA,ϕ can be intuitively regarded as the “largest congruence on
A that is data-consistent”, or the “behavioral equivalence” on A. Note that the
construction of Aϕ follows a final approach, without assuming the existence of
globally final models - rather, we get a final model, i.e., a greatest congruence,
starting from any given model. This allows our formalization to capture non-
coalgebraic variants of hidden algebra at no additional cost.

340 A. Popescu and G. Roşu

Satisfaction relation. We can now define satisfaction in Ibeh, called behavioral
satisfaction and written |≡ , as follows: for a signature (ϕ,Σ), a (ϕ,Σ)-model A
and a (ϕ,Σ)-sentence ρ, let A |≡(ϕ,Σ)ρ in Ibeh iff Aϕ |=Σ ρ in I.

The only thing left to define in Ibeh is the morphism of signatures. As dis-
cussed in Section 3, this is a delicate concept to define even in the concrete
framework of hidden algebra, because it needs to imply the property that its
semantic counterpart, the reduct, preserves behavioral equivalences on models.
Whether the morphisms in Signbeh can be defined categorically in some “syntac-
tic” way capturing the conditions (C1), (C2), (C3) from Section 3 seems to be a
difficult problem and perhaps not worthwhile the effort. Our approach, instead,
is to define morphisms of signatures by capturing precisely the above crucial
property.

Proposition 7. Let ϕ : Ψ→Σ, ϕ′ : Ψ→Σ′ and χ : Σ→Σ′ be three signature
morphisms in I such that ϕ;χ = ϕ′. Then the following are equivalent: (a)
χ weakly creates data-consistent quotients; and (b) for each Σ′-model A′ with
A′�ϕ= D, it is the case that (eA′,ϕ′)�χ= e(A′�χ),ϕ.

Signature morphisms. The morphisms χ : (ϕ,Σ)→(ϕ′, Σ′) in Signbeh are
now defined to be morphisms χ : Σ→Σ′ in Sign such that ϕ;χ = ϕ′ and the
equivalent conditions in Proposition 7 hold. It is not hard to see that Signbeh
is now a (broad) subcategory of Ψ/Sign. Senbeh and Modbeh can be defined on
signature morphisms χ : (ϕ,Σ)→(ϕ′, Σ′) as expected, that is, exactly as the
functors Sen and Mod are defined on χ : Σ → Σ′, but using the appropriate
restricted classes of models and model morphisms.

Condition (b) in Proposition 7 provides the motivation for the definition of
signature morphisms: one wants the “behavioral equivalence”, i.e. the largest hid-
den quotient, to be preserved by reduct functors - this is in fact the main reason
for the conditions (C2) and (C3) in the definition of hidden signature morphisms
(see Section 3). As for condition (a), one can use the following intuition for the
weak creation property stated there. Let χ : Σ→Σ′ be a morphism in Ψ/Sign.
Also, let A ∈ Modbeh(ϕ,Σ) and A′ ∈ Modbeh(ϕ′, Σ′) such that A = A′�χ. The
existence of a quotient e : A → B with e�ϕ= 1D means that the hidden struc-
ture of A can be flattened in a behaviorally consistent way, i.e., not affecting
the data. This situation should not depend on notation, so one should be able
to alternatively perform this flattening on A′. Yet, because of the larger number
of expressible entities in Σ′, here consistent flattening might cause more effects-
hence the “weak” nature of creation.

Theorem 2. Ibeh is an institution with quotients, where, for each (ϕ,Σ) ∈
|Sign|, E(ϕ,Σ) and M(ϕ,Σ) are the restrictions of EΣ and MΣ to Modbeh(Σ,ϕ),
respectively. Moreover, there exists a canonical morphism of institutions (in the
sense of [17]) between Ibeh and I, projecting each Ibeh signature (ϕ,Σ) into Σ,
not changing the sentences, and mapping each (ϕ,Σ)-model A to Aϕ.

The institution Ibeh above generalizes the institutions of variants of fixed-data
hidden algebra [16,20,26], constructed in a similar fashion on top of many-sorted

Behavioral Extensions of Institutions 341

equational logic. Theorem 2 tells us that similar behavioral extensions of many
other logics are possible, in for particular those in Appendix C of [24], including
partial and infinitary ones. A first important property of behavioral satisfaction
is that entailment in I is “sound” in Ibeh. The next proposition generalizes former
results on “behavioral soundness of equational deduction” [27], with syntactic
proofs in the concrete hidden algebraic framework.

Proposition 8. If (ϕ,Σ) ∈ |Signbeh|, ρ ∈ Sen(Σ) and E ⊆ Sen(Σ), then
E |=Σ ρ implies E |≡ (ϕ,Σ)ρ.

The following proposition generalizes another standard result in hidden algebra,
namely that behavioral satisfaction coincides with usual satisfaction on sentences
over the visible syntax.

Proposition 9. Let (ϕ,Σ) ∈ |Signbeh|, ρ ∈ SenI(Ψ) and A ∈ |Modbeh(ϕ,Σ)|.
Then A |≡ (ϕ,Σ)ϕ(ρ) iff A |=Σ ϕ(ρ) iff D |=Ψ ρ.

In hidden algebra, “visibility” does not concern only sentences over the visible
signature. The sentences of visible sort need not contain only data constructs;
indeed, sentences of visible sort may involve several attributes and methods.
There is no notion of “visible sort” in our abstract framework. However, we can
still define an institutional generalization of “sentences of visible sorts”, that we
call “visible sentences”, by model-theoretic means; the visible sentences will be
those preserved back and forth by data-consistent flattening, following the intu-
ition that these sentences should sense only modifications in the visible part of
a system. We also introduce “quasi-visible sentence”, for which the preservation
property holds only backwards. But let us set some terminology first:

Definition 4. Let (ϕ,Σ) ∈ |Signbeh|, ρ ∈ Sen(Σ), and K a subcategory of
Modbeh(ϕ,Σ). Then ρ is closed (behaviorally closed) under K if, for each
A→ B in K, A |= ρ implies B |= ρ (A |≡ ρ implies B |≡ ρ, respectively).

Definition 5. Let (ϕ,Σ) be a signature in Ibeh. Then ρ ∈ Senbeh(ϕ,Σ) is ϕ-
visible if it is closed under both E(Σ,ϕ) and Eop

(Σ,ϕ) and ϕ-quasi-visible if it is
closed under Eop

(Σ,ϕ). If the signature ϕ is clear, we shall say “visible” (“quasi-
visible”) instead of “ϕ-visible” (“ϕ-quasi-visible”).

Proposition 10. Let (ϕ,Σ) ∈ |Signbeh| and ρ ∈ Senbeh(ϕ,Σ). Then: (1) ρ is
visible iff, for each A ∈ |Modbeh(ϕ,Σ)|, [A |= ρ iff A |≡ ρ]; (2) if ρ is quasi-visible
then, for each A ∈ |Modbeh(ϕ,Σ)|, [A |≡ ρ implies A |= ρ]; (3) if ρ is closed under
Mop

(ϕ,Σ) and under E(ϕ,Σ), then it is behaviorally closed under Modbeh(ϕ,Σ)op.

Thus, according to Proposition 10, the visible sentences are precisely those for
which behavioral satisfaction coincides with usual satisfaction. On the other
hand, the quasi-visible sentences have the property that, in order to satisfy them
behaviorally, one has to satisfy them strictly. Moreover, (3) in Proposition 10 is
the abstract version of the hidden algebraic result (Proposition 2) saying that
equational behavioral satisfaction is preserved by reflexions of arbitrary hidden
morphisms. (Recall that in the usual algebraic settings, equations are closed
under arbitrary quotients and reflexions of embedding.)

342 A. Popescu and G. Roşu

Proposition 11. Visible and quasi-visible sentences are preserved by signature
morphisms and closed under conjunctions, disjunctions, universal and existential
quantifications. In addition, visible sentences are also closed under negation.

An immediate consequence of the above proposition is that both visible and
quasi-visible sentences provide subinstitutions of Ibeh. Also, in the case of pos-
itive sentences (a very wide class, containing the basic and the universal sen-
tences), the notions of visibility and quasi-visibility coincide:

Corollary 1. Let (ϕ,Σ) be a signature in Ibeh and ρ be a positive Σ-sentence
in I. Then ρ is ϕ-visible iff it is ϕ-quasi-visible.

The next proposition deals with some structural properties inherited from I
to Ibeh: filtered colimits of models and signatures. The former are usually impor-
tant for Birkhoff-like axiomatizability results, while the latter, which also bring
filtered colimits of theories [17], can be used for approximating finite refinements
towards a fixed point. The comma nature of the signatures in Ibeh “invite” us
to construct filtered colimits, starting from those of I.
Proposition 12. (1) If (ϕ,Σ) is a signature in Ibeh such that ϕ creates iso-
morphisms in I, then Modbeh(ϕ,Σ) has filtered colimits; (2) If I has countable
filtered colimits of signatures and is ω-exact, then Ibeh also has countable filtered
colimits of signatures.

In the case of many-sorted algebraic signatures, the signature morphisms
that create model isomorphisms are precisely those that are injective on sorts.
In particular, Proposition 12.(1) holds for the case, usually considered for hidden
algebra, of ϕ being an inclusion.

6 Behavioral Satisfaction of Universal Sentences

We next focus our study on basic and universal sentences. As already mentioned,
these are institutional generalizations of ground equations and arbitrary equa-
tions, respectively. Some important properties of hidden logics depend on the
equational character of these special sentences.

Before we define our next framework, let us first recall that, in FOPL=
or EQL, if ρ is some ground Σ-equation, then Tρ is the quotient by ρ of the
ground Σ-term model; then because of the special way to construct direct sums
in these logics, it follows that for any Σ-model A, the direct sum A / Tρ is
actually isomorphic to A “factored” by ρ, i.e., the least restrictive “flattening”
of A that satisfies ρ (this property is actually institution-independent). Following
this intuition, from here on we assume:

Framework 2: An institution I satisfying Framework 1, such that for any
Σ, any A ∈ |Mod(Σ)|, and any basic ρ ∈ Sen(Σ), the coproduct
(�A : A → A / Tρ,�Tρ : Tρ → A / Tρ) exists and can be taken such that
�A ∈ EΣ . Then A/ Tρ is unique with this property and we denote it A/ρ.

Behavioral Extensions of Institutions 343

The following says that behavioral satisfaction of basic sentences can be equiv-
alently regarded as data-consistent factoring:

Proposition 13. If (ϕ,Σ) is a signature, A is a (ϕ,Σ)-model in Ibeh, and ρ is
a basic Σ-sentence (in I), then A |≡ ρ iff (�A)�ϕ= 1D.

In what follows, we shall place the discussion in the context of elementary
diagrams. Diagrams are a main concept in classical model theory [7]. The dia-
gram of a model M consists of a set of sentences in its parameterized language
which describe its structure well enough in order to axiomatize the class of mor-
phisms of source M . A first institutional definition of diagrams was given in
[29]. We shall make use of a more recent definition in [11], which has the advan-
tage that asks the morphisms between models and signatures to yield smooth
translations of the diagram sentences. An institution I = (Sign,Sen,Mod, |=)
is said to have elementary diagrams [11] if: (1) for each signature Σ and each
Σ-model M there exists a signature morphism ιΣ(M) : Σ → ΣM (called the
elementary extension of Σ via M) and a set EM of ΣM -sentences (called the
elementary diagram of the model M) such that Mod(ΣM , EM) and M/Mod(Σ)
are isomorphic by an isomorphism iΣ,M such that iΣ,M ;U = Mod(ιΣ(M))r ,
where U : M/Mod(Σ) → Mod(Σ) is the usual forgetful functor from the comma
category and Mod(ιΣ(M))r : Mod(ΣM , EM) → Mod(Σ) is the restriction of
Mod(ιΣ(M)) : Mod(ΣM) → Mod(Σ); (2) ι is functorial, i.e., for each sig-
nature morphism ϕ : Σ → Σ′, each M ∈ |Mod(Σ)|, M ′ ∈ |Mod(Σ′)| and
h : M → M ′ �ϕ, there exists a presentation morphism ιϕ(h) : (ΣM , EM) →
(Σ′

M ′ , EM ′) such that ιΣ(M); ιϕ(h) = ϕ; ιΣ′(M ′); (3) i is natural, i.e., for each
signature morphism ϕ : Σ → Σ′, each M ∈ |Mod(Σ)|, M ′ ∈ |Mod(Σ′)| and h :
M → M ′�ϕ in Mod(Σ), iΣ′,M ′ ;Mod(ϕ)M ′ ; (h/Mod(ϕ)) = Mod(ιϕ(h))rcr; ıΣ,M ,
where h/Mod(ϕ) : M/Mod(Σ) → (M ′ �ϕ)/Mod(Σ′) and Mod(ϕ)M ′ : (M ′ �ϕ)/
Mod(Σ′) → M ′/Mod(Σ′) are the usual functors between comma categories (see
the end of Section 1), and Mod(ιϕ(h))rcr : Mod(ΣM , EM) → Mod(Σ′

M ′ , EM ′) is
the restriction and corestriction of Mod(ιϕ(h)) : Mod(ΣM) → Mod(Σ′

M ′).
For each h : A → B in Mod(Σ), we shall write ιΣ(h) instead of ι1Σ (h).
An important result in hidden algebra is that behavioral satisfaction of un-

conditional equational sentences can be reduced to usual satisfaction in the same
model of a set of visible sentences (see Proposition 1). We shall provide an insti-
tutional version of this result. For this, we further assume that the institution I
is liberal and either has basic Horn implications, or {is compact and has finitary
basic Horn implications}. Regarding the elementary diagrams, we assume that
they are: basic, in the sense that, for each signature Σ and Σ-model A, each
ρ ∈ EA is basic and (EA)• ∩ Basic(Σ) = (AA)∗ ∩ Basic(Σ);2 D-representable,
i.e., ιΣ(D) is representable; basic-sensitive, i.e., for each signature Σ, Σ-model
A and basic Σ-sentence ρ, ιΣ(iA)−1((EA�Tρ)•) = (EA ∪ ιΣ(A)(ρ))• (thus, if a
model is factored by a basic sentence, its diagram gains precisely that sentence);
quotient-sensitive, i.e., for each Σ-quotient e : A→B, if A �= B, there exists a

2 Basic(Σ) denotes the set of basic Σ-sentences.

344 A. Popescu and G. Roşu

basic ΣA-sentence α such that AA �|= α and Be |= α (so the fact that B is smaller
than A by a quotient is expressible in the language of A as a simple sentence).

For each (ϕ,Σ) ∈ |Senbeh| and ρ ∈ Senbeh(ϕ,Σ), define QVρ = {(∀φ)α |
φ signature morphism of source Σ,α quasi-visible sentence, ρ |= (∀φ)α}.

Proposition 14. Let (ϕ,Σ) ∈ |Senbeh|, let ρ be a universal Σ-sentence, and let
A ∈ |Modbeh(ϕ,Σ)|. Then A |≡ (ϕ,Σ)ρ iff A |=Σ QVρ.

Our two working examples of institutions, as well as the others listed in
Appendix C in [24], satisfy the hypotheses from our Frameworks 1 and 2, as
well as those needed for Proposition 14. Let us take FOPL= for instance. The
only properties which might not be clear (like the existence of basic Horn im-
plications) or well-known (like liberality or semi-exact-ness), are some of those
regarding diagrams: (EA)• ∩Basic(Σ) = (AA)∗ ∩Basic(Σ) simply because the
first-order entailment system extends conservatively the ground equational en-
tailment system; each ιΣ(A) is representable: it only adds some constants to
the source signature; basic-sensitivity asks that, if A is a model factored by a
ground equation or atomic relation ρ becoming A/ρ, all that one can infer from
EAρ , can be equivalently inferred from EA together with ρ, which is obviously
true; quotient-sensitivity is fulfilled as follows: if B is a quotient object of A (by
h : A → B), different from A, then there exists a sort s and a, b ∈ As such that
a �= b and hs(a) �= hs(b) - then a = b is the desired sentence α from EA.

In the case of EQL, it happens that the quasi-visible sentences α can be taken
to be basic, hence visible (since “quasi-visible” plus “basic” implies “visible”), so
the concrete equational result actually says more than we were able to prove at
our institutional level. Yet, it is not clear that a similar neater result as the equa-
tional one holds for our other examples of institutions (like FOPL=). Another
question would be whether Proposition 14 holds for other types of sentences
besides universal ones - one could easily find examples of conditional equations
and existentially quantified sentences for which the property of reducing behav-
ioral satisfaction to normal satisfaction in the same model does not hold; thus
the class of universal sentences of an institution might be close to maximality
w.r.t. this property, if one wants to cover the classical relevant cases. Note that
universal sentences cover the cases when second-order quantification, i.e., over
relation and function symbols, are considered (see also [22] for a higher-order
result related to our Proposition 14).

7 Related Work and Concluding Remarks

The paper [25] was, at our knowledge, the first to introduce the notion of be-
havioral, or observational equivalence as we interpret it in this paper, and [28]
was the first to sketch a treatment of observational equivalence in arbitrary in-
stitutions, where it is defined as existential elementary equivalence w.r.t. some
signature morphism. Then [6] considered the notions of hiding and behavior in
institutions; since this paper was an important source of inspiration for us, we

Behavioral Extensions of Institutions 345

shall discuss it below. The framework there was inspired by the following situa-
tion from “monadic” hidden algebra: the hidden models can be seen as behavior
algebras, some forms of Lawvere-like algebras, equipped with a distinguished ter-
minal object, having a fixed interpretation; moreover, the category of behavior
algebras has a final object constructed using the sets of all possible behaviors of
the (hidden) states; hence, thanks to a smooth back and forth communication
between the categories of hidden algebras and behavioral algebras, a final seman-
tics can be given for behavioral satisfaction of a sentence by a hidden model.
This situation is generalized in [6] to the institutional level, where the notion of
behavior algebra is provided as an extra data: a functor from a subcategory, of
hidden signatures, to Catop, for which the relevant properties (finality, communi-
cation to the hidden models, etc.) are postulated. Our approach shares with [6]
the idea of defining behavioral satisfaction as (normal) satisfaction inside a quo-
tient. However, our approach is not tributary to the monadic framework, which
only considers hidden operations with precisely one hidden argument, framework
which loses two important cases: that of hidden constants (in particular, that
of different cases of classical automata used in formal languages), and that of
operations having multiple hidden-sort arguments; also we do not use data pro-
vided “from outside” the institution (as is the case of abstract behavior algebras
in [6]), but construct the behavioral extension only by internal means of the
considered institution. A quasi-abstract treatment of behavioral equivalence can
also be found in [5], where a setting similar to the institutional one is used, but
localized to a fixed satisfaction frame; the behavioral satisfaction (in one of the
proposed variants) is also defined as usual satisfaction in a quotient, but in order
for the quotient to enjoy good set-theoretical properties, a concrete many-sorted
“carrier” set is considered attached to each model, through a concretization func-
tor. Another paper in the vicinity of our work, but more concerned with hiding
than with behavior, is [21], discussing compositional operations on modules that
can hide some of the information.

We believe that our results can be adapted to also cover loose-data behavioral
approach, such as observational logic [3,4]. The main point towards such an
adaptation is that the loose-data setting is still based on a notion of behavioral
equivalence, called observational equality in [3,4], hence it can still be formalized
by our final construction in a fiber category. The main difference is that loose-
data behavioral logics allows arrows between algebras that do not have the same
data reduct. However, roughly speaking, if we express the concepts in [4] using
our notations, we find that the arrows between two (ϕ,Σ)-models A and B are
the usual morphisms between their quotients Aϕ and Bϕ, quotients which can
be constructed independently, taking the data model D to be first A�ϕ and then
B�ϕ. One can show that this construction yields yet another institution, which
takes only the data signature Ψ as a parameter this time. The latter institution
could be seen as a form of Grothendieck construction (in the style of [9]) obtained
by flattening the “indexed” institution {Ibeh(Ψ,D)}D∈|Mod(Ψ)|.

Acknowledgments. We warmly thank the assigned reviewers for their very
detailed and meaningful reports.

346 A. Popescu and G. Roşu

References

1. J. Adamek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. John
Wiley & Sons, 1990.

2. J. Benabou. Fibred categories and the foundations of naive category theory. Jour-
nal of Symbolic Logic, 50:10–37, 1985.

3. M. Bidoit and R. Hennicker. On the integration of observability and reachability
concepts. In FOSSACS’02, volume 2303 of LNCS, pages 21–36, 2002.

4. M. Bidoit, R. Hennicker, and A. Kurz. Observational logic, constructor-based logic,
and their duality. Theoretical Computer Science, 3(298):471–510, 2003.

5. M. Bidoit and A. Tarlecki. Behavioural satisfaction and equivalence in concrete
model categories. In Trees in Algebra and Programming (CAAP’96), volume 1059
of LNCS, pages 241–256, 1996.

6. R. Burstall and R. Diaconescu. Hiding and behaviour: an institutional approach.
In A Classical Mind: Essays in Honour of C.A.R. Hoare, pages 75–92. Prentice
Hall, 1994.

7. C.C.Chang and H.J.Keisler. Model Theory. North Holland, Amsterdam, 1973.
8. V. E. Căzănescu and G. Roşu. Weak inclusion systems. Mathematical Structures

in Computer Science, 7(2):195–206, 1997.
9. R. Diaconescu. Grothendieck institutions. Applied Categorical Structures,

10(4):383–402, 2002.
10. R. Diaconescu. Institution-independent ultraproducts. Fundamenta Informaticae,

55(3-4):321–348, 2003.
11. R. Diaconescu. Elementary diagrams in institutions. Logic and Computation,

14(5):651–674, 2004.
12. R. Diaconescu. An institution-independent proof of Craig interpolation theorem.

Studia Logica, 77:59–79, 2004.
13. R. Diaconescu. Institution-independent Model Theory. To appear. Book draft.

(Ask author for current draft at Razvan.Diaconescu@imar.ro).
14. R. Diaconescu and K. Futatsugi. CafeOBJ Report. World Scientific, 1998. AMAST

Series in Computing, volume 6.
15. R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularization.

In Logical Environments, pages 83–130. Cambridge, 1993.
16. J. Goguen. Types as theories. In Topology and Category Theory in Computer

Science, pages 357–390. Oxford, 1991.
17. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification

and programming. Journal of the ACM, 39(1):95–146, January 1992.
18. J. Goguen and R. Diaconescu. Towards an algebraic semantics for the object

paradigm. In Proceedings of WADT, volume 785 of LNCS. Springer, 1994.
19. J. Goguen and G. Malcolm. A hidden agenda. J. of TCS, 245(1):55–101, 2000.
20. J. Goguen and G. Roşu. Hiding more of hidden algebra. In Proceeding of FM’99,

volume 1709 of LNCS, pages 1704–1719. Springer, 1999.
21. J. Goguen and G. Roşu. Composing hidden information modules over inclusive

institutions. In From Object Orientation to Formal Methods: Dedicated to the
memory of Ole-Johan Dahl, volume 2635 of LNCS, pages 96–123. Springer, 2004.

22. M. Hofmann and D. Sanella. On behavioral abstraction and behavioral satisfaction
in higher-order logic. Theoretical Computer Science, pages 167:3–45, 1996.

23. S. M. Lane. Categories for the Working Mathematician. Springer, 1971.
24. A. Popescu and G. Roşu. Behavioral extensions of institutions. Technical Report

UIUCDCS-R-2005-2582 and UILU-ENG-2005-1778, Department of Computer Sci-
ence, University of Illinois at Champaign-Urbana, May 2005.

Behavioral Extensions of Institutions 347

25. H. Reichel. Behavioural equivalence – a unifying concept for initial and final spec-
ifications. In Proceedings of the 3rd Hungarian Computer Science Conference.
Akademiai Kiado, 1981.

26. G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
27. G. Roşu and J. Goguen. Hidden congruent deduction. In Automated Deduction in

Classical and Non-Classical Logics, volume 1761 of LNAI. Springer, 2000.
28. D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-

tion. Journal of Computer and System Science, 34:150–178, 1987.
29. A. Tarlecki. Bits and pieces of the theory of institutions. In Proceedings, Summer

Workshop on Category Theory and Computer Programming, volume 240 of LNCS,
pages 334–360. Springer, 1986.

Discrete Lawvere Theories

John Power�

Laboratory for the Foundations of Computer Science, University of Edinburgh,
King’s Buildings, Edinburgh EH9 3JZ, Scotland
Tel: +44 131 650 5159, Fax: +44 131 667 7209

ajp@inf.ed.ac.uk

Abstract. We introduce the notion of discrete countable Lawvere V -
theory and study constructions that may be made on it. The notion
of discrete countable Lawvere V -theory extends that of ordinary count-
able Lawvere theory by allowing the homsets of an ordinary countable
Lawvere theory to become homobjects of a well-behaved axiomatically
defined category such as that of ω-cpo’s. Every discrete countable Law-
vere V -theory induces a V -enriched monad, equivalently a strong monad,
on V . We show that discrete countable Lawvere V -theories allow us to
model all the leading examples of computational effects other than con-
tinuations, and that they are closed under constructions of sum, tensor
and distributive tensor, which are the fundamental ways in which one
combines such effects. We also show that discrete countable Lawvere
V -theories are closed under taking an image, allowing one to treat ob-
servation as a mathematical primitive in modelling effects.

1 Introduction

Lawvere theories are a category-theoretic formulation of universal algebra for
which the notion of operation is primitive. Unlike universal algebra, the notion
of Lawvere theory is presentation-independent, i.e., the category of models deter-
mines the theory uniquely up to coherent isomorphism. The concept has proved
to be particularly fruitful, generalising to the study of finite limit theories and
beyond [2,3]. It corresponds to the study of finitary monads on the category
Set, but its definition is more in the spirit of universal algebra, the notion of
Lawvere theory being essentially an axiomatisation of the notion of a clone of
an equational theory.

Denotational semantics is less concerned with sets with structure than it is
with ω-cpo’s with structure, as the latter allow for an account of partiality and
recursion. So one would like to extend the notion of, and results about, Lawvere
theories to include ω-cpo’s. Many results, several of them explained herein, can
be extended elegantly and axiomatically by reference to enriched Lawvere theo-
ries [25] with enrichment in the category V = ωCpo: to allow for recursion, one
needs to replace finitariness assumptions by countability assumptions, but that
amounts to a minor technical adjustment.
� This work has been done with the support of EPSRC grant GR/586372/01.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 348–363, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Discrete Lawvere Theories 349

As we shall explain in Section 3, if V is locally countably presentable as a
symmetric monoidal closed category, e.g., V is ωCpo or Set or Poset or Cat,
a countable Lawvere V -theory is a small V -category L with countable coten-
sors, which we shall define, together with an identity-on-objects strict countable
cotensor preserving V -functor from V op

ℵ1
to L, where Vℵ1 is a skeleton of the

full sub-V -category of V determined by the countably presentable objects of V ,
to L. A model of L in a V -category C with countable cotensors is a countable
cotensor preserving V -functor from L to C. Extending the result for ordinary
Lawvere theories, countable Lawvere V -theories correspond to V -monads on V
with countable rank.

Taking V to be Set in the definition of countable Lawvere V -theory, we re-
cover a countable version of the usual notion of Lawvere theory, together with
its associated body of theory. Taking V to be Cat, enrichment yields an ele-
gant body of theory for categories with equational structure such as finite or
countable product structure, finite or countable limit structure, finite or count-
able coproduct structure, and various forms of monoidal structure. It is similarly
fruitful where V is Poset or ωCpo or any number of other naturally arising base
categories. In this paper, which is oriented towards computer science, we focus
on the example of V being ωCpo.

Here, we refine the notion of countable Lawvere V -theory to something we
call a discrete countable Lawvere V -theory: L is still a small V -category, but it
comes equipped with an identity-on-objects functor from a skeleton of ℵop

1 rather
than from V op

ℵ1
, so an object of L is either a natural number or is ℵ0 rather

than being an arbitrary countably presentable object of V such as Sierpinski
space when V is Poset. Again, taking V to be Set, we recover the notion of
countable Lawvere V -theory. In contrast, when V is Cat, the restriction from
V -theories to discrete countable Lawvere V -theories is substantial, cutting out
examples such as those involving limits and colimits. But when V is ωCpo,
discrete countable Lawvere V -theories still include the bulk of the structures
that appear in practice, in particular all those of primary interest in analysing
computational effects [10,11].

The reason for the restriction is that the category of discrete countable Law-
vere V -theories is closed under constructions that are important in the analysis of
computational effects but that one cannot make of arbitrary countable Lawvere
V -theories. In particular, one can make a distributive tensor of discrete count-
able Lawvere V -theories, which one cannot do of arbitrary countable Lawvere V -
theories. And discrete countable Lawvere V -theories, unlike arbitrary countable
Lawvere V -theories, are closed under the construction of an image determined
by a model. The distributive tensor appears in both concurrency [7] and in com-
bining probabilistic and ordinary nondeterminism [20]; and one wants the image
in order to take operations and observations as primitive notions in analysing
computational effects [26]. The notion of discrete countable Lawvere V -theory
is also closed under the two operations on countable Lawvere V -theories that
have been investigated to date, namely the sum and the tensor [10,11]. There
is a sense in which the correspondence between Lawvere theories and monads

350 J. Power

extends to one between discrete Lawvere theories and a kind of monads, but that
occurs more by fiat than by a natural condition on the definition of monad [16].

Space precludes us from generalising these ideas from discreteness. But the
definition of discrete Lawvere theory enriches without fuss: one can start with
categories V andW that are locally countably presentable as symmetric monoidal
closed categories and a symmetric monoidal adjunction U : V −→ W of count-
able rank, then systematically replace the implicit use of Set in the definition
by W . That does not allow for the distributive tensor or for the image, but
it may shed light on the subtle relationship between the categories ωCpo and
Poset for example. In particular, the various freeness results relating ordinary
Lawvere theories, discrete countable Lawvere V -theories, and countable Lawvere
V -theories all extend without fuss.

The paper is organised as follows. In Section 2, we recall the definitions and
some leading examples of countable Lawvere V -theories. In Section 3, we give our
definition of discrete countable Lawvere V -theory together with a preliminary
analysis of it. In Sections 4, 5, 6, and 7 respectively, we analyse sum, tensor,
distributive tensor, and image. We use Kelly’s book [14] as the source book for
all definitions and notation for enriched categories, with [15] being the basic text
for locally presentable V -categories.

2 Enriched Lawvere Theories

In this section, we recall the notions of Lawvere theory and enriched Lawvere
theory and at least one strand of thought that motivates their use in computer
science. The work in this section is adapted from [10,11], which in turn was
motivated by the desire for a more profound formulation of Moggi’s unification
of computational effects as monads in [21,22].

Definition 1. A Lawvere theory consists of a small category L with finite prod-
ucts together with a strict finite product preserving identity-on-objects functor
I : Natop −→ L, where Nat is the category of all natural numbers and maps
between them [2,3]. A model of a Lawvere theory L in a category C with finite
products is a finite-product preserving functor from L to C.

Implicit in the definition is the fact that the objects of L are exactly the
natural numbers. The definition provides a category theoretic formulation of
universal algebra, with the notion of operation taken as primitive: a map in L
from n tom is to be understood as being given bym operations of arity n. Unlike
the notion of equational theory, the concept of Lawvere theory is presentation-
independent, i.e., if a pair of Lawvere theories have equivalent categories of
models, the two theories are isomorphic.

The definition of model extends to the definition of the categoryMod(L, C) of
models of L in any category C with finite products: maps of models are defined
to be natural transformations. Note that naturality forces maps of models to
respect the product structure in the definition of model. Observe also that we

Discrete Lawvere Theories 351

do not demand strict preservation in the definition of model: to do so would
eliminate many of the leading examples [24]!

For any Lawvere theory L and any locally finitely presentable category C,
the functor ev1 : Mod(L, C) −→ C has a left adjoint, inducing a monad TL on
C: we shall return to this later in the section.

The usual way in which one obtains Lawvere theories is by means of sketches,
with the Lawvere theory given freely on the sketch: Barr and Wells’ book [3]
treats sketches in loving detail and gives a range of examples of both sketches
and Lawvere theories. To give a sketch amounts to giving operations and uni-
versally defined equations, i.e., an equational theory. The Lawvere theory is an
axiomatisation of the notion of the clone of an equational theory, equivalently
of a sketch.

Example 1. The Lawvere theory LE for exceptions is the free Lawvere theory
generated by an E-indexed family of nullary operations with no equations. The
monad on Set induced by LE is TE = −+E. More generally, if C is any category
with finite powers and sums then Mod(LE , C) is equivalent to the category of
algebras for the monad −+ E where E is the E-fold copower of 1, i.e.,

∐
E 1.

Interactive input/output works similarly to exceptions [11], so we omit de-
tails. For the next example, we use the evident generalisation of the notion of
Lawvere theory to countable Lawvere theory as used in [10,11] and as we shall
make precise shortly: it allows us to use countable arities.

Example 2. The countable Lawvere theory LS for side-effects, where S = V L, is
the free countable Lawvere theory generated by the operations lookup :V −→ L
and update : 1 −→ L × V subject to the seven natural equations listed in [23],
four of them specifying interaction equations for lookup and update and three
of them specifying commutation equations. Our presentation of the operations
here is in terms of generic effects, corresponding to the evident functions of the
form L −→ (S × V)S and L × V −→ SS respectively [11]. It is shown in [23]
that LS induces the side-effects monad. More generally, if C is any category
with countable powers and copowers then, slightly generalising the result in [23],
Mod(LS , C) is equivalent to the category of algebras for the monad (S × −)S

where we write (S × −) for the S-fold copower
∐

S −, and (−)S for the S-fold
power

∏
S −.

Example 3. The Lawvere theory LN for (binary) nondeterminism is the Law-
vere theory freely generated by a binary operation ∨ : 2 −→ 1 subject to equa-
tions for associativity, commutativity and idempotence, i.e., the Lawvere theory
for a semilattice. The induced monad on Set is the finite non-empty subset
monad, F+.

Example 4. The Lawvere theory LP for probabilistic nondeterminism is that
freely generated by [0, 1]-many binary operations +r : 2 −→ 1 subject to the
equations for associativity, commutativity and idempotence in [6]. The induced
monad on Set is the distributions with finite support monad, Df .

352 J. Power

In denotational semantics, one is not primarily interested in sets but rather in
ω-cpo’s, as the latter may be used to account for recursion. We therefore seek to
generalise the study of Lawvere theories from sets to ω-cpo’s. This may be done
elegantly and axiomatically by recourse to the notion of a countable enriched
Lawvere theory and considering the example of enrichment in the category of
ω-cpo’s [10,11,25]. Countability is essential to account for recursion, as seen for
instance in studying side-effects.

Axiomatically, the details are as follows. We first assume our base cate-
gory V is locally countably presentable as a symmetric monoidal closed cate-
gory [1,14,15]. For the purposes of this paper, we do not require a definition of
that: we simply need to know that the categories Set, Poset, ωCpo and Cat
are all examples. In all those examples, the relevant symmetric monoidal closed
structure is, in fact, cartesian closed structure. So we shall assume that when
convenient.

The least obvious point to note when enriching Lawvere theories is that
the notion of countable product of a single generator does not generalise most
naturally to a notion of countable product but rather to a notion of countable
cotensor [14]. The notion of cotensor is the most natural enrichment of the notion
of a power-object. Given an object x of a category C and given a set A, the A-fold
power xA satisfies the defining condition that there is a bijection of sets

C(y, xA) ∼= C(y, x)A

natural in y. This enriches to the notion of cotensor as follows.

Definition 2. Given an object x of a V -category C and given an object a of
V , the cotensor xa satisfies the defining condition that there is an isomorphism
in V

C(y, xa) ∼= C(y, x)a

V -natural in y. The cotensor xa is called countable if a is a countably presentable
object of V .

There is an evident dual notion of tensor a ⊗ x. When C = V , xa is the
exponential and a⊗ x agrees with the monoidal structure of V .

Example 5. Taking V to be Poset, the notion of cotensor allows us not only to
consider objects such as x × x (= x2) in a locally ordered category, but also to
consider objects such as x≤, where ≤ is Sierpinski space, the two point partial
order ⊥ ≤ #. This possibility allows us, in describing Poset-theories, not only to
retain countable products but also to consider a greater range of arities and, in
particular, to incorporate inequations. For the latter, suppose one wishes to say
that f ≤ g for two morphisms f, g :x → y; this is accomplished by introducing a
third morphism h :x → y≤ and asserting the equations f = y⊥oh and g = y�oh,
where ⊥ and # are the two evident maps from 1 to ≤. Observe that y≤ only
appears here as a codomain of an operation, not as a domain of one. Poset-
enriched Lawvere theories are at the heart of Ghani and Lüth’s work on term
rewriting systems in [5].

Discrete Lawvere Theories 353

Define Vℵ1 to be a skeleton of the full sub-V -category of V determined by
the countably presentable objects of V . It is equivalent to the free V -category
with countable tensors on 1 [14,25].

Definition 3. A countable Lawvere V -theory is a small V -category L with
countable cotensors together with a strict countable-cotensor preserving identity-
on-objects V -functor I : V op

ℵ1
−→ L. A map of countable Lawvere V -theories

from L to L′ is a strict countable-cotensor preserving V -functor from L to L′

that commutes with I and I ′. A model of L in a V -category C with countable
cotensors is a countable-cotensor preserving V -functor M :L −→ C.

Routinely generalising the unenriched case, for any countable Lawvere V -theory
L and any V -category with countable cotensors C, we have a V -category of
models of L in C, Mod(L, C); the homobjects are given by homobjects of all V -
natural transformations [14], and the V -naturality condition implies they respect
countable cotensors. There is a canonical forgetful V -functor UL fromMod(L, C)
to C. If it has a left V -adjoint, as it does whenever C is a locally presentable
V -category, this forgetful V -functor exhibits Mod(L, C) as equivalent to the V -
category TL-Alg for the induced V -monad TL on C. We denote the category of
countable Lawvere V -theories by LawV .

To give a V -enriched V -monad is equivalent to giving a strong monad on
V [19]. So, in order to make the comparison with Moggi’s unified account of
computational effects as modelled by strong monads a little more direct, we
express the main abstract result of [25] in terms of strong monads.

Theorem 1. If V is locally countably presentable as a symmetric monoidal
closed category, the construction of TL from L induces an equivalence of cat-
egories between the category of countable Lawvere V -theories on V and the
category of strong monads on V with countable rank. Moreover, the compari-
son V -functor exhibits an equivalence between the V -categories Mod(L, V) and
TL-Alg.

A common and important way to generate countable Lawvere V -theories
is by taking the free countable Lawvere V -theory on an unenriched countable
Lawvere theory. For instance, let V be ωCpo. Given an unenriched countable
Lawvere theory L, the free countable Lawvere ωCpo-theory Lω on L is generated
by the operations and equations of L, but it has more objects as there are
countably presentable ω-cpo’s other than flat ones, and these additional objects
generate additional maps. See [11] for details, but suffice it for here to note that
Examples 1, 2, 3 and 4 all thereby freely yield countable Lawvere V -theories
where V = ωCpo.

For the leading example of a countable Lawvere V -theory that does not arise
freely from an unenriched countable Lawvere theory, let V be ωCpo and consider
nontermination.

Example 6. The countable Lawvere ωCpo-theory LΩ for nontermination is the
theory freely generated by a nullary operationΩ :0 −→ 1 subject to the condition
that there is an inequality

354 J. Power

1 � 0

�
�

�
�

�

≥
id

�
1

Ω

�

where the unlabelled map is the unique map determined because 0 is the initial
object of Vℵ1 and therefore the terminal object of V op

ℵ1
. The models of LΩ in

ωCpo are the ω-cpo’s with a least element. The corresponding strong monad TΩ

is the lifting construction (−)⊥ which adds a new least element. Observe that
there is at most one morphism from LΩ to any other countable ωCpo-theory L,
reflecting the fact that a least element is unique if it exists.

Adding a nontermination effect allows us to model recursion in the context
of ωCpo. If we want to model other effects in addition to recursion, we have
to combine them with nontermination: switching to Lω from L does not suffice
(see [11] for details).

3 Discrete Lawvere Theories

As we have seen, countable Lawvere V -theories, for V = ωCpo, allow us to
account for all the leading examples of computational effects other than contin-
uations. Moreover, they are closed under two constructions that model natural
ways in which computational effects are combined: sum and tensor [10,11]. But
there are other constructions that may be made of countable Lawvere theories
in the original Set-based case, that do not exist for arbitrary countable Lawvere
V -theories where V = ωCpo, but that do appear in combining computational
effects in practice. So we seek a refinement of the notion of countable Lawvere
V -theory to account for them.

In particular, as we shall discuss in Section 6, consider the operations of
one theory L distributing over those of another theory L′, as appear in concur-
rency [7] and in the combination of nondeterminism and probabilistic nondeter-
minism [20]. The construction does not enrich. The problem lies with the arities:
an arbitrary countable Lawvere V -theory has arities that may be any countably
presentable objects of V , but the notion of distributivity a priori only makes
sense for arities that are sets (see Section 6 for details).

Lawvere V -theories also are not closed under taking the image of a model,
as one wants when taking observations as a primitive notion, as we shall outline
in Section 7, cf [26]. Again, the problem lies with the arbitrariness of the arities.

So in this section, we refine the notion of enriched Lawvere theory by re-
stricting the arities to be sets, but still including all our examples, still allowing
us to take sum and tensor, but also allowing us to take a distributive tensor
and an image. This yields our notion of discrete Lawvere theory. Motivated by
recursion, we describe a countable rather than a finite version here.

The notion of discrete countable Lawvere theory lies between that of ordinary
countable Lawvere theory and that of countable Lawvere V -theory: in the former,

Discrete Lawvere Theories 355

the arities are objects of ℵ1 and the homs are sets; in the latter, arities are
countably presentable objects of V and the homs are objects of V ; but for discrete
countable Lawvere V -theories, we demand that the arities lie in ℵ1 but allow
the homs to be objects of V . The definition, using the notation we have already
established, is as follows. The underlying ordinary category of a V -category C
is denoted by C0 [14].

Definition 4. A discrete countable Lawvere V -theory is a small V -category L
with countable products and a strict countable-product preserving identity-on-
objects functor I : ℵop

1 −→ L0. A map of discrete countable Lawvere V -theories
from L to L′ is a (necessarily strict countable-product preserving) V -functor
from L to L′ that commutes with I and I ′. A model of L in a V -category C with
countable products is a countable product preserving V -functor M : L −→ C.

We denote the category of discrete countable Lawvere V -theories by DLawV .
The definition of model extends, as before, to yield a natural V -category

Mod(L, C) of models of L in any V -category C with countable products: the
homobjects are given by the usual internalisation to V of the set of all V -natural
transformations between models [14].

Let us consider, in concrete terms, what a model M of a discrete count-
able Lawvere V -theory L in a V -category C with countable products is. First,
one must send the object 1 to an object X of C. Since M preserves countable
products and since all objects of L are countable products of copies of 1, this
completely determines the behaviour of M on objects, indeed also on all maps
in ℵop

1 , up to coherent isomorphism. It remains to give the behaviour of M on
homs. That amounts to giving, for each a and b in ℵ1, a map in V of the form

Ma,b : L(a, b) −→ C(Xa,Xb)

subject to preservation of identities and composition. So, in particular, if L is
freely generated by some sort of signature and equations, equivalently by some
generalised notion of sketch (see [18] for a general definition and treatment of
the sketch idea), it simply amounts to giving a model of each constructor of the
generalised signature subject to the generalised equations, exactly as for Lawvere
V -theories as in Section 2 but with arities restricted to be objects of ℵ1 rather
than arbitrary countably presentable objects of V .

One can construct a forgetful functor from the category LawV of countable
Lawvere V -theories to DLawV as follows. Observe that ℵop

1 being the free cate-
gory with countable products on 1 and V op

ℵ1
including the object 1⊗ I (where I

is the unit of V , and so 1 ⊗ I is I) and having countable products determine a
canonical functor J : ℵop

1 −→ V op
ℵ1

.

Definition 5. The forgetful functor U : LawV −→ DLawV sends a countable
Lawvere V -theory I : V op

ℵ1
−→ L to the V -category and functor determined by

factorising the composite

ℵop
1

J � V op
ℵ1

I � L

356 J. Power

as an identity-on-objects functor followed by full faithful one, and using the latter
functor to induce V -structure on the factorisation from that on L.

So the objects of the factorisation are exactly the objects of ℵ1op, with the
hom from a to b given by L(IJa, IJb), and with composition determined by that
of L.

Theorem 2. The forgetful functor U : LawV −→ DLawV has a left adjoint
F . Moreover, given any V -category C with countable cotensors, the unit of the
adjunction determines a canonical equivalence

Mod(L, C) �Mod(F (L), C)

where the first occurrence of Mod refers to models of a discrete theory, thus V -
functors that preserve countable products, while the second refers to models of a
V -theory, thus V -functors preserving countable V -cotensors [4].

Proof. The first statement may be seen as an instance of the theory of (count-
able) essentially algebraic theories [1,3] or alternatively via the study of V -
categories with equational structure [4,17]. The second follows from the work
relating strict maps and pseudo-maps of categories with structure in [4]. Alter-
natively, one can check it by direct calculation.

There is also a forgetful functor U ′ from DLawV to the category of ordinary
countable Lawvere theories Lawc: it simply forgets the V -structure of L by
taking its underlying ordinary category L0.

Theorem 3. The forgetful functor U ′ : DLawV −→ Lawc has a left adjoint F ′

with the additional property that for any V -category C with countable products,
the unit of the adjunction determines a canonical equivalence

Mod(L, C0) �Mod(F ′(L), C)

where here, the first occurrence of Mod refers to models of an ordinary theory,
thus functors that preserve countable products, while the second refers to models
of a discrete V -theory, thus V -functors preserving countable V -products [4].

Proof. The free V -category (without insisting upon a countable product condi-
tion) on L in fact has countable products and acts as F ′(L): one must observe
that countable products of the former freely yield countable products of the
latter.

By Theorem 3, Examples 1, 2, 3 and 4 may all be seen as discrete countable
Lawvere V -theories: it is safe for us to identify these ordinary countable Lawvere
theories with the discrete countable Lawvere V -theories they freely generate. A
non-free example is as follows.

Example 7. Consider Example 6, the Lawvere ωCpo-theory for nontermination.
As presented, it gives a sketch from which the Lawvere ωCpo-theory is given

Discrete Lawvere Theories 357

freely. But one can see by inspection that the sketch may equally be seen as
a sketch for a discrete ωCpo-theory, in that one could equally consider the free
discrete ωCpo-theory generated by it and consider its models: the arities appear-
ing in Example 6 are all discrete sets, in this case finite sets, and the homs of a
discrete Lawvere V -theory may be arbitrary objects of V , in this case allowing
us to express the inequality in the example, i.e., we can replace the use of y≤

as the codomain of an operation in Example 6 by two operations into y with
an inequality between them. But the example does not, in any reasonable sense,
freely generate an ordinary Lawvere theory as ordinary Lawvere theories do not
allow us to treat inequality nontrivially.

There are four constructions on Lawvere theories that are of primary interest
to us: the sum, the tensor, the distributive tensor, and the image. These all
arise in the study of computational effects. One considers the sum in combining
exceptions with any other computational effect [10,11]; one considers the tensor
in combining side-effects with all other effects other than exceptions [10,11]; the
distributive tensor or a two-sided version of it appears in combining two sorts of
nondeterminism, for instance internal and external nondeterminism as used by
Hennessy in modelling concurrency [7], or in combining ordinary nondeterminism
with probabilistic nondeterminism [20]; and one considers the image in deriving
equations from a theory of observations. So, in forthcoming sections we consider
these constructions in turn.

4 Sum

In this section, we consider the sum of discrete Lawvere V -theories. We only do so
briefly as one can already consider sums of arbitrary Lawvere V -theories [10,11]
and we mainly just need to check that the construction of a sum restricts from
arbitrary Lawvere V -theories to discrete ones.

Theorem 4. The category of discrete countable Lawvere V -theories is cocom-
plete.

One way to prove this is by observing that the category of discrete countable
Lawvere V -theories is locally countably presentable [1]. An explicit construction
of the sum is complicated as a general construction involves a transfinite in-
duction, with inductive steps being given by a complicated coequaliser, cf [13].
But all our examples of discrete countable Lawvere theories are given freely by
sketches. And in those terms, the sum is easy to describe: one takes all oper-
ations of both equational theories, including information such as partial order
information, subject to all axioms of both. The complication arises in passing
from the induced sketch to the Lawvere theory freely generated by it, as, in
doing so, one may apply the operations of one theory to the operations of the
other, hence the transfinite induction.

Even in terms of sketches, care is required. For instance, given Lawvere theo-
ries L and L′, there are always maps of Lawvere theories given by coprojections

358 J. Power

L −→ L + L′ and L′ −→ L + L′. But these coprojection functors need not be
faithful. For instance, L might be the trivially collapsing theory, i.e., its equa-
tions may force L to be equivalent to 1. In that case, L + L′ is also equivalent
to 1, so the coprojection from L′ is trivial.

It is a simple observation, comparing the above with [11], that the sum of dis-
crete countable Lawvere V -theories qua countable Lawvere V -theories is discrete.
One would certainly hope so as left adjoints preserve sums! For the same reason,
a sum of countable Lawvere theories qua discrete countable Lawvere V -theories
is free on the sum of ordinary countable Lawvere theories. For computational
effects, the leading examples are given by the combination of exceptions with all
other effects and the combination of interactive I/O with most other effects [11].

5 Tensor

The tensor of theories arises when one wants to combine side-effects with most
other computational effects. Again, we already know that a tensor product of
countable Lawvere V -theories exists [11], and it is just a matter of observing that
we can adapt the construction and characterising theorem to discrete Lawvere
V -theories.

Definition 6. [11] Given discrete countable Lawvere V -theories L and L′, the
discrete countable Lawvere V -theory L⊗L′, which we call the tensor product of L
and L′, is defined by the universal property of having maps of discrete countable
Lawvere V -theories from L and L′ to L ⊗ L′, subject, suppressing canonical
isomorphisms, to commutativity of

L(a, b)⊗ L′(a′, b′) � L(a× b′, b× b′)⊗ L′(a× a′, a× b′)

L(a× a′, b× a′)⊗ L′(b× a′, b× b′)
�

comp
� (L⊗ L′)(a× a′, b× b′)

comp

�

The tensor product exists because it is determined by the free theory on an
enriched sketch [18]. But it may equally, indeed more elegantly, be proved to
exist by appeal to an enrichment of the delicate 2-categorical analysis of the
form appearing in [9], from which the following result also follows:

Theorem 5. – The construction L ⊗ L′ on discrete countable Lawvere V -
theories extends to a symmetric monoidal structure on DLawV , and

– for any small V -category C with countable products, there is a coherent equiv-
alence of V -categories between Mod(L⊗ L′, C) and Mod(L,Mod(L′, C)).

The unit for the tensor product is the initial discrete countable Lawvere V -
theory, i.e, the theory generated by no operations and no equations. This is the
initial object of the category of discrete countable Lawvere V -theories, so is also
the unit for the sum; it corresponds to the identity monad.

Discrete Lawvere Theories 359

As we have already observed, Examples 1, 2, 3, 4 and 6 may all be seen as
discrete countable Lawvere V -theories, and so we may simply translate our study
of tensor of countable Lawvere V -theories in [11] to that of discrete countable
Lawvere V -theories here, while retaining all our examples. Its importance, as
studied in detail in [11], lies in combining side-effects with almost all other effects,
the main counter-example to that being in the combination with exceptions,
which is covered by the previous section. As was the case for sum, the left adjoints
F and F ′ preserve the tensor product, making the adjunctions U : LawV −→
DLawV and U ′ : DLawV −→ Lawc into symmetric monoidal adjunctions.

6 Distributive Tensor

We now turn to the distributive tensor. This is where the concept of discrete
countable Lawvere V -theory starts to yield its value relative to arbitrary count-
able Lawvere V -theories: one can speak of a distributive tensor product of or-
dinary Lawvere theories without difficulty, but there does not seem to be any
natural way to speak of a distributive tensor of arbitrary countable Lawvere
V -theories, although it appears in computational practice.

For ordinary Lawvere theories, the distributive tensor is defined similarly to
the tensor except that the two sets of operations are not required to commute,
but rather the first are required to distribute over the second. This yields the
following.

Definition 7. Given Lawvere theories L and L′, the Lawvere theory L 	 L′,
called the distributive tensor of L over L′, is defined by the universal property
of having maps of Lawvere theories from L and L′ to L	 L′, with all operations
of L distributing over all operations of L′, i.e., given f : (n+ 1) −→ 1 in L and
f ′ : n′ −→ 1 in L′, we demand commutativity of the diagram

n+ n′
(f.(n× πi′))i′εn′� n′

n+ 1

idn × f ′

�

f
� 1

f ′

�

together with commutativity of all other n variants of the diagram given by vary-
ing the choice of an element of n+ 1 in the bottom left-hand corner from being
the last element to being any of its n predecessors.

It is possible to characterise the distributive tensor in terms of models of L
in Mod(L′, C) for any category with finite products C, along the lines of Theo-
rem 5. But it is a little complicated, involving the use of operads and symmetric
monoidal structure or more generally multicategory structure onMod(L′, C). So
we shall not do that here. We just remark that the distributive tensor does arise

360 J. Power

naturally in computation, sometimes in a two-sided framework such as in Hen-
nessy’s modelling of internal and external choice in [7] for modelling concurrency,
and sometimes for modelling the combination of probabilistic nondeterminism
and ordinary nondeterminism [12,20].

But now try extending this to arbitrary countable Lawvere V -theories: one
would replace the n + 1 in the bottom left-hand corner of the diagram by an
arbitrary finitely presentable object v of V that, in some coherent and elegant
sense, can be subdivided into an element together with the rest of v. But I cannot
see any natural way to do that in general in the spirit of enriched categories.

The simple elegant solution that includes all our examples seems to be to
restrict to discrete countable Lawvere V -theories: so the arities are all discrete
sets, from which we can choose an element as a possible codomain and naturally
consider the rest of the set; but we are still able to consider inequalities as in
Example 6 seen as a discrete theory in Example 7. So that is what we do.

Definition 8. Given discrete countable Lawvere V -theories L and L′, the dis-
crete countable Lawvere V -theory L	L′, called the distributive tensor of L over
L′, is defined by the universal property of having maps of discrete countable Law-
vere V -theories from L and L′ to L 	 L′, with all operations of L distributing
over all operations of L′. I.e., for all objects a and a′ of ℵ1 and for all elements x
of a (so a ≥ 1), suppressing canonical isomorphisms, we demand commutativity
of the diagram

L(a, 1)× L′(a′, 1)
L(πi′ , 1)i′εa′ × id� L(a− x+ a′, a′)× L′(a′, 1)

L(a, 1)× L′(a− x+ a′, a)

id× (a− x+ (−))

�

comp
� (L 	 L′)(a− x+ a′, 1)

comp

�

It requires a little thought, but given that thought, this definition internalises
a countable version of the notion of distributivity, in particular allowing us to
include Example 7, the example of nontermination, without running into an ar-
ity problem. Thus we can extend our list of constructions on discrete countable
Lawvere V -theories to include combinations involving various forms of nonde-
terminism.

7 Image

The image construction is of a somewhat different nature to those we have
studied so far, and it is used for a somewhat different purpose. Here, rather than
starting with a pair of Lawvere theories, one starts with a single Lawvere theory
and a model of it. We first consider a construction that is not quite what we
want but which does exist for arbitrary countable Lawvere V -theories.

Discrete Lawvere Theories 361

Definition 9. Given a countable Lawvere V -theory L and a modelM : L −→ C,
the full image LfM of M is the (bijective-on-objects,fully faithful) factorisation
of M , i.e., up to isomorphism of V -categories, it is determined by putting

(LfM)(m,n) = C(Mm,Mn)

A variant of this, where one removes the size limitation at the cost of consid-
erably less elegance, appears in the study of continuations, where M is typically
taken to be the free model on a test set R [8]. But what we want to do here is a
little more subtle. First we consider the situation for ordinary Lawvere theories.

The image, as opposed to the full image, appears when one wants to take
observations rather than equations as primitive [26]. The idea is that one only
considers the signature with which one starts, and then puts equations or inequa-
tions between derived terms depending upon what an observational model de-
mands. One cannot just take the full image, i.e., the relatively familiar (bijective-
on-objects,fully faithful) factorisation, as that allows additional maps that are
not generated by a signature, reflecting the fact that continuations allow one to
write additional programs. So we need a more subtle factorisation, one which, in
a precise sense, moves the fullness from the right to the left of the factorisation
system. The factorisation system we need is defined as follows:

Definition 10. Given a Lawvere theory L and a model M : L −→ C, the image
LM ofM is determined by the (bijective-on-objects and full,faithful) factorisation
of M , i.e., up to isomorphism of categories, it is determined by putting LM (m,n)
equal to the image of the function

Mm,n : L(m,n) −→ C(Mm,Mn)

Example 8. Following Example 2, let S = V L. The standard semantics of a
command is generally understood to be a state-changing function, i.e., a function
of the form

S −→ S

So the operations lookup and update should act on powers of this set. They
are generally deemed to act as follows: the operation lookup is modelled by the
function

(S → S)V −→ (S → S)L

determined by composition with the function from L × S to V × S that, given
(loc, σ), “looks up” loc in σ : L → V to determine its value, and is given by the
projection to S; and the operation update is modelled by the function

(S → S) −→ (S → S)L×V

determined by composition with the function from L × V × S to S that, given
(loc, v, σ), “updates” σ : L → V by replacing the value at loc by v. We wish to
set a pair of operations generated by lookup and update equal precisely when
they yield the same functions on powers of S → S. And that is given as follows:

362 J. Power

first take the free countable Lawvere theory generated by operations lookup and
update. Then take the model of this countable Lawvere theory determined by
S → S together with the functions defined above. Now take the image deter-
mined by this model. The result is exactly LS .

The above example appears, along with several others, in [26]. The difficulty
with enriching the idea arises even when V is Poset. If one replaces categories
by V -categories with finite cotensors in the definition of image, the factorisation
need not have finite cotensors: the problem arises when one considers cotensors
with non-discrete posets such as Sierpinski space. Looking harder at why that
is not a problem for ordinary Lawvere theories, one notes that the homs are
sets, and in Set, all epimorphisms are retracts, so are preserved by all functors,
whereas that is not the case in Poset. In contrast, products often do preserve
epimorphisms or at least strong epimorphisms. For instance, in Poset, an epimor-
phism is pointwise a surjective function, and the product of surjective functions
is again surjective. The central result we need is as follows.

Theorem 6. Given a factorisation system (E,M ′) on V for which E is closed
under countable product, and given a discrete countable Lawvere theory L and a
model M : L −→ C, the (bijective-on-objects and locally E,M’) factorisation of
M , i.e, determined by putting LM(a,b) equal to the (E,M’)-factorisation of the
map in V

Ma,b : L(a, b) −→ C(Ma,Mb)

lifts to a factorisation of V -categories with countable products.

This result applies to Poset if we take E to be the class of epimorphisms. But
ωCpo requires more care, as countable products there involve more subtlety than
finite products do: a finite product of epimorphisms is always an epimorphism by
cartesian closedness. The solution to that difficulty seems likely to involve making
more subtle use of the relationships developed in this paper between discrete
countable Lawvere V -theories and arbitrary countable Lawvere V -theories, and
their relationships with finitary versions.

References

1. J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London
Mathematical Society Lecture Note Series, Vol. 189, Cambridge University Press,
1994.

2. M. Barr and C. Wells, Toposes, Triples and Theories, Springer-Verlag, 1985.
3. M. Barr and C. Wells, Category Theory for Computing Science, Prentice-Hall,

1990.
4. R. Blackwell, G. M. Kelly, and A. J. Power, Two-Dimensional Monad Theory, J.

Pure Appl. Algebra Vol. 59, pp. 1–41, 1989.
5. N. Ghani and C. Lüth, Monads and Modular Term Rewriting, Proc. CTCS ’97,

LNCS, Vol. 1290, pp. 69–86, Springer-Verlag, 1997.
6. R. Heckmann, Probabilistic Domains, Proc. CAAP ’94, LNCS, Vol. 136, pp. 21-56,

Springer-Verlag, 1994.

Discrete Lawvere Theories 363

7. M. C. B. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.
8. M. Hyland, P. Levy, G. D. Plotkin, and A. J. Power, Combining Continuations

with Other Effects, Proc. Continuations Workshop 2004, Birmingham Technical
Report, No. CSR-04-1, refereed presentation, 2004.

9. J. M. E. Hyland and A. J. Power, Pseudo-Commutative Monads and Pseudo-
Closed 2-Categories, J. Pure Appl. Algebra Vol. 175, pp. 141–185, 2002.

10. J. M. E. Hyland, A. J. Power and G. D. Plotkin, Combining Computational
Effects: Commutativity and Sum, Proc. 2nd IFIP Conf on Theoretical Computer
Science (eds. Ricardo A. Baeza-Yates, Ugo Montanari and Nicola Santoro), pp.
474–484, Kluwer, 2002.

11. J. M. E. Hyland, A. J. Power and G. D. Plotkin, Combining Computational
Effects: Sum and Tensor, Theoretical Computer Science, to appear.

12. C. Jones and G. D. Plotkin, A Probabilistic Powerdomain of Evaluations, Proc.
LICS ’89, pp. 186–195, IEEE Press, 1989.

13. G. M. Kelly, A Unified Treatment of Transfinite Constructions for Free Algebras,
Free Monoids, Colimits, Associated Sheaves, and so on, Bull. Austral. Math. Soc.,
Vol. 22, pp. 1–83, 1980.

14. G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge University
Press, 1982.

15. G. M. Kelly, Structures Defined by Finite Limits in the Enriched Context I, Cahiers
de Topologie et Géométrie Différentielle, Vol. 23, No. 1, pp. 3–42, 1982.

16. G. M. Kelly and Stephen Lack, Finite-product-preserving Functors, Kan Exten-
sions, and Strongly-finitary Monads, Applied Categorical Structures, 1993.

17. G. M. Kelly and A. J. Power, Adjunctions whose Counits are Coequalizers, and
Presentations of Finitary Enriched Monads, J. Pure Appl. Algebra, Vol. 89, pp.
163–179, 1993.

18. Y. Kinoshita, A. J. Power, and M. Takeyama, Sketches, J. Pure Appl. Algebra,
Vol. 143, pp. 275–291, 1999.

19. A. Kock, Monads on Symmetric Monoidal Closed Categories, Arch. Math., Vol.
21, pp. 1–10, 1970.

20. M. W. Mislove, Nondeterminism and Probabilistic Choice: Obeying the Laws, Proc.
CONCUR 2000 (ed. C. Palamidessi), LNCS, Vol. 1877, pp. 350–364, Springer-
Verlag, 2000.

21. E. Moggi, Computational Lambda-Calculus and Monads, Proc. LICS ’89, pp.
14–23, IEEE Press, 1989.

22. E. Moggi, Notions of Computation and Monads, Inf. and Comp., Vol. 93, No. 1,
pp. 55–92, 1991.

23. G. D. Plotkin and A. J. Power, Notions of Computation Determine Monads, Proc.
FOSSACS ’02, (eds. M. Nielsen and U. Engberg), LNCS, Vol. 2303, pp. 342–356,
Springer-Verlag, 2002.

24. A. J. Power, Why Tricategories? Information and Computation, Vol. 120, pp.
251–262, 1995.

25. A. J. Power, Enriched Lawvere Theories, Theory and Applications of Categories,
Vol. 6, pp. 83–93, 2000.

26. A. J. Power, Canonical models for computational effects, Proc. FOSSACS 2004,
LNCS Vol. 2987, pp. 438–452, Springer-Verlag, 2004.

Final Semantics for Event-Pattern
Reactive Programs

César Sánchez, Henny B. Sipma, Matteo Slanina, and Zohar Manna�

Computer Science Department,
Stanford University, Stanford, CA 94305-9025

{cesar, sipma, matteo, zm}@CS.Stanford.EDU

Abstract. Event-pattern reactive programs are front-end programs for
distributed reactive components that preprocess an incoming stream of
event stimuli. Their purpose is to recognize temporal patterns of events
that are relevant to the serviced program and ignore all other events,
outsourcing some of the component’s complexity and shielding it from
event overload. Correctness of event-pattern reactive programs is essen-
tial, because bugs may result in loss of relevant events and hence failure
to react appropriately.

We introduce PAR, a specification language for event-pattern reactive
programs. We propose a new approach for defining such languages in
terms of observations and actions. This approach applies standard tech-
niques from coalgebra to obtain instances of the corecursion and coin-
duction principles. Corecursion is used to formally define the operational
semantics of PAR, and coinduction allows to prove general equivalences
between (ground and parameterized) PAR programs.

This is the first of a series of papers in which we study questions of
expressive completeness, complexity, and formal verification techniques
for specification languages of event-pattern reactive programs.

1 Introduction

Reactive programs are software components that maintain an ongoing interac-
tion with their environment. With the introduction of middleware technologies
and the emphasis on component-based systems, this interaction is increasingly
performed through events. Reactive components, which can range from simple
sensors to sophisticated monitors or controllers, operate relatively autonomously
and communicate using events. This gives rise to publish-subscribe architectures,
in which producer components publish events to the middleware and consumer
components subscribe with it to receive relevant events.

Different subscription policies are possible. The simplest uses a list of event
types and/or senders that can be syntactically matched by an attribute in the
event. This is known as event filtering and is available in most popular platforms,
� This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134,

CCR-02-09237, CNS-0411363, and CCF-0430102, by ARO grant DAAD19-01-1-
0723, and by NAVY/ONR contract N00014-03-1-0939.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 364–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Final Semantics for Event-Pattern Reactive Programs 365

including Gryphon [1], Ace-Tao [18], Siena [3], and Elvin [19]. A more so-
phisticated policy is content filtering, in which the subscription contains a list of
predicates on the data of the event. This approach is especially popular in active
databases and stock market applications. With these policies every single event
is either discarded or dispatched, independently of the event history. Another
extension of event filtering, orthogonal to content filtering, is event correlation,
the approach studied in this paper. Here, subscriptions may contain temporal
patterns of either attributes or content predicates on events.

Event correlation is attractive for several reasons: it may substantially re-
duce unnecessary component activations, thereby improving the performance; it
separates event-pattern recognition from event processing, thus increasing ana-
lyzability of component interactions; it allows automatic synthesis of the pattern
recognition code, thus reducing ad-hoc implementations and improving reusabil-
ity. At present, some middleware platforms provide limited forms of event corre-
lation services. Unfortunately, formal semantics are not given, making their use
risky: unclear semantics or incorrect implementations may result in the loss of
important events, potentially causing failure to respond to critical situations.

In a previous paper [16] we introduced ECL, a language to specify event cor-
relation patterns, developed under the DARPA PCES program for the Boeing
Boldstroke [20] platform to support mission-critical avionics applications. We
gave a formal semantics in terms of correlation machines, an extension of finite-
state transducers that enabled direct translation into event-processing code. Pro-
totype implementations were integrated in Ace-Tao [18] and Facet [9].

In this paper we shift focus from implementation to analysis, in particular
program equivalences. Practical applications need to determine whether a given
pattern expression can be replaced by a simpler one, or merged with that of an-
other component, without affecting its behavior. Correlation machines, however,
are not well suited to answer these questions, since they explicitly model opera-
tional details, such as parallelism, into the semantics. Instead, we are interested
in behavioral equivalences, in which two programs are considered equivalent if
they exhibit the same notification behavior.

We intend to study languages for event-pattern reactive programming al-
gebraically, influenced by the pioneering work on languages for the study of
concurrency, mostly process algebras [13,8,2] and Hennessy-Milner logic [7]. The
main difference is that we specifically design our languages to be deterministic,
because we want to synthesize executable behaviors from the expressions, while
every reasonable concurrency model is intrinsically nondeterministic.

Coalgebra is a convenient framework to study dynamic systems, and, in gen-
eral, systems with hidden state spaces, where only the observable behavior is of
interest [10]. For example, in [15] Rutten shows how equivalence of regular ex-
pressions can be analyzed in this framework. He constructs an automaton, whose
states correspond to languages, that is final with respect to all other automata;
then he shows that language equivalence can be reduced to proving bisimilarity
of their corresponding states in this final automaton. In this paper we develop a

366 C. Sánchez et al.

similar theory for the behaviors of event-pattern machines, and proof techniques
to decide equivalence of classes of event-pattern expressions.

We develop a framework for specification formalisms for event-pattern reac-
tive programs, based on standard coalgebraic techniques. We chose to develop
our techniques directly from the basic definitions, rather than treat them as spe-
cial cases of general results about the existence of final semantics and coinduction
principles (for example, from Hidden Algebras [5,14,4]). Since our expressions
do not describe experiments and observations, developing all the necessary ma-
chinery to use one such general result would not significantly simplify the pre-
sentation.

We introduce PAR—a subset of ECL—a declarative language for the speci-
fication of event-pattern reactive programs. We illustrate the application of our
coalgebraic framework by defining the formal semantics of PAR and studying
some of its properties.

The paper is organized as follows. Section 2 presents PAR and informally de-
scribes the intended semantics. Section 3 presents the notions of event-pattern
machines and behaviors, and proves that the so-called “machine of all behaviors”
is final among all machines, from which we obtain the principles of coinduction
and corecursion for machines. The use of corecursion is illustrated in Sect. 4 to
obtain the formal (behavioral operational) semantics of PAR; the use of coin-
duction is shown in Sect. 5 and 6, where we discuss some equivalences between
PAR programs. Section 7 contains a final discussion and sketches some future
work. Because of space limitations, we only include the most relevant proofs.
The omitted ones can be found in the online version of this paper, available
from the authors’ web page.

2 The Language PAR

Event-pattern reactive programs are components that recognize temporal pat-
terns of events. In this section we introduce the PAR expression language1 which
enables a declarative specification of these patterns. PAR is a subset of ECL,
which we proposed in [16], but is equally expressive. In fact, every finitely ex-
pressible event pattern can be described in PAR [17].

Syntax. We assume that the input event stream consists of input symbols
taken from a finite set Σ. A PAR expression can describe multiple patterns to
be searched in parallel in the input stream. To handle multiple notifications, the
output O consists of sets of symbols from a finite set Γ . The simplest notification
is a singleton, notifications are combined by set union, and the absence of output
is denoted by ∅.

A simple PAR expression is an equality test for an input symbol, that is, for
each a ∈ Σ there is an expression a. If A ∈ O and x and y are PAR expressions,
then so are

x | y x repeatx silent
x ; y x[A] try x unless y

1 The name PAR stands for event-PAttern Reactions.

Final Semantics for Event-Pattern Reactive Programs 367

Informal Semantics. A PAR program processes input events, one at a time,
and produces a (possibly empty) output after each event is processed. The se-
mantics of PAR expressions can be defined by their behavior in response to all
prefixes of input streams. This behavior is characterized by two aspects: the
output and the completion status. The output is the information transmitted
to the served reactive component, where a nonempty output usually causes a
component activation. The completion status is introduced to assist in the com-
positional definition of the semantics. We distinguish three completion statuses:
success, to represent that the pattern has just been observed; failure, to indi-
cate that the pattern cannot be observed in any stream that extends the current
prefix; incomplete, which represents that more input is needed or the input
symbol is not relevant. We use the symbols # to represent success, ι for incom-
plete, and ⊥ to represent failure. All PAR behaviors have the property that, once
success or failure is declared, the output will be empty and the completion status
will become and remain incomplete for all subsequent inputs.

Informally, the PAR constructs behave as follows:
Simple: The expression a ignores every event that does not match a, and declares
success as soon as the first a event is received.
Negation: x behaves as x except it reverses success with failure (and vice-versa).
Selection: The expression x | y evaluates x and y in parallel, offering each the
same events, and generating as output the combination of the subexpressions’
outputs. Selection succeeds as soon as one of the branches succeeds and only
fails when both branches have failed.
Sequential: Sequential composition, x; y, evaluates the first subexpression, and
upon successful completion starts the evaluation of the second. If one of them
fails, sequential immediately fails.
Repetition: The expression repeatx starts by evaluating x, called the body. If the
evaluation of the body completes with success, it continues evaluating repeatx
again, called the continuation. If the body fails, repetition declares failure.
Output: x[A] evaluates x. Upon successful completion, the output A is generated
and combined with simultaneous outputs of x’s subexpressions. The completion
status of x[A] is the same as that of x.
Preemption: try x unless y evaluates x and y in parallel. It succeeds when x
does. It fails if x fails or if y succeeds before x does.
Silent: It does not generate any output and always declares incomplete.

Example 1. The expression (try a unless (b|c))[A] waits to receive an a without
receiving a b or a c. If the evaluation succeeds, then it notifies the component
with an A and terminates.

Example 2. The expression repeat (a ; try b[A] unless (c ; c)) represents the
behavior that notifies the component as soon as b occurs after the first a (sub-
sequent occurrences of a are ignored) without two c events in between (in which
case the pattern reactive program stops). If the pattern is successfully observed,
then the component is notified with an A and the expression restarts.

368 C. Sánchez et al.

3 Event-Pattern Machines and Coinduction

In this section we develop the abstract theory of event-pattern machines, follow-
ing the approach of [15]. We first define the notion of machines and behaviors and
then we construct the final machine, whose states correspond to the behaviors
they represent.

A machine is a black-box device whose behavior can be studied by means
of observations and experiments. In our context, an observation consists of the
output and completion status generated in response to an input symbol. An
experiment is a sequence of observations.

To model completion statuses we define the following three element lattice
C = {#, ι,⊥}, where ⊥ (failure) < ι (incomplete) < # (success). Apart from the
usual lattice operations (∧, ∨), C is equipped with a unary “opposite” operation
·̂, defined as: ⊥̂ = # ι̂ = ι #̂ = ⊥.
Definition 1 (Machine). An event-pattern machine M : 〈M, o, α, ∂〉 consists
of the following components:
– M : a (possibly infinite) set of states;
– o: M → OΣ, an output function, mapping states to functions from input

symbols to output values;
– α: M → CΣ, a completion function, mapping states to functions from input

symbols to completion statuses.
– ∂: M → MΣ, a transition function, mapping states to functions from input

symbols to states;
and satisfies the following “adequacy” condition

for every m ∈M,a ∈ Σ, if α(m)(a) �= ι then ∂(m)(a) is silent, (S1)

where a set of states S ⊆M is defined to be silent if, for every s ∈ S and a ∈ Σ,
α(s)(a) = ι, o(s)(a) = ∅, and ∂(s)(a) ∈ S. A silent state is any state that
belongs to some silent set.

The adequacy condition reflects the property about behaviors, stated earlier,
that success or failure is always followed by silence, that is, empty output and
incomplete status. When a machine enters a silent state it will remain in some
silent state thereafter. In Sect. 4 we will assign a meaning to a PAR expression
by mapping it to a machine state; when a PAR expression signals success (or
failure) its enclosing expression can use that information, for example in the
case of repeat to reset the machine. However, the intended behavior of a PAR
expression by itself after it has failed (or succeeded) is to remain silent.

We refer to event-pattern machines simply as machines. We use the same
symbol for the name of the machine and its state space because usually the
state space is equipped with the appropriate functions to become a machine.

Example 3. Figure 1(a) shows an example of a machine with three states, where
s is a silent state. In order to simplify this graphical representation, incomplete
completion statuses and empty outputs are omitted in the arrows’ decorations.

Final Semantics for Event-Pattern Reactive Programs 369

q0

b

c
a

q1
b,⊥

a[A]

c

s

(a) Machine M .

Σ c a c c c a b b c b c a c b . . .
O ∅ ∅ ∅ ∅ ∅ A ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ . . .
C ι ι ι ι ι ι ι ι ι ι ι ι ι ⊥ . . .
M q0 q1 q1 q1 q1 q0 q0 q0 q0 q0 q0 q1 q1 s . . .

(b) Sample run from initial node q0.

Fig. 1. Example machine with a behavior evaluation

Transitions outgoing from the silent state are also omitted. Figure 1(b) shows a
sample run for input “cacccabbcbcacb”, starting from initial state q0. The rows
labeledO, C andM contain the output generated, the completion status declared
and the state reached (resp.) after processing the corresponding input symbol.

The notation for o, α and ∂ emphasizes the coalgebraic nature of the def-
inition of machine, since we can easily compose these functions into a functor
Γ1(X) = (Σ −→ (O×C×X)). Machines are “adequate” coalgebras of the functor
Γ1. It is often more convenient, however, to represent these functions as maps
from input symbols into functions from states to output, completion, and next
state (resp.) Abusing notation, we write αa(m) instead of α(m)(a); the distinc-
tion should be clear from the context.2 Using this notation we can extend these
operators from single input symbols a to strings va as follows:

αva(m) def= αa∂v(m) ova(m) def= oa∂v(m) ∂va(m) def= ∂a∂v(m),

with also ∂ε(m) def= m. Behaviors play the same rôle in the theory of event-
pattern machines and expressions, that languages (subsets of Σ∗) play in the
theory of automata and regular expressions.

Definition 2 (Behaviors). Let B be a map from stream prefixes Σ+ into O×C.
We say that B is a behavior if

for every w, v ∈ Σ+, if π2B(w) �= ι then B(wv) is silent, (S2)

where a behavior is silent if it returns 〈∅, ι〉 for every input prefix. The set of all
behaviors is denoted by B.

Here, π1 represents the projection function from the pair O × C into the first
component O. Similarly π2 projects into C. Abusing notation,3 we also use π1B
to represent the map from input prefixes w into the corresponding output value
π1(Bw).

Condition (S2), similar to the adequacy condition (S1) for machines, estab-
lishes that once a behavior declares a pattern successfully found (or impossible to
find) it should subsequently exhibit no other action. It is easy to see that there is
a unique silent behavior, namely the function that for every input returns 〈∅, ι〉.
2 Technically, the overloaded notation αa(m) is defined as λa:Σ.m:M.α(m)(a).
3 This overloaded use of the projection function π1B is defined as λs:Σ+.π1(Bs).

370 C. Sánchez et al.

�q0�

a
b

c

�q1�

a[A]
b,⊥ c

�q0� �q0�

�q0� �s� �q1�

�q1�

a[A]
b,⊥ c

�q0�

a
b

c

�s� �q1�

�q1� �q0� �q1�

�s�

a
b

c

�s� �s� �s�

(a) Behavior �q0�. (b) Behavior �q1�. (c) Behavior �s�.

Fig. 2. Behaviors associated to states q0, q1 and s of Fig. 1

Every state of a machine can be naturally associated with a behavior:

Definition 3 (Associated behavior). Given a state m ∈ M , the function�m� describes its associated behavior:

�m� : Σ+ → O × C
wa �→ 〈 oa(∂wm), αa(∂wm) 〉.

It is easy to see that the adequacy condition (S2) holds for �m�: Consider
a word wa such that π2(�m�wa) �= ι. Since π2(�m�wa) = αa(∂wm), the state
∂wam is silent by condition (S1); consequently—by definition of silent state—
every subsequent output is ∅ and every subsequent status is ι.

Example 4. Figure 2 depicts the behaviors associated to the states q0, q1 and
s in Fig. 1. These behaviors are described by infinite trees but, to simplify the
graphical representation, subtrees labeled with a behavior already represented
are not further expanded. To see in this representation the value of a behavior
for an input prefix, simply traverse the tree following the appropriate edges. The
value returned corresponds to the label of the last edge traversed. In Fig. 2(c)
the behavior �s� corresponds to the unique silent behavior.

Our next goal is to construct a machine from the set of all behaviors. The
transition function for this machine uses behavior derivatives:

Definition 4 (Behavior derivative). Given an input string w, the w-deriva-
tive of a behavior B is the behavior Bw which, given an input v, returns Bw(v) =
B(wv).

To see that Bw is indeed a behavior, assume that its completion status is not
ι for some input v; the completion status of B is also not incomplete for input
wv. Consequently, every extension of B(wv) is the silent behavior, so Bw is also
the silent behavior.

Example 5. We can use Fig. 2 to illustrate some behavior derivatives: to calculate
the w-derivative of a behavior simply traverse the edges corresponding to w. For
example: �q0�aaa = �q1� and �s�aaa = �s�.

Final Semantics for Event-Pattern Reactive Programs 371

The machine of all behaviors can now be defined as B : 〈B, o, α, ∂〉 with the
set of all behaviors B as set of states, and for each input a and behavior B:

oaB = π1(Ba) αaB = π2(Ba) ∂aB = Ba.

Since the adequacy condition holds, B is indeed a machine: observe that if αaB �=
ι then, by Condition (S2), Ba is the silent behavior. Moreover, since Bab = Ba

is also the silent behavior, Ba is a silent state in the machine B.
We will show, in Theorem 2, that B is final among all machines, that is, for

all machines M there exists a unique homomorphism from M into B.

Definition 5 (Homomorphism). A machine homomorphism from M to M ′

is a function f : M → M ′ such a that, for all m ∈M and a ∈ Σ:

o(m) = o′(f(m)),
α(m) = α′(f(m)) and

f(∂am) = ∂′af(m).

Homomorphisms are functions preserving observations and experiments. The
notion of bisimulation relation captures whether two states are indistinguishable
by experiments:

Definition 6 (Bisimulation). A bisimulation between machines M and M ′ is
a binary relation # such that for all m ∈M , m′ ∈M ′ and input symbol a:

if m#m′ then

⎧⎪⎨⎪⎩
o(m) = o′(m′),
α(m) = α′(m′) and
∂am # ∂′am

′.

Two states m and m′ are called bisimilar, written m ≈ m′, if there exists a
bisimulation that relates them. The relation≈ is the largest bisimulation relation
between two machines, and is called bisimilarity.

Theorem 1 (Coinduction). For all behaviors A and B, if A ≈ B then A = B.

Proof. We proceed by showing a stronger result, by induction on the length of
input prefixes: for all w ∈ Σ+ and for all behaviors A and B, if A ≈ B then
A(w) = B(w) and ∂wA ≈ ∂wB:

– Base (w = a): First, π1A(a)=oaA=oaB=π1B(a), by A ≈ B, and
π2A(a)=αaA=αaB=π2B(a), by A ≈ B.

Also, ∂aA ≈ ∂aB holds immediately from the definition of bisimulation.

– Inductive step (w = va). Here,

π1A(va) = oa(∂vA) = oa(∂vB) = π1B(va), by A ≈ B and IH,
π2A(va) = αa(∂vA) = αa(∂vB) = π2B(va), by A ≈ B and IH, and

∂wA = ∂a∂vA ≈ ∂a∂vB = ∂wB, by A ≈ B and IH. ��

372 C. Sánchez et al.

Coinduction justifies the following proof principle: to show the equality be-
tween behaviors A and B it is sufficient to establish the existence of a bisimula-
tion relation on B that contains 〈A,B〉. We can use coinduction to show that B
is final among all machines:

Theorem 2 (Finality of B). For every machine M , there is a unique homo-
morphism from M to B.

Proof. Existence is guaranteed since the behavior function �·� : M → B that
maps every m to �m� (see Definition 3) is a homomorphism. For uniqueness,
suppose that f and g are two homomorphisms. It is enough to show that the
relation # = {〈f(m), g(m)〉 | m ∈ M} is a bisimulation, since in that case—by
coinduction—f(m) = g(m) for all m, and consequently f = g. Let m be an
arbitrary state; since f and g are homomorphisms:

oaf(m) = oam = oag(m),
αaf(m) = αam = αag(m), and
∂af(m) = f(∂am) # g(∂am) = ∂ag(m).

Therefore, # is a bisimulation. ��
The unique homomorphism �·� identifies the behaviors of two states precisely
when they are bisimilar. Moreover, homomorphisms preserve bisimulation:

Theorem 3. Let R be a bisimulation, and f and g homomorphisms. Then,
{〈f(m), g(n)〉 | 〈m,n〉 ∈ R} is also a bisimulation.

The previous theorem, together with coinduction, allows to prove whether two
states of arbitrary machines define the same behavior, simply by showing the
existence of a bisimulation that relates them.

Corecursion. The finality of B justifies the following principle of definition by
corecursion: To associate behaviors to the elements of a set M , turn M into
a machine by defining an output function o, a completion function α and a
transition function ∂, such that the adequacy condition for machines (S1) is
satisfied. The desired semantics is then obtained as the unique homomorphism�·� from M to B, which assigns to each element m the behavior it describes.

4 Formal Semantics of PAR

In this section we illustrate the use of corecursion by defining the operational
semantics of PAR. We build a machine whose states are all PAR expressions and
whose functions α, o and ∂ are described by rules. By showing (see the formal
proof in the longer version) that this is indeed a machine, we guarantee that
each PAR expression defines a unique behavior.

The rules describing the functions, shown in Fig. 3, 4, and 5 use the following
notation: x a� c stands for αax = c, x a→ y stands for ∂ax = y (with x a→ι y

as an abbreviation for both x a� ι and x a→ y), and x a⇒ u stands for oax = u.
Below we briefly explain some of the rules.

Final Semantics for Event-Pattern Reactive Programs 373

αEv1 : a
a� � αEv2 : a

b� ι (if b �= a)

x
a� cαSeq

x ; y
a� c ∧ ι

x
a� c y

a� d
αSel

x | y a� c ∨ d

x
a� cαRep

repeatx
a� c ∧ ι

x
a� c

αPush
x[A]

a� c

x
a� cαNeg

x
a� ĉ

x
a� cαTry1 c �= ι

try x unless y
a� c

x
a� ι y

a� d
αTry2

try x unless y
a� ̂d ∧ ι

Fig. 3. Rules for the completion function α of the machine of PAR expressions

Ev : a
b→ a (b �= a)

x
a→ι x′

Neg
x

a→ x′
x

a→ι x′
Push

x[A]
a→ x′[A]

x
a→ι x′

Seq1

x ; y
a→ x′ ; y

x
a� �Seq2

x ; y
a→ y

x
a→ι x′ y

a→ι y′
Sel1

x | y a→ x′ | y′
x

a� ⊥ y
a→ι y′

Sel2
x | y a→ y′

x
a→ι x′ y

a� ⊥
Sel3

x | y a→ x′

x
a→ι x′

Rep1

repeatx
a→ x′ ; repeatx

x
a� �Rep2

repeatx
a→ repeatx

x
a→ι x′ y

a→ι y′
Try1

try x unless y
a→ try x′ unless y′

x
a→ι x′ y

a� ⊥
Try2

try x unless y
a→ x′

Fig. 4. Rules for the step function ∂ of the machine of PAR expressions

Completion Function (Fig. 3). Rule (αEv1) says that the simple expression
a declares success upon receiving an a event, while rule (αEv2) states that a is
incomplete otherwise. More interesting is rule (αSeq): the completion status of
x ; y is that of x, but no higher than ι (i.e., either ⊥ or ι). Rule (αTry1) says
that if the try part completes in # or ⊥, then so does the try-unless expression.
Rule (αTry2) says that if the try part is incomplete and the unless part succeeds
then try-unless fails, and that it remains incomplete otherwise.

Transition Function (Fig. 4). Rule (Rep1) says that if, after an event is
processed, the body x is still incomplete, with x′ as derivative, then the successor
expression is x′ ;repeatx. If, on the other hand, x declares success, rule (Rep2)
states that the successor expression is the continuation repeatx. The last case,
when x declares failure, the successor expression of repeatx is silent. This is
handled by a global rule (Silent), which complements all rules in Fig. 4:

374 C. Sánchez et al.

oEv : a
b⇒ ∅

x
a⇒ ooNeg

x
a⇒ o

x
a⇒ ooSeq

x ; y
a⇒ o

x
a⇒ o y

a⇒ u
oSel

x | y a⇒ o ∪ u

x
a⇒ ooRep

repeatx
a⇒ o

x
a⇒ o y

a⇒ u
oTry

try x unless y
a⇒ o ∪ u

x
a⇒ o x

a� �
oPush1

x[A]
a⇒ o ∪ A

x
a⇒ o x

a

�� �
oPush1

x[A]
a⇒ o

Fig. 5. Rules for the output function o of the machine of PAR expressions

x
a

�� ι
Silent

x
a→ silent

.

This rule establishes that every expression becomes silent after declaring
success or failure. This ensures the adequacy condition (S1). The special expres-
sion silent is defined by the following three rules:

αSilent : silent
a� ι ∂Silent : silent

a→ silent oSilent : silent
a⇒ ∅

Output Function (Fig. 5). The rules for output (oEv) and (oSilent) state
that simple expressions generate no output. Rules (oNeg), (oRep) and (oSeq)
state that the output is that of the evaluating subexpressions, while rules (oSel)
and (oTry) combine the output from the subexpressions evaluated in parallel.
The rules (oPush1) and (oPush2) govern how new output is added.

Example 6. The expression repeat (a;try a[A] unless b), describes the behavior�q0� shown in Fig. 2(a) (i.e., the behavior of state q0 in machine M in Fig. 1.)

5 PAR Congruences and Output Equivalences

In this section we show that bisimilarity is the largest PAR congruence that
refines output equivalence.

A PAR context (or simply a context) is a PAR expression with one special
variable . The instantiation of context C〈〉 with an expression x, denoted by
C〈x〉, corresponds to the resulting expression of substituting every occurrence
of by x in C〈〉.

We say that a binary relation # between PAR expressions is a PAR congru-
ence (or simply a congruence) if for every x, y, and every context C〈〉, if x#y
then C〈x〉#C〈y〉. Examples of congruences include the empty relation, syntac-
tic identity ≡, and the universal relation PAR× PAR.4 We say that a relation R
refines a relation S if aRb implies aSb.
4 In the Hidden Algebra line of research (see [5]) observations and experiments corre-

spond to contexts of the language of the hidden specification (in our case this would
be the language formed by o, α and ∂ in Definition 1). Note, on the other hand, that
in this section we are reasoning about PAR congruences.

Final Semantics for Event-Pattern Reactive Programs 375

We first establish that if two states of arbitrary machines exhibit the same
behavior then they are bisimilar.

Lemma 1. If �m� = �m′� then m ≈ m′.

Proof. Consider the binary relations R = {〈m, �m�〉} and S = {〈m′, �m′�〉}. A
routine proof by coinduction shows that R and S are bisimulations, and therefore
R ◦ S−1 is a bisimulation, which contains 〈m,m′〉 if �m� = �m′�. ��
Definition 7 (Output equivalence). Two states m and m′ are output equiv-
alent, written m ∼ m′, if π1�m� = π1�m′�.
The relation ∼ captures whether two states generate the same output when
offered the same input. In practice, two states corresponding to output equivalent
event-pattern reactive programs can be replaced by each other without modifying
the observable behavior to the served component.

Unfortunately, replacing two output equivalent PAR expressions in arbitrary
PAR contexts does not preserve output equivalence: consider the expressions
silent and a (which are output equivalent since both generate the empty output)
and the context [A]. Clearly, silent[A] �∼ a[A], as witnessed by the stream
prefix a. Congruences that refine observational equivalence are important in
practice too, since they allow to replace expressions as part of enclosing PAR
programs while maintaining the behavior. Syntactic equivalence ≡ is trivially
a congruence that refines observational equivalence, but it is too fine for our
purposes.

Theorem 4. (1) Bisimilarity ≈ is a PAR congruence. (2) Bisimilarity is the
largest PAR congruence that refines output equivalence.

Proof. The proof of (1) is omitted. (2) Consider the relation # defined as: x#y
precisely when, for every context C〈〉, C〈x〉 ∼ C〈y〉; # clearly refines output
equivalence and is itself a congruence, since the composition of contexts is a
context. Moreover, every congruence S that refines output equivalence also re-
fines # because if xSy then C〈x〉SC〈y〉, and then C〈x〉 ∼ C〈y〉 and x#y. Hence,
it is sufficient to show that # refines ≈. We show that x#y implies �x� = �y�.
First, x#y implies π1�x� = π1�y� by considering the empty context. Moreover,
x#y also implies π2�x� = π2�y�. By contradiction, assume π2�x� �= π2�y�, and
consider the contexts C1 = ; a[A] and C2 = ; a[A]. Either C1〈x〉 �∼ C1〈y〉
or C2〈x〉 �∼ C2〈y〉, which contradicts x#y. By Lemma 1 we can conclude that
x ≈ y. ��

Indirectly, the previous proof provides an alternative definition of PAR bisim-
ilarity, since # and ≈ are shown to be the same relation.

6 Proofs by Coinduction

The definitions and results from the previous two sections allow us to perform
equational reasoning at the level of PAR expressions. Two PAR expressions x and

376 C. Sánchez et al.

y that exhibit the same behavior cannot be distinguished by any experiment, and
by Theorem 4, x and y are then also indistinguishable in any PAR context C〈〉.
This justifies the use of equations to represent that all their ground instances
are bisimilar PAR expressions. Some examples of such equations are

x | y = y | x x ; (y ; z) = (x ; y) ; z
x | (y | z) = (x | y) | z x ; y = x | x ; y

x | x = x x ; try y unless z = try x ; y unless x ; z
x = x repeatx = x ; repeatx

Example 7. To illustrate the use of coinduction to show the validity of these
equations we show the commutativity of the operator |, that is, for all PAR
expressions x and y, x|y ≈ y|x. It is sufficient to show that there is a bisimulation
containing all pairs 〈x | y, y | x〉; we prove that R = {〈x | y, y | x〉}∪ ≡ is a
bisimulation. Take arbitrary expressions x and y. First,

oa(x | y) = oax ∪ oay = oa(y | x), and
αa(x | y) = αax ∨ αay = αa(y | x).

Second, let x′ = ∂ax and y′ = ∂ay. We split cases according to αax and αay:

1. αax �= ι or αay �= ι: in all these cases ∂a(x | y) ≡ ∂a(y | x).
2. αax = ι = αay. Here, ∂a(x | y) = x′ | y′ and ∂a(y | x) = y′ | x′. By definition

of R, (x′ | y′)R(y′ | x′).
Example 8. Let us also prove that for all expressions x and y,

x ; y = x | (x ; y).

We show that R = {〈x ; y, x | (x ; y)〉}∪ ≡ is a bisimulation. First,

oa(x ; y) = oa(x ; y) = oax, and
oa(x | (x ; y)) = oa(x) ∪ oa(x ; y) = oax ∪ oax = oax.

Now, let us consider all the cases for αax:

1. αax = ⊥. Then, both αa(x ; y) and αa(x|(x;y)) become #, and consequently
both derivatives are silent.

2. αax = ι. Let x′ = ∂ax. First, both αa(x ; y) and αa(x | (x ; y)) become ι.
Also,

∂a(x ; y) = x′ ; y, and
∂a(x | (x ; y)) = x′ | (x′ ; y)),

and then 〈∂a(x ; y), ∂a(x | (x ; y))〉 is in R.
3. αax = #. Then, again, αa(x ; y) and αa(x | (x ; y)) become ι. Finally,

∂a(x ; y) = y, and
∂a(x | (x ; y)) = y,

which are related by ≡, and hence by R.

Final Semantics for Event-Pattern Reactive Programs 377

7 Conclusions

Using coalgebraic techniques, we have built a framework for the study of lan-
guages to describe event-pattern reactive programs. This framework provides
a convenient domain for the definition of the behavioral operational semantics
of event-pattern reactive programs. Using this framework we have defined the
formal semantics of PAR.

The semantics of event-pattern languages are most naturally defined compo-
sitionally. To enable such compositional semantics, we introduced a completion
status, giving rise to the functor Γ1(X) = (Σ −→ (O × C × X)), rather than
the simpler Γ2(X) = (Σ −→ (O ×X))—which may have been expected to study
synchronous maps from inputs to outputs.

Our results can be directly compared to other formalisms based on Γ2 (like
Moore and Mealy machines and interactive computation [6]), by simply hiding
the completion component. (In fact, bisimulation in Γ2 becomes output equality
in Γ1, ∼ as defined in Sect. 5.)

Some ongoing and future research includes:

Expressiveness. It is easy to show that every PAR expression has only a finite
number of derivatives (for all possible input prefixes from Σ∗). Thus, all PAR
behaviors can be expressed with finite memory. The converse is also true: every
behavior that can be described with finite memory can also be described by a
PAR expression. This result [17] parallels the correspondence between regular
expressions and finite automata [11,12].

The syntax of PAR presented here is minimal in the sense that, by removing
any one operator, expressive completeness is lost. In practice, though, it is useful
to have more operators available. In [16] we introduced ECL, with a larger set
of operators than PAR. We are studying the conciseness of specification and the
complexity of analysis of these extensions.

Equational Reasoning. Section 6 presented some equalities that hold between
the corresponding instances of both sides. We illustrated one such a proof using
coinduction. Two important open problems are: (1) whether this proof tech-
nique can be automated—in other words— whether coinduction together with
some other rules provides a complete proof system for PAR equivalences; (2) the
existence of a finite list of PAR equations that form an axiomatization of bisimu-
lation for PAR, which could lead to alternative decision procedures for checking
(parametrized) equivalences.

References

1. Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar Deepak Chandra. Matching events in a content-based subscription system.
In Symposium on Principles of Distributed Computing, pages 53–61, 1999.

2. Jos C. M. Baeten and W. Peter Weijland. Process Algebra. Cambridge University
Press, 1990.

378 C. Sánchez et al.

3. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332–383, August 2001.

4. Corina Ĉırstea. Semantic constructions from the specification of objects. Theoret-
ical Computer Science, 260, 2001.

5. Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer
Science, 245(1), 2000.

6. Dina Q. Goldin. Persistent Turing Machines as a model of interactive computa-
tion. In Foundations of Information and Knowledge Systems, pages 116–135, Burg,
Germany, February 2000.

7. Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the Association for Computer Machinery, 32(1):137–161,
January 1985.

8. C. Antony R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
9. Frank Hunleth, Ron Cytron, and Christopher Gill. Building customizable middle-

ware using aspect oriented programming. In Workshop on Advanced Separation of
Concerns (OOPSLA’01), 2001.

10. Bart Jacobs and Jan J. M. M. Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the European Association for Theoretical Computer Science, 62:222–
259, 1997.

11. Stephen C. Kleene. Representation of events in nerve nets and finite automata. In
Claude E. Shannon and John McCarthy, editors, Automata Studies, number 34,
pages 3–41. Princeton University Press, Princeton, New Jersey, 1956.

12. Robert F. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IEEE Transactions on Electronic Computers, 9:39–47, 1960.

13. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
14. Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego,

2000.
15. Jan J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra). In

CONCUR, 1998.
16. César Sánchez, Sriram Sankaranarayanan, Henny B. Sipma, Ting Zhang, David

Dill, and Zohar Manna. Event correlation: Language and semantics. In Rajeev
Alur and Insup Lee, editors, EMSOFT 2003, pages 323–339. Spring-Verlag, 2003.

17. César Sánchez, Matteo Slanina, Henny B. Sipma, and Zohar Manna. Expressive
completeness of an event-pattern reactive programming language. Submitted for
publication.

18. Douglas C. Schmidt, David L. Levine, and Timothy H. Harrison. The design and
performance of a real-time CORBA object event service. In Proc. of OOPSLA’97,
1997.

19. Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe no-
tification service with quenching. In Queensland AUUG Summer Technical Con-
ference, Brisbane, Australia, 1997.

20. David Sharp. Reducing avionics software cost through component based product
line development. In Proc. of the Software Technology Conference, 1998.

Complete Symbolic Reachability Analysis Using
Back-and-Forth Narrowing

Prasanna Thati1 and José Meseguer2

1 Carnegie Mellon University, USA
thati@cs.cmu.edu

2 University of Illinois at Urbana-Champaign, USA
meseguer@cs.uiuc.edu

Abstract. We propose a method called back-and-forth narrowing for
solving reachability goals of the form (∃−→x).t1 →∗ t′

1 ∧ . . . ∧ tn →∗ t′
n in

general term rewrite systems. The method is a complete semi-decision
procedure in the sense that it is guaranteed to find a solution when
one exists, but in general it may not terminate when there are no so-
lutions. The completeness result is very general in that it makes no as-
sumptions about the given term rewrite system. Specifically, the rewrite
rules need not be linear, confluent, or terminating, and can even have
extra-variables in the righthand side. Such generality is often essential
while modeling concurrent systems or axiomatizing inference systems as
rewrite rules, and in such applications back-and-forth narrowing can be
used as a sound and complete technique for symbolic reachability analy-
sis or as a deductive procedure for proving existential formulae.

1 Introduction

A concurrent or an inference system can be naturally expressed as a rewrite
system R = (Σ,R), where Σ is a signature and R is a collection of rewrite
rules. For a concurrent system terms represent states, and a rewrite rule t → t′

is understood as a (parametric) local transition. For an inference system terms
represent formulae, and rewrite rules specify basic inference steps. In this paper,
we address the question of solving reachability goals in a rewrite system R. By
a reachability goal we mean an existentially quantified formula of the form

(∃−→x) t1 →∗ t′1 ∧ . . . ∧ tn →∗ t′n

where each source ti is a term with variables Var(ti) ⊆ −→x specifying a possibly
infinite set of initial configurations (namely all its instances by ground substitu-
tions), and each target t′i is a term with variables Var(t′i) ⊆ −→x that represents
likewise a possibly infinite set of configurations that we want to reach by a se-
quence of transitions starting from the corresponding source ti. Solutions to this
reachability problem can then be described by substitutions σ for which indeed
we have, R ! σ(ti) →∗ σ(t′i) for 1 ≤ i ≤ n. The meaning and interest of solving
reachability goals such as the above is clear; it would serve as both a symbolic

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 379–394, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

380 P. Thati and J. Meseguer

reachability analysis technique for concurrent systems, and, alternatively, as a
deductive procedure for proving existential formulae in inference systems.

We propose a semi-decision procedure called back-and-forth-narrowing for
solving reachability goals. This procedure is complete in the solvability sense
in that it is guaranteed to find a solution when there is one. The procedure
is very general in the sense that there are absolutely no assumptions on the
given rewrite system R. In particular, the rewrite rules in R need not be left
or right linear, or confluent, or terminating, and can also have extra variables
in the righthand side. This is to be contrasted with other approaches such as
model-checking results for special classes of systems [4, 7, 20], or tree-automata
based reachability analysis [8, 18, 3] where typically the rules and the goal are
assumed to be linear. In some tree automata approaches [8, 18] non-linearity is
dealt with using abstractions or conservative approximations of the reachability
set; in contrast, back-and-forth narrowing is an exact procedure. A more detailed
comparison with related work is presented in Section 7.

Back-and-forth-narrowing is a generalization of narrowing, a technique orig-
inally introduced as a complete method for generating all solutions of an equa-
tional unification problem. Specifically, narrowing was introduced for solving
goals of the form (∃−→x) t1 = t′1 ∧ . . . ∧ tn = t′n in free algebras modulo a set of
confluent and terminating equations used as rewrite rules [11, 12, 15]. Of course,
in our new reachability setting, the meaning of a rewrite rule is changed from
the previous meaning as an equality to a new meaning as a transition or infer-
ence. Further, the completeness of narrowing for equational unification critically
depends on the confluence property of equations; an assumption which is done
away with in our reachability setting. As a result of these generalizations, a naive
extension of narrowing to the reachability setting turns about to be incomplete
as shown in [14]. It is also shown in [14] that the naive narrowing procedure, how-
ever, is complete for certain restricted classes of rewrite theories such as those
that are top-most or right-linear. We show, in this paper, that completeness can
be regained for arbitrary rewrite systems by using back-and-forth narrowing.

Several applications of solving reachability goals using (naive) narrowing have
been reported, especially in the area of verification of computer security protocols
[2, 13, 14]. While the approach in [2, 13] is to use narrowing to symbolically search
the reachable state space of a protocol, the approach in [14] is to use narrowing
to solve appropriate existential formulae in the Dolev-Yao inference system [5]
in order to discover attacks if any. These applications exploit the fact mentioned
above that naive narrowing is complete for a restricted class of rewrite systems
that is sufficient to model the protocols being considered. Our back-and-forth
narrowing procedure would substantially expand the scope of these applications
to cases where one needs completeness for general rewrite systems.

In the following section, we describe the essential idea behind back-and-forth
narrowing at an intuitive level. We follow it up with a more formal treatment in
Sections 3 to 6. We discuss related work in Section 7, and conclude in Section 8.
We omit all proofs in this paper because of space constraints, but we will supply
them in the forthcoming journal version.

Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing 381

2 The Basic Idea

The essential idea behind using narrowing for solving reachability goals is that
a single narrowing sequence starting from a term t can be used to symbolically
represent many rewrite sequences starting from instances of t. Specifically, for a
term t and substitution σ, suppose σ(t) → t′ by rewriting with the rule l → r
at a non-variable position ω in t. Then clearly, l and t|ω (the subterm of t at
position ω) are unifiable. If ρ is the most general unifier, then we can show that
ρ(t) → t′′ for some t′′ by applying l → r at position ω, and there is a substitution
η such that t′ = η(t′′). This observation motivates the definition of the narrowing
step t

ρ� t′′; the intention is to use this narrowing step to symbolically represent
several rewrite steps, one for each unifier σ of l and t|ω.

Building on the above idea, one can compose several narrowing steps to get a
sequence that symbolically represents many underlying rewrite sequences. One
can then hope to use narrowing sequences to search for solutions of reacha-
bility goals. Specifically, to solve a given goal ∃−→x .t1 →∗ t2 we systematically
explore the narrowing tree starting from t1, and look for a narrowing sequence
t1

ρ1� . . .
ρn� t′1 such that t′1 and t2 are unifiable. If η is one such unifier then

η ◦ ρn ◦ . . . ρ1 is a solution. Unfortunately, although sound, this procedure is
not always complete even in the solvability sense, i.e., it may fail to find a solu-
tion even when one exists. The crucial reason is that, by definition, narrowing
can be performed only at non-variable positions, and therefore cannot account
for rewrites that occur within the solution (i.e. under variable positions)1. Such
“under-the-feet” rewrites can have non-trivial effects if the rewrite rules or the
reachability goal are non-linear, and the rules are not confluent. Consider for
example the rewrite rules: (i) a → b, (ii) a → c, (iii) f(b, c) → d, and the
reachability goal ∃x.f(x, x) →∗ d. The substitution {a/x} is a solution, but the
narrowing procedure returns no solutions since f(x, x) can neither be narrowed
further nor unified with d.

A natural question to ask is whether the simple narrowing procedure above
is complete for specific classes of rewrite systems, or with respect to specific
classes of solutions. Indeed, as shown in Section 5, the narrowing procedure
above is weakly complete in that it can find all R-normalized solutions provided
the rewrite rules have no extra variables in the righthand side (see Theorems
2 and 3). However, narrowing may not find solutions that are not normalized.
More generally, in [14] we also identified several classes of rewrite systems for
which the naive narrowing procedure can find all solutions, and applied these
results to verify safety properties of cryptographic protocols.

In this paper, we establish a completeness result of a much broader scope by
(i) generalizing the basic narrowing step through linearization of the term being
narrowed, and (ii) using a combination of forward and backward narrowing with
this generalized relation. Specifically, we account for under-the-feet rewrites by

1 One could of course generalize the definition of narrowing to allow narrowing steps
at variable positions. But that would make the narrowing procedure very inefficient
since, in general, we will have to perform arbitrary instantiations of variables.

382 P. Thati and J. Meseguer

defining a narrowing step that is capable of “skipping” several such rewrites and
capturing the first rewrite that occurs at a non-variable position. This is achieved
by linearizing a term before narrowing it with a rule. The intermediate under-
the-feet rewrites that have thus been skipped will be accounted for by extending
the reachability goal with appropriate subgoals. For example, consider the goal
∃x. f(x, x) →∗ d again. We (i) linearize the term f(x, x) to, say, f(x1, x2), (ii)
narrow the linearized term with the rule f(b, c) → d and the unifier {b/x1, c/x2},
and (iii) extend the reachability goal with subgoals x →∗ b and x →∗ c. This
gives us the goal ∃x. d →∗ d ∧ x →∗ b ∧ x →∗ c.

Linearization alone does not help us regain completeness in general. For ex-
ample, consider a goal ∃−→x .t→∗ t′ where the solution σ is such that any rewrite
sequence σ(t) →∗ σ(t′) is such that none of the rewrites occur at non-variable
positions of t. But observe that if at least one of these rewrites occurs at a
non-variable position in t′, then we can narrow the right side t′ in the back-
ward direction, i.e. using R−1, to obtain a simpler goal. For instance, in the
goal ∃x. d →∗ d ∧ x →∗ b ∧ x →∗ c above, backward narrowing twice gives us
the goal ∃x. d →∗ d ∧ x →∗ a ∧ x →∗ a, which has the unifier (solution) {a/x}.
In general, backward narrowing might in turn enable forward narrowing steps
using R on the lefthand side, and so on, until we reach a point where all the
rewrites occur under variable positions of both the lefthand and righthand sides.
In this case, however, the lefthand and righthand sides are unifiable, and we are
therefore done.

To keep the presentation simple at this point, we postpone a detailed example
illustrating all of these until Section 6 (see Example 3). For the simple example
considered above, however, note that just backward narrowing with R−1, even
without any linearization, gives us the solution as follows: d id� f(b, c) id� id�
f(a, a). But as shown in Example 3, a combination of forward and backward
narrowing is necessary, in that neither is complete by itself. In Theorems 5 and 6
we prove that with both the generalizations above we regain completeness in the
solvability sense for arbitrary rewrite systems.

An important problem for back-and-forth narrowing to be effective in practice
is to devise strategies that improve its efficiency. Otherwise, one would quickly
face a combinatorial explosion in the number of possible narrowing sequences.
When several back-and-forth narrowing derivations are possible for the same
solution, the question is whether there is a preferred strategy and whether a
standardization result is possible. Several lazy narrowing strategies that address
these questions are known for special classes of rewrite systems [1], but extending
these to back-and-forth narrowing is an open question and is beyond the scope
of this paper. However, a few comments on a promising approach [6] are made
in Section 8.

3 Background

A signature Σ is a ranked alphabet Σ = {Σn | n ∈ N}, where Σn is a set of
function symbols of arity n. A Σ-algebra is a set A together with a function

Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing 383

fA : An → A for each f ∈ Σn. We assume an infinite set of variables X that
are all different from constant symbols in Σ. We write TΣ for the Σ-algebra of
ground terms over Σ, and TΣ(X) for the Σ-algebra of terms with variables from
the set X .

We use a finite sequence of positive integers, called a position, to denote
an access path in a term. We let ω range over positions. For t ∈ TΣ(X) let
Var(t),Pos(t),FuPos(t) denote the set of variables, positions, and non-variable
(or functional) positions in t, respectively. The root of a term is at position ε.
We denote the subterm of t at position ω by t|ω.

A substitution is a mapping σ : X → TΣ(X) which maps variables to terms,
and which is different from the identity for only a finite subset Dom(σ) of X .
We denote the homomorphic extension of σ to TΣ(X) also by σ. The set of
variables introduced by σ is Ran(σ) = ∪x∈Dom(σ)Var(σ(x)). The restriction of
a substitution σ to a set of variables V , is defined as σ|V (x) = σ(x) if x ∈ V , and
σ|V (x) = x otherwise. We say that a substitution σ is away from a set of variables
V if Ran(σ) ∩ V = ∅. For substitutions σ, ρ such that Dom(σ) ∩Dom(ρ) = ∅ we
define their union as

(σ ∪ ρ)(x) =

⎧⎨⎩σ(x) if x ∈ Dom(σ)
ρ(x) if x ∈ Dom(ρ)
x otherwise

For a substitution σ that maps xi to ti for 1 ≤ i ≤ n, we write {t1/x1, . . . , tn/xn}
to denote σ. We denote the identity substitution by id.

The subsumption preorder 2 on TΣ(X) is defined by t 2 t′ if there is a
substitution σ such that σ(t) = t′; such a substitution σ is said to be a match
from t to t′. For substitutions σ, ρ and a set of variables V we define σ|V = ρ|V
if σ(x) = ρ(x) for all x ∈ V , and σ|V 2 ρ|V if there is a substitution η such
that ρ|V = (η ◦ σ)|V .

A Σ-equation is an expression of the form t = t′. A unifier for the equation
t = t′ is a substitution σ such that σ(t) = σ(t′). It is the case that, if t and
t′ are unifiable, then for any given finite set of variables V containing W =
Var(t) ∪ Var(t′), there is a most general unifier σ = MGU(t = t′, V) away from
V such that (i) Dom(σ) ⊆ W , and (ii) σ|V 2 ρ|V for any other unifier ρ of
t = t′. This most general unifier σ is unique up to renaming of variables and can
be computed by a unification algorithm [17].

A rewrite rule is an expression of the form l → r, where l, r ∈ TΣ(X). An
(unconditional and unsorted) rewrite system is a tuple R = (Σ,R) with Σ a
signature, and R a set of rewrite rules. We write R−1 for the set that contains
l → r if and only if r → l is in R. We define the one-step rewrite relation on
TΣ(X) as follows: t →R t′ if there is an ω ∈ Pos(t), a rule l → r in R, and a

substitution σ such that t|ω = σ(l) and t′ = t[ω ← σ(r)]. We also write t
[ω]−→R t

′

to make explicit the position at which the rewrite occurs. Note that t →R t
′ if and

only if t′ →R−1 t. A term t ∈ TΣ(X) is called R-irreducible (or just irreducible
if R is clear from the context) if there is no t′ ∈ TΣ(X) such that t →R t′.
For substitutions σ, ρ and a set of variables V we define σ|V →R ρ|V if there is

384 P. Thati and J. Meseguer

x ∈ V such that σ(x) →R ρ(x) and for all other y ∈ V we have σ(y) = ρ(y). A
substitution σ is called R-normalized if σ(x) is irreducible for all x.

4 Reachability Goals

A reachability goal G is a conjunction of the form ∃−→x .t1 →∗ t′1 ∧ . . .∧ tn →∗ t′n.
To simplify notation, we will drop the existential quantification from now on,
and we simply write t1 →∗ t′1 ∧ . . . ∧ tn →∗ t′n. It is understood that the order
of the subgoals ti →∗ t′i in the expression is irrelevant, i.e., ∧ is associative and
commutative. We define |G| = n, and Var(G) =

⋃
i Var(ti) ∪ Var(t′i). We write

G−1 to denote the goal t′1 →∗ t1∧. . .∧t′n →∗ tn. A substitution σ is an R-solution
of G (or just a solution of G when R is clear from the context) if σ(ti) →∗

R σ(t
′
i)

for 1 ≤ i ≤ n. Note that since σ(ti) →∗
R σ(t

′
i) if and only if σ(t′i) →∗

R−1 σ(ti), we
have that ρ is an R-solution of G if and only if ρ is an R−1-solution of G−1. We
denote the empty goal, i.e., for the case n = 0, by Λ, and define every substitution
to be a solution of Λ. We call a goal G of the form x1 →∗ y1 ∧ . . . ∧ xn →∗ yn,
where all the lefthand sides and the righthand sides are variables, a trivial goal.
Note that the substitution σ such that σ(xi) = σ(yi) = z for some variable z, is
a solution of this goal. We also define Λ to be a trivial goal.

Definition 1. We define the rewrite relation on goals as follows.

(Reduce) G ∧ t1 →∗ t2
[ω]−→R G ∧ t′1 →∗ t2 if t1

[ω]−→R t
′
1

(Eliminate) G ∧ t →∗ t
[ε]−→R G.

Note that in G
[ω]−→R G

′, the position ω is not sufficient to determine the exact
subgoal at which the rewrite happens. But we adopt this notation because it is
sufficient for our purposes and it simplifies the presentation. Further, instead of

G
[ω]−→R G

′ we may simply write G→R G
′.

Lemma 1. σ is an R-solution of G if and only if σ(G) →∗
R Λ.

For a set of variables V containing Var(G), we say that a set of substitutions
CSS(G, V) is a complete set of R-solutions of G away from V if: (i) every σ ∈
CSS(G, V) is an R-solution of G, (ii) for each solution ρ of G there is a σ ∈
CSS(G, V) such that σ|Var(G) 2 ρ|Var(G), and (iii) for every σ ∈ CSS(G, V),
Dom(σ) ⊆ Var(G) and Ran(σ)∩ V = ∅. We are interested in finding a complete
set of R-solutions of a goal G in an (unconditional) rewrite system R.

5 Narrowing: Soundness and Weak Completeness

In this section we show that narrowing provides a sound but only weakly com-
plete procedure (in the sense made precise below) for computing the solutions of
reachability goals. We introduced the main ideas in this Section in [14], but here
we reformulate their technical presentation in a manner that allows a smooth

Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing 385

extension to our more general back-and-forth narrowing procedure in the next
section.

The essential idea behind narrowing is to symbolically represent the transi-
tion relation between terms as a narrowing relation between terms. Specifically,
narrowing instantiates the variables in a term by the most general unifier that
enables a rewrite with a given rule and a term position. This narrowing relation
on terms is then extended to reachability goals by narrowing only the lefthand
sides of the goals, while the righthand sides only accumulate substitutions. The
idea is to repeatedly narrow the lefthand sides until each lefthand side unifies
with the corresponding righthand side. The composition of the unifier with all
the substitutions generated (in the reverse order) gives us a solution of the goal.

Definition 2 (narrowing of terms). We define t σ�R t′ if there is ω ∈
FuPos(t), a rule l → r in R (assume Var(t) ∩ Var(l, r) = ∅), such that for
a set of variables V containing Var(t) and Var(l, r) and σ = MGU(t|ω = l, V),
we have t′ = σ(t[ω ← r]).

Definition 3 (narrowing of goals). The narrowing relation on goals is defined
by the following two inference rules.

(Narrow) G ∧ t →∗ t′
σ�R σ(G) ∧ t′′ →∗ σ(t′) if t σ�R t

′′ and
σ is away from Var(G, t, t′)

(Unify) G ∧ t →∗ t′
σ�R σ(G) if σ = MGU(t = t′,Var(G, t, t′))

We write G σ�
∗
R G′ if either G = G′ and σ = id, or there is a sequence of

derivations G σ1�R . . .
σn�R G

′ such that σ = σn ◦ σn−1 ◦ . . . ◦ σ1.

Soundness: We first consider the soundness problem. Following the idea in [11]
we associate with each narrowing step between terms, a corresponding rewrite
step. The proofs of the propositions below are easy.

Lemma 2. t σ�R t
′ implies σ(t) →R t

′.

Lemma 3. If G σ�R G
′ and ρ is a solution of G′ then ρ ◦ σ is a solution of G.

This gives us the following soundness theorem.

Theorem 1 (Soundness). If G σ�
∗
R Λ, then σ is solution of G.

Weak Completeness: The idea behind proving weak completeness is to asso-
ciate with each rewrite step a corresponding narrowing step. It is possible to
establish such a correspondence only under certain assumptions, and hence the
weakness in the completeness. In the following, note that we assume that each
rule l → r in R has no extra variables in its righthand side, i.e., Var(r) ⊆ Var(l).
However, we will drop this assumption in the following section where we consider
the more general back-and-forth narrowing.

386 P. Thati and J. Meseguer

Lemma 4. Let R be a set of rules with no extra variables in their righthand
sides. Let ρ be an R-normalized substitution, and let V be a finite set of vari-
ables containing Var(t). Let ρ(t) →R t′ using the rule l → r. Then there are
σ, t′′, η such that: (i) t σ�R t′′ using the same rule, σ away from V , (ii) η is
R-normalized, (iii) η(t′′) = t′, and (iv) ρ|V = (η ◦ σ)|V .

The above lemma can be easily lifted to goals as follows.

Lemma 5. Let R be a set of rules with no extra variables in their righthand
sides. Let ρ be an R-normalized substitution, V be a finite set of variables con-
taining Var(G), and let ρ(G) →R G′. Then, there are σ,G′′, η such that: (i)
G

σ�R G
′′, σ away from V , (ii) η is R-normalized, (iii) η(G′′) = G′, and (iv)

ρ|V = (η ◦ σ)|V .

This gives us the following weak completeness result.

Theorem 2 (Weak Completeness). Let R be a set of rewrite rules with no
extra-variables in the righthand side, let ρ be an R-normalized solution of a
reachability goal G, and let V be a finite set of variables containing Var(G).
Then G σ�∗

R Λ for some σ away from V such that σ|V 2 ρ|V .

We show below that Theorem 2 need not hold for substitutions ρ that are
not R-normalized, and hence narrowing is only weakly complete.

A Weakly Complete Algorithm for Reachability Goals: A simple conse-
quence of Theorems 1 and 2 is the following.

Theorem 3. Let R be a set of rules with no extra-variables in the righthand side.
Then for a finite set of variables V containing Var(G), the set of all substitutions
σ|Var(G) such that G σ�

∗
R Λ and σ is away from V , is a complete set of solutions

of G away from V , with respect to R-normalized solutions.

This theorem provides a general algorithm which builds a narrowing tree
starting from G, to find all normalized solutions. Nodes in this tree correspond
to goals, while edges correspond to one-step narrowing derivations. Since there
can be infinitely long narrowing derivations, the algorithm has to expand the
tree in a fair manner to cover each possible derivation.

Incompleteness of Narrowing: Narrowing is complete only with respect to
normalized solutions. Specifically, it may not find solutions that are not normal-
ized. We showed an example in the introduction where a reachability goal had
a single non-normalized solution, but the narrowing procedure failed to find it.
Here is another example.

Example 1. Let R = (Σ,R), where the signature Σ has unary function symbols
s, f, g, and R has the following two rules: s(x) → s2(x), and f(s2(x)) → g(s(x)).
The reachability goal G = f(x) →∗ g(x) has solutions σk = {sk(y)/x} for k ≥ 1
(none of which is R-normalized). But narrowing returns only σ2 as a solution,
and it is not the case that σ2|{x} 2 σ1|{x}.

Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing 387

6 Back-and-Forth Narrowing

The main reason for the incompleteness of narrowing is that, since terms can be
narrowed only at non-variable positions (see Definition 2), it is not possible to

associate a narrowing step for the rewrite ρ(t)
[ω]−→R t

′ where ω /∈ FuPos(t). Such
rewrites “under-the-feet” of t are possible if the substitution ρ is not normalized.
This is precisely the reason for the assumption in Theorem 2 that the solution ρ
of the goal G is normalized. Fortunately, it is possible to generalize the narrowing
relation to one that, in some sense, also accounts for such under-the-feet rewrites.

Suppose ρ is a (not necessarily normalized) solution of the reachability goal
G = G1 ∧ t1 →∗ t2. Let

ρ(t1)
[ω1]−→R . . . u

[ωk]−→R v . . .
[ωn]−→R ρ(t2) (1)

and let k be such that ωi /∈ FuPos(t1) for 1 ≤ i < k and ωk ∈ FuPos(t1).
Suppose we linearize the term t1 by renaming each occurrence of a variable
x ∈ Var(t1) to a distinct variable x′ /∈ Var(G), and thereby obtain a term
t1. Then, since all the rewrites in ρ(t1) →∗

R u occur under-the-feet of t1, i.e.,
at positions ω /∈ FuPos(t1), there is a substitution ρ′ such that ρ′(t1) = u.
Specifically, if a variable x ∈ Var(t1) is renamed to, say, x1, . . . , xn, in t1, then
ρ(x) →∗

R ρ′(xi) for 1 ≤ i ≤ n. Now, as in Lemma 4, we can associate to the

rewrite step ρ′(t1)
[ωk]−→R v a narrowing step t1

σ�R w for some σ and w.
The observation above motivates the definition of an extended narrowing

relation on goals that effectively “skips” several under-the-feet rewrites and
captures the first rewrite that occurs at a non-variable position in one of the
lefthand sides of the goal. Specifically, in the generalized narrowing relation,
to solve the goal G = G1 ∧ t1 →∗ t2 above, we (i) linearize the lefthand side
t1 to t1, (ii) narrow the linearized term t1 as, say, t1

σ�R w, and (iii) add to
the resulting goal a subgoal H that accounts for the intermediate under-the-
feet rewrites that have been skipped. Specifically, for each variable x ∈ Var(t1)
whose occurrences are renamed to, say, x1 . . . xn, in t1, the subgoal H contains
x →∗ σ(x1) ∧ . . . ∧ x →∗ σ(xn). According to this extended narrowing relation,
the goal G above narrows to the goal G′ = G1 ∧ w →∗ t2 ∧H2. Since G has a
solution ρ as assumed above, it is the case that G′ has a solution η such that
η|Var(G) = ρ|Var(G).

The above discussion applies in particular to the case where in the rewrite
sequence (1) above, there is a k such that ωk ∈ FuPos(t1). Otherwise, there are
two possibilities. First, if there is a k such that ωk ∈ FuPos(t2), then we can apply
the above idea in the backward direction, i.e., we linearize the righthand side t2
and narrow the resulting term using R−1. This is justified by the observation
that t →∗

R t
′ if and only if t′ →∗

R−1 t. Thus, we have a procedure that combines
forward and backward reachability analysis. Of course, for this idea to work,
2 Note that the subgoal G1 is unchanged in the narrowing step. This is because the

variables x1, . . . , xn that are introduced during linearization of t1 are fresh w.r.t G1,
and therefore the substitution σ has no effect on G1 (see Definitions 4 and 5.)

388 P. Thati and J. Meseguer

unlike in Section 5, we have to allow the rules in R to have extra variables in their
righthand sides. Finally, we are left with the case where ωi /∈ FuPos(t1, t2) for
all 1 ≤ i ≤ n. We note that in this case, ρ(t1) and ρ(t2) should be identical at all
positions ω ∈ FuPos(t1, t2). This observation can be used to further instantiate
variables in G, or to reduce G to a trivial goal.

Definition 4 (extended narrowing of terms). For a term t, let t be a lin-
earized form of t, where each occurrence of a variable x ∈ Var(t) is renamed to
a distinct fresh variable y /∈ Var(t). Further, suppose t σ�R t

′ for σ away from
Var(t). Then we define t �R t

′;H, where H is the reachability goal such that
if the occurrences of a variable x ∈ Var(t) are renamed to, say, x1, . . . , xn, then
H includes the subgoal x→∗ σ(x1) ∧ . . . ∧ x→∗ σ(xn).

For example, consider the rewrite system of the example in the Introduction.
We have f(x, x) �R d; (x →∗ b ∧ x→∗ c), using the rule f(b, c) → d.

Definition 5 (back-and-forth narrowing of goals). We define a back-and-
forth narrowing relation on goals as a decorated relation of the form G

σ�R G
′

defined as follows.

(Narrow-left) G ∧ t →∗ t′
id�R G ∧ t′′ →∗ t′ ∧H if t �R t

′′;H

(Narrow-right) G ∧ t →∗ t′
id�R G ∧ t →∗ t′′ ∧H−1 if t′ �R−1 t′′;H

(Decompose) G ∧ f(t1, . . . , tn) →∗ f(t′1, . . . , t
′
n)

id�R G ∧ t1 →∗ t′1 ∧ . . . ∧ tn →∗ t′n
(Match-left) G ∧ x →∗ f(t1, . . . , tn)

σ�R σ(G) ∧ x1 →∗ σ(t1) ∧ . . . ∧ xn →∗ σ(tn)
if xi /∈ Var(G, x, t1, . . . , tn) for 1 ≤ i ≤ n,

and σ = {f(x1, . . . , xn)/x}
(Match-right) G ∧ f(t1, . . . , tn) →∗ x

σ�R σ(G) ∧ σ(t1) →∗ x1 ∧ . . . ∧ σ(tn) →∗ xn

if xi /∈ Var(G, x, t1, . . . , tn) for 1 ≤ i ≤ n,
and σ = {f(x1, . . . , xn)/x}

(Unify) G ∧ t →∗ t′
σ�R σ(G) if σ = MGU(t = t′,Var(G, t, t′))

For t �R t′′;H in the case Narrow-left above, we impose the following ad-
ditional condition. Suppose t is linearized to t and t σ�R t′′, then we require
that the new variables introduced in linearizing t to t are fresh with respect to
Var(G, t, t′), and the substitution σ is away from Var(G, t, t′). Similar condi-

tions apply to Narrow-right. The relation G
σ�R

∗
G′ is defined by composing

the substitutions of each step as expected.

Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing 389

We cannot in general hope for a procedure that, given a goal G enumerates
a complete set of solutions of G. For instance, consider the trivial goal G =
x1 →∗ y1 ∧ . . . ∧ xn →∗ yn. Enumerating a complete set of solutions of G is
equivalent to enumerating a set S of tuples (u1, v1, . . . , un, vn) such that (i) for
each (u1, v1, . . . , un, vn) ∈ S we have ui →∗

R vi, and (ii) for each s1, t1, . . . , sn, tn
such that si →∗

R ti there is a (u1, v1, . . . , un, vn) ∈ S and a substitution σ such
that si = σ(ui) and ti = σ(vi). We can systematically enumerate one such set
S, namely, the set of all tuples (u1, v1, . . . , un, vn) such that ui →∗

R vi, but that
would be extremely inefficient.

We will therefore give a procedure that is complete only as far as solvability
of goals is concerned. Specifically, if a given goal G has a solution, then the
procedure is guaranteed to find some solution of G. For example, for the trivial
goal G above, the substitution σ such that σ(xi) = σ(yi) = z will be returned as
a solution. In addition, if we have a procedure that enumerates a complete set of
solutions for trivial goals, we can combine it with the procedure for solvability
to obtain a procedure that enumerates a complete set of solutions for any given
goal G (see Theorem 6).

Examples: We now show a few examples where the narrowing procedure of
Section 5 fails to find any solution, but back-and-forth narrowing succeeds.

Example 2. Consider the rewrite theory R and the reachability goal G = f(x, x)
→∗ d of Example 2 in Section 5. We have

f(x, x) →∗ d
id�R f(x, x) →∗ f(b, c) (Narrow-right)
id�R f(x, x) →∗ f(a, c) (Narrow-right)
id�R f(x, x) →∗ f(a, a) (Narrow-right)

{a/x}
�R Λ (Unify)

Thus, back-and-forth narrowing finds the solution σ = {a/x}, whereas the nar-
rowing procedure of Section 5 fails to find any solution. Here is another back-
and-forth narrowing derivation that finds the same solution.

f(x, x) →∗ d
id�R d→∗ d ∧ x→∗ b ∧ x →∗ c (Narrow-left)
id�R x→∗ b ∧ x →∗ c (Unify)

id�R
id�R x→∗ a ∧ x →∗ a (2 × Narrow-right)

{a/x}
�R

id�R Λ (2 × Unify)

Example 3. Here is an example that illustrates the use of Decompose, and
Match-left. Consider the rewrite theory R = (Σ,R), where the signature Σ
contains the constants a, b, c, a unary function symbol g, and two binary function
symbols f, h, and the set R contains the following three rules

a → h(b, c) b→ g(a) c → h(b, c)

390 P. Thati and J. Meseguer

Consider the goal G = f(x, y) →∗ f(g(y), h(x, y)). Clearly, there is no narrowing
derivation (in the sense of Section 5) starting from f(x, y). ButG has the solution
σ = {g(a)/x, h(b, c)/y} because

f(g(a), h(b, c))
[1.1]−→R f(g(h(b, c)), h(b, c))

[2.1]−→R f(g(h(b, c)), h(g(a), c))
[2.2]−→R f(g(h(b, c)), h(g(a), h(b, c))

Note that all the above rewrites occur under-the-feet of both the lefthand and
righthand sides of G. The solution σ is found by back-and-forth narrowing as
follows.

f(x, y) →∗ f(g(y), h(x, y))
id�R x→∗ g(y) ∧ y →∗ h(x, y) (Decompose)
σ1�R x1 →∗ y ∧ y →∗ h(g(x1), y) (Match-left)
σ2�R x1 →∗ h(y1, y2) ∧ y1 →∗ g(x1) ∧ y2 →∗ h(y1, y2)(Match-left)
id�R x1 →∗ h(y1, y2) ∧ y1 →∗ g(x1) ∧ y2 →∗ c ∧ b →∗ y1 ∧ c →∗ y2

(Narrow-right)
σ3�R

∗
x1 →∗ h(b, c) ∧ b →∗ g(x1) (3 × Unify)

id�R x1 →∗ h(b, c) ∧ g(a) →∗ g(x1) (Narrow-left)
σ4�R a →∗ h(b, c) (Unify)
id�R

∗
Λ (Narrow-left,Unify)

where σ1 = {g(x1)/x}, σ2 = {h(y1, y2)/y}, σ3 = {b/y1, c/y2}, and σ4 = {a/x1}.
Thus, back-and-forth narrowing finds the solution σ = (σ4 ◦ σ3 ◦ σ2 ◦ σ1)|{x,y},
while the narrowing procedure of Section 5 doesn’t.

Soundness: We now prove the soundness of back-and-forth narrowing of reach-
ability goals. First, following is the analogue of Lemma 2 for the extended nar-
rowing relation on terms.

Lemma 6. If t �R t
′;H and ρ is a solution of H, then ρ(t) →∗

R ρ(t
′).

The lemma above is lifted to goals as expected.

Theorem 4. If G
σ�R G

′ and ρ is a solution of G′ then ρ◦σ is a solution of G.

Completeness: Recall that in Section 5 the main idea behind establishing weak
completeness of narrowing was to associate to each rewrite step on terms a cor-
responding narrowing step on terms (Lemma 4). To establish the completeness
of back-and-forth narrowing, we generalize this idea to associate to a sequence
of rewrites starting from ρ(t), where all but the last rewrite occur at positions
ω /∈ FuPos(t), a single extended narrowing step starting from t. This is formal-
ized in the following lemma. It is important to note that, unlike in Lemma 4,
rewrite rules are now allowed to have extra variables in their righthand side3.
3 The no-extra-variable assumption is necessary in Lemma 4 to guarantee that η is

R-normalized. This is in turn required for the assumption that ρ is R-normalized
while inductively composing several applications of Lemma 4 to obtain Lemma 5.
In contrast, Lemma 7 neither assumes ρ to be R-normalized, nor does it guarantee
that η is R-normalized.

Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing 391

Lemma 7. Let V be a finite set of variables containing Var(t), and let ρ(t)
[ω1]−→R

. . .
[ωn]−→R

[ω]−→R t
′ such that ωi /∈ FuPos(t) for 1 ≤ i ≤ n and ω ∈ FuPos(t). Then

there are t′′, H, η such that t �R t
′′;H, η is a solution of H, η|V = ρ|V , and

η(t′′) = t′.

Lifting the above lemma to goals is a bit more complicated than its analogue,
Lemma 5. Suppose ρ is a solution of G, and π is a rewrite sequence

ρ(G)
[ω1]−→R G1

[ω2]−→R . . .
[ωn]−→R Λ

We call π a witness for the solution ρ of G. Define the metrics d(π) =
∑|π|

i=1 |ωi|
and μ(π) = (|π|, d(π)). Let 4 be the usual lexicographic ordering on pairs of
natural numbers, i.e., (m1, n1) 4 (m2, n2) if m1 < m2, orm1 = m2 and n1 ≤ n2.
Define (m1, n1) ≺ (m2, n2) if (m1, n1) 4 (m2, n2) and (m1, n1) �= (m2, n2). Note
that ≺ is a well-founded relation with (0, 0) as the least element.

Lemma 8. Let G be a non-trivial reachability goal, V a finite set of variables
containing Var(G), ρ a solution of G, and π a witness for the solution ρ. Then
there are σ, η,G′ such that G

σ�R G
′, σ is away from V , ρ|V = (η ◦ σ)|V , η is a

solution of G′, and there is a witness π′ for η such that μ(π′) ≺ μ(π).
We are now ready to state the completeness of back-and-forth narrowing.

Theorem 5 (Completeness). Let ρ be a solution of a reachability goal G, and
let V be a finite set of variables containing Var(G). Then there are σ and G′ such

that G
σ�R

∗
G′, σ is away from V , G′ is a trivial goal, and there is a solution η

of G′ such that ρ|V = (η ◦ σ)|V .

A Complete Algorithm for Solvability of Reachability Goals:

Theorem 6. Let V be a finite set of variables containing Var(G), and let S be

the set of all substitutions of the form (η ◦ σ)|Var(G), where G
σ�R

∗
G′, σ is

away from V , G′ is a trivial goal, and η ∈ CSS(G′, V ∪Ran(σ)∪Var(G′)). Then
S is a complete set of solutions of G away from V .

Thus, if we are given a procedure for enumerating complete sets of solutions
of trivial goals, then we also have a procedure for enumerating complete sets of
solutions for any goal. In addition, since for the trivial goal x1 →∗ y1∧. . .∧xn →∗

yn, the substitution σ such that σ(xi) = σ(yi) = z is a solution, it follows
from Theorems 4 and 5 that we have a complete procedure for solvability of
reachability goals. That is, if a given goal G has a solution, then the procedure
finds some solution of G.

7 Related Work

Backward and forward narrowing may seem familiar in the context of equational
unification [11, 12, 15, 16], where a unification goal ∃−→x .t1 = t2 is transformed

392 P. Thati and J. Meseguer

into the reachability goal ∃−→x .eq(t1, t2) →∗ tt, and is then (naively) narrowed
using R∪{eq(t, t) → tt}. Note that in the transformed goal one can narrow both
the lefthand and righthand sides t1 and t2 using R, but both only in the for-
ward direction4. Further, linearization is not necessary in the equational setting
where under-the-feet rewrites are inconsequential due to the confluence assump-
tion. But in a general setting where such assumptions are dropped, linearization
becomes essential. In summary, equational unification procedure should not be
confused with back-and-forth narrowing which is much more general. Specifi-
cally, the equational unification procedure just amounts to naive narrowing, and
as shown by the examples in Sections 5 and 6, back-and-forth narrowing can
solve goals which naive narrowing cannot.

Symbolic reachability analysis using narrowing is also reminiscent of tree-
automata (TA) based techniques for reachability analysis [8, 18]. The nth un-
folding of the narrowing tree roughly corresponds to the TA recognizing the
states that are reachable within n steps. However, there are important differ-
ences between the two, which we highlight after briefly recalling the main TA
based approaches. In the TA setting, given a rewrite system R and a regular tree
language L, one considers the set [→∗

R]L = {t ∈ TΣ | ∃u ∈ L s.t. u→∗
R t}. Then,

given regular tree languages I and F , the reachability problem is posed as the
question of whether the intersection [→∗

R]I ∩ F is nonempty. In general, [→∗
R]I

is not a regular tree language and this problem is undecidable. A first approach
is to characterize classes of rewrite systems R for which, given any regular tree
language L, the set [→∗

R]L is also regular and we can effectively construct a tree
automaton recognizing it if we are given a tree automaton recognizing L. Since
the set of instances of a nonlinear term is not regular, some linearity assumptions
are placed on R to characterize suitable classes (see [19, 18] for some of the most
general classes known so far). A second, more generally applicable approach is to
iteratively compute tree automata to recognize [→n

R]L (terms reachable from L
in at most n steps). Since [→∗

R]L = ∪n[→n
R]L, this yields a semidecision proce-

dure for reachability analysis provided each [→n
R]L is regular; for this again some

linearity assumptions onR are needed, and in some approaches [10] non-linearity
is dealt with by over approximations. A third related approach is to compute
tree-automata-based abstractions that approximate the reachability set [8, 18].

In comparison with back-and-forth narrowing, the main differences have to
do with the quite restricted assumptions on term rewriting systems required by
TA approaches in order to ensure preservation of the regularity of the relevant
sets of terms involved in the reachability analysis. By contrast, back-and-forth
narrowing is a complete semidecision procedure for arbitrary rewrite systems;
in particular, regularity-preserving restrictions on a term rewriting system are
typically non-symmetric, whereas inverting the rules is part of the back-and-
forth narrowing procedure. Under regularity-preserving conditions allowing the

4 The idea behind the transformation is that for a confluent equational theory E,
σ(t1) =E σ(t2) if and only if σ(t1) →∗

E t and σ(t2) →∗
E t for some term t. The proof

of Lemma 8 should shed some light on the fact this idea is totally different from the
one behind back-and-forth narrowing.

Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing 393

use of the first TA approach, the reachability problem is decidable, whereas back-
and-forth narrowing is only a semidecision procedure. The third TA approach
works by over-approximation, which ensures correctness of negative answers, but
can result in false positives; instead, with back-and-forth narrowing a positive
solution is always correct and is always found if there is one.

8 Conclusions and Future Work

We have presented back-and-forth narrowing as a semidecision procedure for
solving reachability goals in unsorted and unconditional rewrite systems, and we
have proved its completeness in the solvability sense. Although we have given
an unsorted treatment using standard rewriting, our method can be extended
to general order-sorted rewrite theories of the form (Σ,E,R) with equations E,
under appropriate assumptions along the lines adopted in [14]. These assump-
tions include pre-regularity of Σ, that E = Δ ∪ B, where the equations Δ are
confluent and terminating modulo B, and that Δ and R satisfy certain coher-
ence properties relative to B. Such an extension, that we plan to document in a
subsequent paper, will make our results available for many other systems.

Another important direction of research is to investigate efficient strategies
for back-and-forth narrowing. Several lazy narrowing strategies are known in the
functional-logic programming context [1, 9]. These strategies are all complete for
special classes of rewrite systems, typically for left-linear and constructor-based
systems. These assumptions are quite reasonable for functional-logic program-
ming applications, but not so in non-equational contexts. In recent work with
S. Escobar [6], we have proposed a lazy narrowing strategy called natural narrow-
ing for general term rewrite systems that is complete in the weak sense, in that
it is guaranteed to find all R-normalized solutions. We conjecture that natural
narrowing can be extended to the back-and-forth setting so that completeness
is regained even for non-normalized solutions. This problem will be dealt with
in subsequent papers.

References

[1] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

[2] David Basin, Sebastian Modersheim, and Luca Vigano. Constraint differentiation:
A new reduction technique for constraint-based analysis of security protocols.
Technical Report TR-405, Swiss Federal Insititute of Technology, Zurich, May
2003.

[3] Ahmed Bouajjani and Tayssir Touili. Extrapolating tree transformations. In
Proc. 14th Int. Conf. on Computer Aided Verification (CAV’02), volume 2404 of
Lecture Notes in Computer Science, 2002.

[4] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification over Infinite States.
In Handbook of Process Algebra, pages 545–623. Elsevier Publishing, 2001.

[5] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transaction
on Information Theory, 29(2):198–208, 1983.

394 P. Thati and J. Meseguer

[6] S. Escobar, J. Meseguer, and P. Thati. Natural narrowing for general
term rewriting systems. In International Conference on Rewriting Tech-
niques and applications (RTA), 2005. also available at http://www.dsic.upc.es/
users/elp/papers.html.

[7] Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1):63–92, 2001.

[8] T. Genet and F. Klay. Rewriting for cryptographic protocol verification. In
Automated Deduction—CADE-17, volume 1831 of Lecture Notes in Artificial In-
telligence, pages 271–290. Springer-Verlag, 2000.

[9] M. Hanus. The integration of functions into logic programming: From theory to
practice. Jounral of Logic Programming, 19(20):583–628, 1994.

[10] Hiroyuki Seki Hitoshi Ohsaki and Toshinori Takai. ACTAS: A system design for
associative and commutative tree automata theory. In Proc. 5th Intl. Workshop
on Rule-Based Programming (RULE 2004). Elsevier, ENTCS, 2004.

[11] J.M. Hullot. Canonical forms and unification. In W. Bibel and R. Kowalski,
editors, 5th Conference on Automated Deduction, volume 87 of Lecture Notes in
Computer Science, pages 318–334. Springer, 1980.

[12] Jean-Pierre Jouannaud, Claude Kirchner, and Helene Kirchner. Incremental con-
struction of unification algorithms in equational theories. In 10th International
Colloquium on Automata, Languages and Programming, volume 154 of Lecture
Notes in Computer Science, pages 361–373. Springer, 1983.

[13] Catherine Meadows. The NRL protocol analyzer: An overview. Journal of logic
programming, 26(2):113–131, 1996.

[14] José Meseguer and Prasanna Thati. Symbolic reachability analysis using
narrowing and its application to analysis of cryptographic protocols. In
Workshop on Rewriting Logic and its Applications, Electronic Notes in The-
oretical Computer Science. Elsevier, 2004. To appear, also available at
http://osl.cs.uiuc.edu/docs/wrla04/main.ps.

[15] A. Middeldorp and E. Hamoen. Counterexamples to completeness results for
basic narrowing. In Proceedings of the 3rd International Conference on Algebraic
and Logic Programming, Lecture Notes in Computer Science 632, pages 244–258,
1992.

[16] S. Okui, A. Middeldorp, and T. Ida. Lazy narrowing: Strong completeness and
eager variable elimination. In Proceedings of the 20th Colloquium on Trees in
Algebra and Programming, Lecture Notes in Computer Science 915, pages 394–
408, 1995.

[17] G. E. Peterson and M. N. Wegman. Linear unification. Journal of Computer and
Systems Sciences, 16:158–167, 1978.

[18] T. Takai. A verification technique using term rewriting systems and abstract
interpretation. In Proc. RTA 2004, pages 119–133. Springer LNCS 3091, 2004.

[19] T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting
systems effectively preserve recognizability. In Proc. RTA 2000, pages 246–260.
Springer LNCS 1833, 2000.

[20] P. Wolper and B. Boigelot. Verifying systems with infinite but regular state
spaces. In International Conference on Computer-Aided Verification, volume 1427
of Lecture Notes in Computer Science, pages 88–97. Springer Verlag, 1998.

Final Sequences and Final Coalgebras
for Measurable Spaces

Ignacio D. Viglizzo

Department of Mathematics, Indiana University,
Bloomington IN 47405, USA

igvigliz@indiana.edu

Abstract. A measure polynomial functor is a functor in the category
Meas built up from constant measurable spaces, the identity functor and
using products, coproducts and the probability measure functor Δ. In
[1] it was proved that these functors have final coalgebras. We present
here a different proof of that fact, one that uses the final sequence of the
functor, instead of an ad hoc language. We also show how this method
works for certain functors in Set and explore the connection with results
in the literature that use the final sequence in other ways.

1 Introduction

Coalgebras for functors involving probability measures have been objects of inter-
est, since they provide a framework for modelling probabilistic transition systems
like those studied by Larsen and Skou [2], as noted by de Vink and Rutten in
[3]. Previous work in this area has been limited to certain metric and topological
spaces, while our results here apply to measure spaces in general.

In previous joint work with Lawrence S. Moss, [1], [4], we proved the existence
of final coalgebras for measure polynomial functors (defined in section 2.3). Those
final coalgebras were constructed as a set of sets of formulas in a language L(T)
that depended on the functor T . The sets of formulas involved were satisfied
theories, i.e., the sets of formulas satisfied by some point in some T -coalgebra.
In this paper, we present a different proof of the same fact, but now we don’t
use any language. Instead, we look for our ‘satisfied theories’ inside the limit of
the final sequence for the functor.

It is well known that for an ωop-continuous functor T on the category of
sets, the limit of the final sequence obtained by iterating the application of T
to the terminal object 1 yields a final coalgebra for T . Our work presents some
differences with this result. The main one is that we don’t work (only) in the
category Set, but also in the category Meas of measurable spaces and functions.
Second, the functors we work with are not ωop continuous. The functor Δ in
Meas does not preserve these limits in general (see the next section).

The structure that the proof of the main result in section 3 follows is close
to the one in [1], and the main idea was inspired by section 5 of [5]. We hope
that the presentation here is more accessible than the one we gave previously,
and can therefore make these tools available for a wider audience.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 395–407, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

396 I.D. Viglizzo

2 Preliminaries

2.1 Measure Theory

Given a set M , a σ-algebra of sets is a non empty class Σ of subsets of M
closed under finite intersections, complements and countable unions. A measur-
able space is a pair (M,Σ) where M is a set and Σ is a σ-algebra of subsets of
M . The subsets of M which are in Σ are called measurable sets.

A family of generators F of a σ-algebra Σ is a family of subsets such that the
smallest σ-algebra containing F is Σ. This is denoted by σ(F) = Σ. A π-system
is a family of subsets of a set M which is closed under finite intersections.

A function between measurable spaces f : (M,Σ) → (M ′, Σ′) is said to be
measurable if for every E ∈ Σ′, f−1(E) ∈ Σ. We will denote with Meas the
category of measurable spaces and measurable functions.

A measure is a σ-additive function μ from the σ-algebra of a measurable
space to [0,∞], such that μ(∅) = 0. If μ(M) = 1, then it is called a probability
measure. The following Lemma about probability measures is a consequence of
Dynkin’s π-λ-theorem and will be used later.

Lemma 1. Suppose that μ1, μ2 are probability measures on σ(F), where F is a
π-system. If μ1 and μ2 agree on F , then they agree on σ(F).

We will consider the operator Δ in Meas that assigns to each measurable
space M the set ΔM of all the probability measures over M , endowed with the
σ-algebra ΣΔ generated by the sets of the form βp(E) where E is a measurable
subset of M , p is any real number in the unit interval [0, 1] and

βp(E) = {μ ∈ ΔM : μ(E) ≥ p}. (1)

As an easy consequence of the definition, we have that

Lemma 2. If f : M → M ′ is a measurable function, then for all measurable
E ⊆M ′ and p ∈ [0, 1],

βp(f−1(E)) = (Δf)−1(βp(E))

Using the above Lemma, it is easy to check that by defining Δf : ΔM →
ΔM ′ asΔf(μ)(E) = μ(f−1(E)) for everyE measurable inM ′,Δf is measurable
and Δ is an endofunctor in Meas.

Lemma 3. (Heifetz and Samet, [5]) Let F be a boolean algebra of sets that
generates the σ-algebra Σ on a measurable space M . Then the σ-algebra FΔ

generated by the family of sets

{βp(E) : E ∈ F and p ∈ [0, 1]}

is the same as ΣΔ.

Final Sequences and Final Coalgebras for Measurable Spaces 397

Products and coproducts exist in Meas, and they can be constructed in a
similar fashion to the corresponding constructions in Set (furthermore, Meas is
a complete category, [6], page 71). The forgetful functor Meas → Set uniquely
lifts products and coproducts. The σ-algebra of the product is the one generated
by the “rectangles” formed by taking the cartesian product of measurable sets,
while the σ-algebra of the coproduct is formed by taking (disjoint) unions of
measurable sets in each of the summands.

Weak pullbacks are not preserved by Δ. A natural question that arises in
this context is whether the functor Δ preserves weak pullbacks. Here we answer
this negatively.

Pullbacks in Meas are constructed in a similar way as in Set. Given mea-
surable functions f : X → Z and g : Y → Z, one takes the set P = {〈x, y〉 :
f(x) = g(y)} endowed with the smallest σ-algebra that makes the projections
measurable.

Now let X = Y = Z be the interval [0, 1] on the reals. Let

f(x) =
{
x if x �= 1/2
0 if x = 1/2

and g(y) = 1− y. It is easy to check that f and g are measurable functions and
{〈x, y〉|f(x) = g(y)} = ∅.

Now consider Q = {q}, and functions k : Q → ΔX, l : Q → ΔY given by
k(q) = l(q) equal to the Lebesgue measure over [0, 1]. (Δf)k(q) = (Δg)l(q) is
again the Lebesgue measure, so the diagram commutes, but there is no measur-
able function j : Q → ∅.

Q

k

��11
111

111
111

111
11

l

##2
22

22
22

22
22

22
22

∅ ∅ ��

∅
��

ΔX

Δf

��
ΔY

Δg
�� ΔZ

This counterexample can be “fixed” by changing f to be the identity on [0, 1],
so the pullback is not empty. Could this be a pathological case arising from the
fact that two measurable functions can be essentially the same but differ on a set
of measure zero? In other words, is there always a pair of functions f̂ , ĝ so that
f = f̂ and g = ĝ almost everywhere, but yet f̂ and ĝ have a non-empty pullback
that can be weakly preserved by Δ? We show next that this is not the case.

We can assume that f̂ = 1[0,1] is the identity function on the interval [0, 1]
and g = f on a set E of measure zero. So the pullback of f and g is P = {〈x, x〉 :
x ∈ E}. Consider the functions cq : [0, 1] → R defined as follows:

cq(x) =
{

1 + q if x ∈ [0, 1/4) ∪ (3/4, 1]
1− q if x ∈ [1/4, 3/4]

398 I.D. Viglizzo

Each cq induces a probability measure on [0, 1] which we again denote cq. For
this, take

∫
F
cq(x)dx = (1+q)λ(F)−2qλ(F ∩ [1/4, 3/4]) where λ is the Lebesgue

measure over the reals and F is the measurable set for which we are calculating
the measure.

Now let Q = [0, 1] and k(q) = cq = l(q). It is clear that Δ1[0,1]k(q) = cq =
(Δg)l(q). Furthermore, the functions k and l are measurable. Assume that there
is a measurable function j : Q → ΔP such that the diagram below commutes.

Q

k

��11
111

111
111

111
11

l

##2
22

22
22

22
22

22
2

j

$$3
3

3
3

ΔP

Δπ2

��

Δπ1 �� ΔX

Δf

��
ΔY

Δg
�� ΔZ

Then when we calculate k(q)(E) we get:
∫

E cq(x)dx = 0, while on the other hand
Δπ1j(q)(E) = j(q)(π−1

1 (E)) = j(q)(P) = 1, contradiction.

2.2 The Final Sequence

Given an endofunctor T in a category with final object 1, we can consider the
sequence:

1 T 1
!�� T 21

T !�� T 31
T 2!�� . . .��

We will only consider countably many steps of this chain. It will be convenient
here to describe briefly the limit of this ωop sequence in Meas, called inverse
limit or projective limit.

Notice that the function ! : T 1 → 1 is surjective and measurable (assuming
T 1 �= ∅) and it follows that T n! is also a surjective and measurable function.
The inverse limit can then be constructed by taking the set

P = {(xn) ∈
∏
n

T n1 : ∀n ≥ 0(T n!(xn+1) = xn)}

and endowing it with the σ-algebra generated by the sets π−1
n (E) where E is a

measurable subset of T n1 and πn is the natural projection from
∏

k T k1 → T n1
(see e.g. [7], Exercise 17.16).

Given a T -coalgebra (X, c), there is a natural way of obtaining a cone (hc
n :

X → T n1) mapping X to the final sequence. Let hc
0 be the unique map !X : X →

1, and given hc
n : X → T n1, let hc

n+1 = Thc
n◦c. Notice also that hc

n = T n!◦hc
n+1,

as it’s easy to prove by induction on n: for n = 0, hc
0 =!X =!X ◦hc

1 and if hc
n−1 =

T n−1!◦hc
n, then hc

n = Thc
n−1 ◦c = T (T n−1!◦hc

n)◦c = T n!◦Thc
n◦c = T n!◦hc

n+1.

X
c ��
hc

n+1

��,
,,

,,
,,

,,

hc
n

��

TX

Thc
n

��
T n1 T n+11

T n!
��

Final Sequences and Final Coalgebras for Measurable Spaces 399

Definition 1. Let hc : X → P be the function defined by πn(hc(x)) = hc
n(x) for

all n ≥ 0. Now define Z ⊆ P as the set of points that are in the image hc(X) for
some T -coalgebra (X, c). Z is a measurable space with the structure it inherits
from P .

Lemma 4. Given f : (X, c) → (Y, d) a T -coalgebra morphism, hd ◦ f = hc.

Proof. We prove by induction over n that πnh
df = πnh

c, this is, hd
n ◦ f = hc

n:
hd

0f =!Y f =!X = hc
0. Assuming that hd

nf = hc
n, we get that hd

n+1f = Thd
n◦d◦f =

Thd
n ◦ T f ◦ c = T (hd

n ◦ f) ◦ c = Thc
n ◦ c = hc

n+1. ��
We will ignore the superscript of h whenever doing so does not lead to any

confusion.
For any n < m, let τmn : T m1 → T n1 be defined by τmn = T n! ◦T n+1! ◦ . . .◦

T m−1!. Also let τmm = 1T m1.

T n1 T n+11
T n!�� . . .T n+1!�� T m1

T m−1!��

τmn

��

ωop sequences are not preserved by Δ. To show this we adapt a coun-
terexample due to Andersen and Jessen [8] as it appears in [9]. Let {Xn}n∈ω

be a descending sequence of thick subsets of the real interval [0, 1] such that
∩Xn = ∅. Thick sets have outer measure one, and each of these sets is endowed
with a σ-algebra Σn consisting of all the intersections of Borel sets E with Xn.
Let μn ∈ ΔXn be defined by μn(E ∩ Xn) = λ(E), where λ is the Lebesgue
measure. Since Xn is thick, μn is well defined.

Now let Yn =
∏n

k=0 Xk, fn : Yn+1 → Yn the projection that forgets the last
coordinate, and Sn : Xn → Yn the application that sends x to (x, x, . . . , x). If
νn ∈ ΔYn is defined as (ΔSn)μn, then one can check that (Δfn)νn+1 = νn for all
n ≥ 0. The limit of the sequence of the Yn is the infinite product X =

∏
n∈ω Xn.

Let pn : X → Yn be the evident projection.
If Δ preserved the limit, then there would exist a measure ν ∈ ΔX such

that for all n ≥ 0, (Δpn)ν = νn, since the sequence {νn}n∈ω belongs to the
projective limit of the chain formed by the ΔYn and functions Δfn. But letting
En = p−1

n (Sn(Xn)) we get a sequence of measurable subsets of X such that
ν(En) = 1, and with empty intersection, a contradiction.

2.3 Measure Polynomial Functors

Definition 2. The class of measure polynomial functors is the smallest class
of functors on Meas containing the identity Id, the constant functor M for each
measurable space M , and closed under binary products, coproducts and Δ.

Definition 3. Given a measure polynomial functor T we define the set of ingre-
dients of T , Ing(T) as follows: Ing(Id) = {Id}; Ing(M) = {M, Id}; Ing(U × V) =

400 I.D. Viglizzo

{U × V } ∪ Ing(U) ∪ Ing(V); Ing(U + V) = {U + V } ∪ Ing(U) ∪ Ing(V) and
Ing(ΔS) = {ΔS} ∪ Ing(S). All the ingredients of T are measure polynomial
functors, and Ing(T) is a finite set.

The ingredients of a measure polynomial functor are defined in terms of the
syntax with which the polynomial is presented.

Example 1. Let T = Id +Δ(Id ×M) for some fixed measurable space M . Then

Ing(T) = {Id ,M, Id ×M,Δ(Id ×M),T }

For each ingredient S of T we will consider the ωop chain

PS

π0
S

%%$$$
$$$

$$$
$$$

$$$
$$

π1
S��)))

))
))
))

π2
S

��

π3
S

��,
,,

,,
,,

,,

S1 ST 1
S!�� ST 21

ST !�� ST 31
ST 2!�� . . .��

Let PS the projective limit of this chain, constructed like P before, and let
πn

S : PS → ST n1 be the corresponding projections. It is worth noting that
unless the functor S is ωop-continuous, πn

S won’t be in general equal to Sπn.
For any given coalgebra (X, c), the cone Shn : SX → ST n1 induces a mapping
hS : SX → PS such that πn

ShS = Shn.

Definition 4. Just as when we defined Z in definition 1, let ZS be the collection
of all the points in PS that are the image under hc

S of some element in SX for
some T -coalgebra (X, c). Notice that we write ZId = Z.

3 Final Coalgebras

The measurable space Z defined in the previous section will be the carrier of
the final coalgebra for T . To define the structure map on Z, we will proceed in
two stages. First, we define a map ν : Z → ZT , and then we find a map rT from
ZT to T (Z) that will establish the result. The first part is taken care of in the
following Lemma:

Lemma 5. There exists a measurable map ν : Z → ZT , such that for every
coalgebra (X, c), νhx = hT cx.

X
c ��

h

��

TX

hT

��
Z

ν �� ZT

Final Sequences and Final Coalgebras for Measurable Spaces 401

Proof. We define ν : Z → PT by πn
T ν = πn+1 for all n ≥ 0. We need to prove

that πn
T νh = πn

ThT c.
πn

ThT c = Thnc
= hn+1
= πn+1h
= πn

T νh

This proves that νh = hT c and also that ν has codomain included in ZT .
Next we prove that ν is measurable. Consider a measurable set En ⊆ TT n1;

since the sets of the form E = (πn
T)−1(En) generate the σ-algebra on ZT , it will

be enough to prove that ν−1(E) is measurable. But ν−1(E) = ν−1(πn
T)−1(En) =

(πn
T ◦ ν)−1(En) = (πn+1

T)−1(En), which we know to be measurable. ��
To find the map rT : ZT → T (Z) satisfying the appropriate conditions, we

need to work making reference to the structure of T . First, we introduce some
auxiliary results.

Lemma 6. If (U × V) ∈ Ing(T), there is a measurable map 〈π1, π2〉 : ZU×V →
ZU × ZV so that for every T -coalgebra (X, c), 〈π1, π2〉hc

U×V = hc
U × hc

V and for
every n ≥ 0, (πn

U × πn
V)〈π1, π2〉 = πn

U×V .

Proof. Let pn
1 : (U × V)T n1 → UT n1, pn

2 : (U × V)T n1 → V T n1, pU : (U ×
V)X → UX, pV : (U ×V)X → VX, pZU : ZU ×ZV → ZU , pZV : ZU ×ZV → ZV

be the natural projections.
We start by defining π1 : ZU×V → PU through πn

U (π1(z)) = pn
1 (πn

U×V (z)).
From this definition it follows that (πn

U × πn
V)〈π1, π2〉 = πn

U×V .
To prove that 〈π1, π2〉hc

U×V = hU × hV = 〈hUpU , hV pV 〉, we need to show
that π1hU×V = hUpU (and the corresponding equation for V). This will be
proved once we prove that for all n, πn

Uπ1hU×V = πn
UhUpU .

Also, πn
Uπ1hU×V = pn

1π
n
U×V hU×V = pn

1 (U × V)hn = pn
1 (Uhn × V hn) =

UhnpU = πn
UhUpU . From this equation it follows that π1 : ZU×V → ZU .

(U × V)X
pU ��

hU×V

��

hU×hV

&&44
444

444
444

UX
hU

''..
...

...
...

.

ZU×V
〈π1,π2〉 ��

πn
U×V &&44

444
444

444
ZU × ZV

pZU ��

πn
U×πn

V

��

ZU

πn
U

��
(U × V)T n1

pn
1 �� UT n1

To prove that 〈π1, π2〉 is measurable, it’s enough to prove each of the com-
ponents is measurable. We do it for π1. Let E,En be as in the proof of Lemma
5. Then π−1

1 (E) = π−1
1 (πn

U)−1(En) = (πn
Uπ1)−1(En) = (p1πn

U×V)−1(En), which
is measurable. ��
Lemma 7. If (U+V) ∈ Ing(T), there is a measurable map α : ZU+V → ZU +ZV

so that for every T -coalgebra (X, c), αhc
U+V = hc

U +hc
V , and for all n ≥ 0, (πn

U +
πn

V)α = πn
U+V .

402 I.D. Viglizzo

Proof.

(U + V)X
hU+hV

&&44
444

444
444

hU+V

��

UX
hU

''..
...

...
...

.
inlUX��

ZU+V

πn
U+V &&44

444
444

444
α �� ZU + ZV

πn
U+πn

V

��

ZU

inlZU��

πn
U

��
(U + V)T n1 UT n1

inlnU
��

Since for each z ∈ ZU+V , z = hc
U+V (x) for some x ∈ (U + V)X for some

coalgebra (X, c), we define α by αhU+V (x) = (hc
U + hc

V)(x).
For every n ≥ 0 we have:

πn
U+V hU+V = (U + V)hn

= Uhn + V hn

= πn
UhU + πn

V hV

= (πn
U + πn

V)(hU + hV)

Now we can check α is well-defined. If (Y, d) is another coalgebra and y ∈ (U+
V)Y is such that hc

U+V (x) = hd
U+V (y), then for all n ≥ 0, (πn

U +πn
V)(hc

U +hc
V)x =

(πn
U +πn

V)(hd
U +hd

V)y so (hc
U +hc

V)x = (hd
U +hd

V)y, i.e., αhc
U+V (x) = αhd

U+V (y).
It also follows from the computation above that (πn

U + πn
V)αhU+V = (πn

U +
πn

V)(hU + hV) = πn
U+V hU+V .

To prove that α is measurable, consider E = inlZU (πn
U)−1(En), with En a

measurable subset of UT n1. Then α−1(E) = α−1(inlZU (πn
U)−1(En)) = α−1(πn

U +
πn

V)−1inlnU (En) = ((πn
U +πn

V)α)−1inlnU (En) = (πn
U+V)−1inlnU (En) is a measurable

set. Here we used the fact that inlZU (πn
U)−1(En) = (πn

U + πn
V)−1inlnU (En), which

is easy to verify. ��

Lemma 8. Let ΔS be an ingredient of T . Then there exists a measurable func-
tion ε : ZΔS → ΔZS so that for every T -coalgebra (X, c) εhc

ΔS = Δhc
S and for

every n ≥ 0, (Δπn
S)ε = πn

ΔS .

Proof. To define ε(z) for a given z ∈ ZΔS , we start by doing it for the family F
of sets of the form E = (πn

S)−1(En) with En measurable in ST n1.
Given z ∈ ZΔS , we define

ε(z)(E) = πn
ΔS(z)(En)

It is worth remarking that this definition just depends on z. To check that
it does not depend on the selection of n, consider (X, c) and μ ∈ ΔSX so that
hΔSμ = z.

Final Sequences and Final Coalgebras for Measurable Spaces 403

ε(z)(E) = πn
ΔS(z)(En)

= πn
ΔS(hΔS(μ))(En)

= (ΔShn)(μ)(En)
= μ(Shn)−1(En)
= μ(hS)−1(πn

S)−1(En)
= μ(hS)−1(E)
= (ΔhS)(μ)(E)

The above equation not only proves the independence of the definition from
the selection of n, but also that εhΔSμ(E) = ΔhSμ(E) for every E ∈ F . Now
we extend the definition of ε(z) to every measurable subset F of ZS by letting
ε(z)(F) = ΔhSμ(F). We still need to check this is well defined. If z = hc

ΔS(μ) =
hd

ΔS(μ′), then we know that εhc
ΔS(μ) and εhd

ΔS(μ′) agree on all the elements of
the family F . Since for any n ≤ k, (πn

S)−1(En)∩ (πk
S)−1(Ek) = (πk

S)−1(τ−1
kn En ∩

Ek), F is a π-system, by Lemma 1, the measures must agree on all measurable
subsets.

To prove that ε is measurable, first notice that for any measurable subset En

of ST n1, (Δπn
Sε)(z)(En) = ε(z)(πn

S)−1(En) = πn
ΔS(z)(En). By Lemma 3 it will

be enough to prove that for a measurable subset En ⊆ ST n1, ε−1βp(πn
S)−1(E)

is measurable.

ε(βp(πn
S)−1(En)) = ε−1(Δπn

S)−1βp(En)
= (Δπn

Sε)
−1βp(En)

= (πn
ΔS)−1βp(En)

We know the set in the last line to be measurable. We used lemma 2 in the
first line of the equation. ��
Lemma 9. There exists a measurable function rT : ZT → T (Z) so that for
every (X, c), rT ◦ hc

T = Thc, and for every n ≥ 0,Tπn ◦ rT = πn
T .

Proof. We will prove this by induction over the ingredients of T . This is, if
S ∈ Ing(T), then there exists a measurable map rS : ZS → S(Z) such that
rShS = Sh and for all n ≥ 0,Sπn ◦ rS = πn

S .
For S = Id , rId = 1Z is measurable and trivially satisfies the conditions.

Notice that ZId is just Z.
For S = M , a constant functor, we let rM = π0

M : ZM → M = M(1). Then
rMhM = π0

M 〈1M 〉n≥0 = 1M = M(h), and MπnrM = 1Mπ
0
M = πn

M for all n ≥ 0.

Probability measures. We define rΔS as ΔrS ◦ ε.
ΔSX

hc
ΔS

!!555
555

555
555

Δhc
S

��

ΔShc
Id

��11
111

111
111

1

ZΔS

πn
ΔS &&66

666
666

666
6

ε �� Δ(ZS)

Δπn
S

��

ΔrS �� ΔS(Z)

ΔSπn�����
���

���
���

ΔST n1

(2)

404 I.D. Viglizzo

The triangles on the left commute by Lemma 8, and the ones on the right by
the induction hypothesis. Hence the diagram commutes.

Products. The argument here is almost the same. Given rU and rV with the
desired properties, we define rU×V to be (rU × rV) ◦ 〈π1, π2〉. One verifies that
rU×V hU×V = (U × V)h with a figure similar as the one above (the changes in
the objects are that ΔS is now U × V , and Δ(ZS) is ZU × ZV ; for the maps,
the main change is that ε is now 〈π1, π2〉), using Lemma 6.

Coproducts. We take rU+V to be (rU + rV) ◦ α. We use the diagram from (2),
replacing ΔS with U + V , and Lemma 8 with Lemma 7. ��

Now we are ready to define γ : Z → T (Z) as

rT ◦ ν : Z → ZT → T (Z) (3)

We shall show that (Z, γ) is a final T -coalgebra.

Lemma 10. For each coalgebra (X, c), hc is a morphism of coalgebras.

Proof. Consider the diagram:

X
c ��

hc

��

TX

hc
T

��

Thc

((77
777

777
77

Z ν
�� ZT rT

�� T (Z)

The square commutes by Lemma 5, and the triangle by Lemma 9. ��

Lemma 11. hγ = 1Z .

Proof. It will be enough to prove that for each n ≥ 0, πnh
γ = πn. For n = 0, we

have that π0h
γ = h0 =! = π01Z . Now assume that hγ

n = πnh
γ = πn. Then,

πn+1h
γ = hγ

n+1
= Thγ

n ◦ γ
= Tπn ◦ γ by inductive hypothesis
= Tπn ◦ rT ◦ ν by the definition of γ
= πn

T ◦ ν by Lemma 9
= πn+1 by the definition of ν

��

Theorem 1. (Z, γ) is a final coalgebra of T .

Proof. Let (X, c) be a T -coalgebra. By Lemma 10, hc is a coalgebra morphism.
For the uniqueness, suppose that f is any morphism.

By Lemma 4, hγ◦f = hc. But by Lemma 11, hγ = 1Z , so f = hγ◦f = hγ . ��

Final Sequences and Final Coalgebras for Measurable Spaces 405

Example 2. Returning to the functor T of example 1, now we have that the
structure map γ for Z is

Z
ν ��

γ

��

ZT
α �� Z + ZΔ(Id×M)

1Z+ε �� Z +ΔZId×M

1Z+Δ〈π1,π2〉
��

Z +Δ(Z ×M) Z +Δ(Z + ZM)
1Z+Δ(1Z×π0

M)��

γ = (1Z +Δ((1Z × π0
M)〈π1, π2〉)ε)αν.

4 Probabilistic Kripke Polynomial Functors in Set

The work from the previous section can also be carried out in Set, for proba-
bilistic Kripke polynomial functors as introduced in [1]. These are functors built
from the identity functor, constant functors for fixed sets, the finite, covariant
power set functor denoted by P , functions from a fixed set E, denoted by ·E , and
the discrete measure functor D, that assigns to a set X the set of all functions
μ : A→ [0, 1] with finite support and such that

∑
a∈A μ(a) = 1.

The set Ing(T) is defined similarly as done for measure polynomial functors,
omitting the clause for Δ and adding Ing(PS) = {PS} ∪ Ing(S); Ing(SE) =
{SE} ∪ Ing(S); Ing(DS) = {DS} ∪ Ing(S).

The required connecting maps are defined as follows: ζ : ZPS → P(ZS)

ζ(z) = {u ∈ ZS |∀n ≥ 0 πn
S(u) ∈ πn

PS(z)}
η : ZSE → (ZS)E is such that for all n ≥ 0, e ∈ E and z ∈ ZS ,

πn
S(η(z)(e)) = πn

SE (z)(e)

To define θ : ZDS → D(ZS) one must first consider for each z ∈ ZDS the set
Sz = {u ∈ SS |∀n ≥ 0 πn

DS(z)(πn
S(u)) > 0}. Since this proves to be a finite set,

there’s a number n such that if u, u′ ∈ Sz, and u �= u′, then πn(u) �= πn(u′). Let
N be the first such number. Then

θ(z)(u) =
{
πN
DS(z)(πN

S (u)) if u ∈ Sz

0 otherwise.

The functions defined above satisfy the conditions that make the following
Lemma, analogous to Lemma 9, work.

Lemma 12. There exists a function rT : ZT → T (Z) so that for every (X, c),
rT ◦ hc

T = Thc, and for every n ≥ 0,Tπn ◦ rT = πn
T .

Proof. (Sketch) The proof is much like the one of Lemma 9, defining rPS =
ζ(PrS), rSE = η(rS)E and rDS = θ(DrS). ��

The rest of the results of Section 3 are valid in Set, yielding the following
Theorem:

Theorem 2. Every probabilistic Kripke polynomial functors has a final
coalgebra.

406 I.D. Viglizzo

5 Related Work and Open Questions

There exist in the literature other ways of obtaining final coalgebras from the
final sequences for a functor. We briefly review them and point out similarities
and differences with the approach presented here.

A simpler way of finding the coalgebra structure for Z in the category Set,
is shown in Kurz and Pattinson, [10]. First, a coalgebra (C, δ) is constructed by
taking a coproduct (C, δ) =

∐
z∈Z(Cz, δz) where (Cz , δz) is such that for some

c ∈ Cz, hδz

(c) = z. Then the map hδ : C → Z is surjective, and therefore has
a right inverse o : Z → C which allows to define γ′ : Z → T (Z) by letting
γ′ = (Thδ)δo.

C
δ ��

hδ

))

TC

Thδ

��
Z

γ′
��

o

**

TZ

The function γ′ is not necessarily the structure map of the final coalgebra; some
more work would need to be done to show that Z is actually the carrier of the
final coalgebra. This approach for finding γ′ does not work in general in Meas,
since surjective functions do not always have a measurable right inverse, and
it is also less instructive about the structure of the final coalgebra than the
construction presented here.

In [11], van Breugel et al. consider the functor M of subprobabilities over a
measurable space. Given a countable set Act, coalgebras for MAct, the Act-fold
product of M are models of labelled Markov processes. The construction of the
final coalgebra of the functor MAct is performed using the the connection of the
final sequence for this functor with the one for the probabilistic powerdomain
in topological spaces. Furthermore, they prove that the final coalgebra can be
regarded as a Polish space.

In [12], Worrell shows a different way to get final coalgebras from final se-
quences in Set. One of the referees for this article has outlined how this method
would also work in the category Meas. The idea is that the ωop sequence can
de extended beyond the limit. The key observation to develop this approach is
that for the functor Δ, the connecting map Δω! : Δ(P) → P can be proved to
be injective using the π-λ theorem.

In [1], we presented an application to Economics. To model beliefs of agents
in a game with incomplete information, one wants to solve equations of the
form X = Δ(M × X) for some fixed measurable space M . In this way, an
element x ∈ X is identified with the probability distributions (beliefs) that x
has on the state of nature, represented by the space M , and on the beliefs of
the other players. A final coalgebra provides solutions for these equations up to
isomorphisms.

The most interesting question at this point is what is the most general class
of functors to which this method for constructing the final coalgebras can be
applied. This question may have different answers in different categories. One is

Final Sequences and Final Coalgebras for Measurable Spaces 407

tempted to venture that it is related to the work by Worrell [12] and Adámek
[13] on final sequences. This characterizations would prove the expressiveness of
the languages introduced in [1].

References

1. Moss, L.S., Viglizzo, I.D.: Harsanyi type spaces and final coalgebras constructed
from satisfied theories. Electronic Notes in Theoretical Computer Science 106
(2004) 279–295

2. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inform. and
Comput. 94 (1991) 1–28

3. deVink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems:
a coalgebraic approach. Theoretical Computer Science 221 (1999) 271–293 ICALP
’97 (Bologna).

4. Moss, L.S., Viglizzo, I.: Final coalgebras for functors on measurable spaces. Infor-
mation and Computation (2005) Accepted, under revision.

5. Heifetz, A., Samet, D.: Topology-free typology of beliefs. Journal of Economic
Theory 82 (1998) 324–341

6. Giry, M.: A categorical approach to probability theory. In: Categorical aspects
of topology and analysis. Volume 915 of Springer Lecture Notes in Mathematics.
Springer, Berlin-New York (1982) 68–85

7. Kechris, A.S.: Classical Descriptive Set Theory. Springer-Verlag, New York (1995)
8. Andersen, E.S., Jessen, B.: On the introduction of measures in infinite product

sets. Danske Vid. Selsk. Mat-Fys. Medd. 25 (1948) 8
9. Halmos, P.R.: Measure Theory. D, Van Nostrand Company, Inc., New York, N.

Y. (1950) xi + 304 pp.
10. Kurz, A., Pattinson, D.: Definability, canonical models, compactness for finitary

coalgebraic modal logic. In: CMCS 2002: coalgebraic methods in computer science
(Berlin). (Volume 65 of Electron. Notes Theor. Comput. Sci.)

11. van Breugel, F., Mislove, M., Ouaknine, J., Worrell, J.: Domain theory, testing
and simulation for labelled Markov processes. Theoret. Comput. Sci. 333 (2005)
171–197

12. Worrell, J.: Terminal sequences for accessible endofunctors. In: CMCS’99 Coalge-
braic Methods in Computer Science (Amsterdam, 1999). Volume 19 of Electron.
Notes Theor. Comput. Sci. Elsevier, Amsterdam (1999) 15 pp. (electronic)

13. Adámek, J.: On final coalgebras of continuous functors. Theoret. Comput. Sci.
294 (2003) 3–29 Category theory and computer science.

Bireachability and Final Multialgebras

Micha�l Walicki�

University of Bergen, Department of Informatics,
michal@ii.uib.no

Abstract. Multialgebras generalise algebraic semantics to handle non-
determinism. They model relational structures, representing relations as
multivalued functions by selecting one argument as the “result”. This
leads to strong algebraic properties missing in the case of relational
structures. However, such strong properties can be obtained only by
first choosing appropriate notion of homomorphism. We summarize ear-
lier results on the possible notions of compositional homomorphisms of
multialgebras and investigate in detail one of them, the outer-tight ho-
momorphisms which yield rich structural properties not offered by other
alternatives. The outer-tight homomorphisms are different from those
obtained when relations are modeled as coalgebras and the associated
congruence is the converse bisimulation equivalence. The category is co-
complete but initial objects are of little interest (essentially empty). On
the other hand, the category does not, in general, possess final objects for
the usual cardinality reasons. The main objective of the paper is to show
that Aczel’s construction of final coalgebras for set-based functors can be
modified and applied to multialgebras. We therefore extend the category
admitting also structures over proper classes and show the existence of
final objects in this category.

1 Introduction

In the tradition of algebraic specifications, nondeterminism has been modeled
by means of multialgebras, that is, algebras where operations may return not
only single elements but also sets thereof, e.g., [10,11,13,25,26]. Multialgebras, or
variants of power structures, have been given some attention also in the math-
ematical community, e.g., [19,20,7,22,4,17], with the seminal work [14,15] which
introduced them as “algebras of complexes” to represent relational structures
and demonstrated representability of Boolean algebras with operators by such al-
gebras. [3] gives a comprehensive overview. Some variants disallow empty result-
sets, e.g., [7,24], but most do not. Then, applying the standard isomorphism

A1 × ...×An → P(A) � P(A1 × ...×An ×A), (1)

one obtains another representation of relational structures, although with more
algebraic properties, as will be observed below. This is the variant of multialge-
bras we will be using.
� Research partially supported by the Norwegian Research Council project MoSIS.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 408–423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bireachability and Final Multialgebras 409

The standard requirement put on a function φ : A → B between two rela-
tional structures in order to obtain a homomorphism is preservation of all basic
relations – for each relation symbol R :RA(a1...an, a)⇒RB(φ(a1)...φ(an), φ(a)).
This is extremely weak notion (e.g., such homomorphisms do not preserve even
positive inclusions, the associated congruence is simply equivalence). Conse-
quently, one finds in the literature numerous alternative, and stronger, require-
ments. In fact, the problem which we are addressing is that such proposals are
too numerous. Of course, the choice of the notion of homomorphism can often
depend on the specific context and need not be made uniformly once and for
all. But it is not certain that the possibility of such a choice is itself a virtue
rather than a nuisance (especially, if we compare to the tradition of universal
total algebra with the unique and powerful notion of homomorphism).

In earlier work, [23], we have shown that, restricting the possible definitions
of relational/multialgebraic homomorphisms to a reasonable and almost uni-
versally followed format, there are only nine choices which are compositional.
Investigation of these categories showed that only few of them are finitely com-
plete and cocomplete. From the point of view of the semantics of (algebraic)
specifications, it is desirable that the model category possesses canonical (initial
or final) objects of interest. Although we have investigated only the most generic
situation of the whole category of all Σ-algebras for a given signature Σ, the
canonical models (when existing) were of minimal relevance (basically, empty).

This paper addresses one of the earlier investigated categories which does not,
in general, possess final objects. The reason for that is the same as the reason for
which the categories of coalgebras for functors involving power-set do not possess
final objects – the cardinality reasons which require one to step over to the proper
classes (or limit the cardinality of power-set.) We show that, making that step,
we obtain final multialgebras of quite interesting nature which, in some sense,
are dual to final coalgebras. The homomorphisms of multialgebraic structures
in the studied category carry a similar duality to the homomorphisms induced
by the coalgebraic model of (binary) relations, while the associated congruence
relations are converse bisimulations. The obtained category is cocomplete and
we expect other positive results: it is, probably, complete; the homomorphisms
have stronger preservation/reflection properties than the traditional (weak) ones;
final objects can also be obtained for axiomatic theories. All these “probable”
issues remain, however, for the future work. At the present, we only consider the
existence of final objects and comment briefly their character.

Section 2 gives the basic definitions, summarises earlier results and signals
some possible alternatives. Section 3 presents the category of interest, “outer-
tight”, focusing on the notion of its congruence – bireachability. It also describes
the final objects (when these exist). Section 4 generalizes this category by al-
lowing algebras over proper classes, shows its cocompleteness and the existence
of final objects. The concluding section 5 lists some open problems, suggesting
also improvements and further generalizations of the obtained results. The main
aspects of central constructions are summarized as proof ideas – the complete
proofs will be available in a forthcoming technical report.

410 M. Walicki

2 Background

Multialgebras are many-sorted algebras where operations can return (possibly
empty) sets of values rather than unique values. Following [8], (one-sorted) mul-
tialgebraic operation R on a set X can be seen as a dialgebra R : F (X) → P(X)
in the category SETF

P , where functor F gives the source of the operation and
P is the covariant existential-image power-set functor, i.e., sending a function
φ : A → B onto P(φ)(X) = {φ(x) | x ∈ X}, for X ⊆ A. The variations in the
definitions of homomorphisms to be encountered below could be then seen as
variations of the morphisms of dialgebras (requiring, in addition, lax transforma-
tions). Less abstractly, we use the isomorphism (1.1), and view a multialgebra
as a relational structure where, for each relation, one argument is designated as
its “result” and used for composition with other relations.

Definition 2.1. For a signature Σ = 〈S,F〉, a Σ-multialgebra M is given by:

– a (family of) carrier set(s) |M | = {sM | s ∈ S},
– a function RM : sM1 ×...×sMn → P(sM) for each R : s1×...×sn → s ∈ F , with

composition defined through additive extension to sets, i.e. RM (X1, ...,Xn) =⋃
xi∈Xi

RM (x1, ..., xn).

The only structures addressed in the paper are multialgebras, so “multialgebra”
and “algebra” will be used interchangeably. We assume a given signature with
R ranging over all function/relation symbols.

Selection of the “result” argument corresponds, in a sense, to turning our con-
siderations to binary relations with the additional operation of tupling the argu-
ments. Composition of relations R1 : X11...X1n → X1, ..., Rk : Xk1...Xkn → Xk

and R : X1...Xk → X , corresponds to application of R to the tupling 〈R1...Rk〉.
We will freely switch between relational and functional notation, so the composi-
tion can be written as R(R1(x1)...Rk(xk)) or 〈R1...Rk〉;R. We write composition
in diagrammatic order, R;φ, resp. φ;R, assuming implicitly φ to be binary (ho-
momorphism or, strictly speaking, a tuple 〈φ1, ..., φn+1〉 of unary functions, for
each relevant argument/sort i.) The composition is, as just explained, an abbre-
viation for the multialgebraic one, i.e.:

〈〈a1...an〉, b〉 ∈ R;φ ⇐⇒ ∃a : 〈〈a1...an〉, a〉 ∈ R ∧ 〈a, b〉 ∈ φn+1
resp. 〈〈a1...an〉, b〉 ∈ φ;R ⇐⇒ ∃b1...bn : 〈ai, bi〉 ∈ φi ∧ 〈〈b1...bn〉, b〉 ∈ R (2)

Having made these precautions, we will write things as if all relations were binary,
algebras were one-sorted and homomorphisms simple functions (and not their
families), but all considerations apply to the general case.

Selection of the “result” among the relational arguments leads to more al-
gebraic structure reflected by homomorphisms. (In particular, derived operators
of a multialgebra are analogous to those of classical algebra: for a signature
Σ, the term structure TΣ is itself a Σ-algebra, and preservation/reflection of Σ
operations leads to the corresponding behaviour of the derived operators. For re-
lational structures, derived operators are just boolean operators only very weakly

Bireachability and Final Multialgebras 411

related to the actual signature and not necessarily preserved by the homomor-
phisms preserving the basic relations. [5], V.3, p.203, considers this the reason
for the subordinate role of homomorphisms in the study of relational structures.)
However, the study of the obtained structure is not significantly simplified. As
a matter of fact, the number of possible definitions of homomorphisms, con-
gruences, etc. does not decrease. As the first step towards simplification of the
rather complicated picture, we have earlier in [23] classified compositional ho-
momorphisms of (relational structures modeled as) multialgebras and checked
finite (co)completeness of the respective categories. We recall now these results
in order to motivate our choice of the outer-tight homomorphisms.

Definition 2.3. A definition Δ[] of a function φ : |A| → |B| being a homo-
morphism of the multialgebraic structures A→ B has the form:

Δ[φ] ⇐⇒ l1[φ];RA; r1[φ] #$ l2[φ];RB; r2[φ]

where l[]’s and r[]’s are relational expressions (using only relational composition
and converse), and #$ ∈ {=,⊆,⊇}.
One can certainly consider other formats but most proposed definitions of homo-
morphisms conform to this one as, in particular, do all compositional definitions
which we have ever encountered.

Definition 2.4. A definition Δ is compositional iff for all φ : A → B, ψ : B →
C, we have Δ[φ] & Δ[ψ] ⇒ Δ[φ;ψ], i.e.:

l1[φ];RA; r1[φ] #$ l2[φ];RB; r2[φ] & l1[ψ];RB; r1[ψ] #$ l2[ψ];RC ; r2[ψ]
⇒ l1[φ;ψ];RA; r1[φ;ψ] #$ l2[φ;ψ];RC ; r2[φ;ψ]

Theorem 2.5 ([23]). A definition is compositional iff it is equivalent to one of:

RA;φ #$ φ;RB φ−;RA;φ # RB φ−;RA # RB;φ− RA # φ;RB;φ−

where #$ ∈ {=,⊆,⊇} and # ∈ {=,⊇}.
The following table summarises the naming conventions for the compositional
cases. The name consists of two parts, the first (inner/left/...) indicating one
of the four main cases in the theorem and the second (closed/tight/weak) the
choice of the set relation. For the weak case there are no further distinctions,
since all such cases are, in fact, equivalent. (They would not be equivalent if
(homo)morphisms were relations – [6] analyses these four weak cases of “simu-
lations”, though without addressing the issue of (co)completeness.)

RA;φ #$ φ;RBφ−;RA;φ # RBφ−;RA # RB;φ−RA # φ;RB;φ−

inner left outer right
closed: ⊇ MAlgIC(Σ) MAlgLC(Σ) MAlgOC(Σ) MAlgRC(Σ)
tight: = MAlgIT (Σ) MAlgLT (Σ) MAlgOT (Σ) MAlgRT (Σ)
weak: ⊆ MAlgW (Σ)

412 M. Walicki

Table 1. Finite limits and co-limits in the categories of multialgebras

initial co-prod. co-equal. final prod. equal.
MAlgW (Σ) + + + + + +
MAlgIC(Σ) − − − + − −
MAlgIT (Σ) − − + − − −
MAlgLC(Σ) − − + + − −
MAlgLT (Σ) − − + − − −
MAlgOC(Σ) + + − + − +
MAlgOT (Σ) + + + +/− ? +
MAlgRC(Σ) + + + + + +
MAlgRT (Σ) + − − − − +

The earlier results concerning finite (co)completeness of these categories are
summarised in table 1.

The present paper addresses the category of outer-tight homomorphisms (the
double row in the table) and, in particular, the position marked +/–. First,
however, a few words about the possible alternatives.

Remark 2.6. Viewing (binary) relations as coalgebras for the existential-image
power-set functor, yields the homomorphism condition RA;φ = φ;RB, that
is, the inner-tight homomorphisms. As we see from the table, the category
MAlgIT (Σ) has rather few (co)limits. This, of course, looks suspicious, since we
know from [21] that any category of coalgebras over sets will be, at least, cocom-
plete. The difference is, however, due to the fact that although the homomorphism
conditions are the same, the respective representations of relations are not:

The absence of final objects is here due to the fact that the table addresses
only categories based on sets. The non-existence of colimits is due to the algebraic
character of operations, in particular, constants which correspond to predicates.
For instance, for a signature with a single sort and constant c :→ S, the category
MAlgIT (Σ) has no initial multialgebra I – for any (in particular, empty) cI there
is no IT-homomorphism φ : I → A making φ(cI) = cA when |cI | < |cA|. In a
coalgebra, a (predicate) constant is an arrow c : X → 2 and this enables one to
achieve commutativity, cA;φ = φ; cB , also when X = ∅.

In fact, the meaning of the condition is different in the two cases: for coalge-
bras it requires equality of two functions while for multialgebras of two sets. As
an example, take the carrier X = {1, 2} and one constant c. Let, in a multialge-
bra M , cM = {1, 2}, while in a coalgebra C, c(1) = c(2) = #. Let X ′ = {1, 2, 3}
and cM

′
= {1, 2, 3} while in a coalgebra C′, c′(1, 2, 3) = #. Although both M and

C, resp., M ′ and C′ represent the same predicates, the inclusion i : X → X ′ is a
coalgebraic homomorphism, since indeed c; i = i; c′, but it is not a multialgebraic
IT-homomorphism since i(cM) = i({1, 2}) = {1, 2} �= {1, 2, 3} = cM

′
.

This might be taken as a suggestion that the multialgebraic representation of
relations is not the most successful one. However, using coalgebras as models
of relations is by no means straightforward. For the first, one has to decide on
whether to use the functor P(Xn) or 2(Xn) – the difference in homomorphisms

Bireachability and Final Multialgebras 413

will be similar to that suggested in the above remark (between equality of sets
and of functions). In either case one has to decide which power-set functor to
use. Any choice involves sacrificing the pleasant and well understood behavior of
polynomial functors. Additional complications arise if one wants to model many-
sorted relations. (Although these are hardly theoretically demanding, they are
complications, at least of the same order as in the case of many-sorted algebras.)
Multialgebraic model, on the other hand, is in agreement with the traditional
notion of relation/predicate as a subset. It deals with many-argument, as well
as many-sorted, relations in the uniform and elementary way. In addition, one
should remark that multialgebras were introduced not merely as representations
of relational structures but of Boolean algebras with operators (central, if not
always recognised, in modal logics, as Kripke-frames are such algebras) and, on
the other hand, as a generalisation of algebraic semantics to handle nondetermin-
ism (most common institutions can be naturally embedded into the institution
of multialgebras, with weak homomorphisms as morphisms in the model cate-
gories, [16]). The investigation of homomorphisms arises from this background
and is motivated primarily by the search for the interesting canonical objects
(initial or final) for algebraic specifications with nondeterminism.

Now, weak homomorphisms are those which are most commonly used. Unfor-
tunately, this is an extremely weak notion which is also reflected in its standard
name. Although the initial objects exist, they are of little interest having all
predicates and relations empty. Lifting existence of initial objects to the ax-
iomatic classes depends, of course, on the language one wants to use, and this
is by no means a clarified issue. Most approaches suggest, at least, the use of
inclusions, but this again leads only to empty relations in the initial objects. Fur-
thermore, even simplest formulae are not preserved. E.g., having two constants
a, b interpreted in A as {1}, resp., {1, 2} makes A |= a ⊆ b. But the inclusion,
which is a weak homomorphism, into B with aB = {1, 3} and bB = {1, 2} does
not preserve this formula. Counterexamples can be easily found also when we
restrict attention to preservation under homomorphic images. One way would be
to design a specific syntax ensuring adequate restrictions of the model classes, as
was done, for instance, with membership algebras, [18]. But this amounts to an
application-oriented specialisation of the problem which we are not addressing
here. (Similar remarks apply to the other (co)complete category MAlgRC(Σ).)

The OT-homomorphisms seem to possess many desirable properties absent
in other cases, especially that of weak homomorphisms. This paper character-
izes final objects in the category MAlgOT (Σ) and proves their existence. Now,
the +/– in the table 1 indicates that final objects can be constructed only in
special cases. In general, they do not exist for the simple cardinality reasons. In
the following section, we recall a series of basic facts about this category, and
illustrate the character of final objects (when they exist). We also focus on the
associated notion of congruence which can be seen as the converse bisimulation
equivalence. Then, we will extend the category by allowing algebras with carri-
ers being proper classes. In this category, final objects do exist, and we show it

414 M. Walicki

in the way analogous to that in which the corresponding fact is proven for the
categories of coalgebras for “set-based” functors in [2].

3 The Category Outer-Tight

For Σ = 〈S,F〉, an OT-homomorphism, φ : A → B, is a (family of) function(s)
φi : sAi → sBi , for each si ∈ S, such that for every R ∈ F :

φ−;RA =RB;φ−

in functional notation :∀b1...bn∈|B| : RA(φ−1 (b1)...φ−n (bn))=φ−n+1(R
B(b1...bn))

which for constants specializes to : cA =φ−(cB).

This requirement is strictly stronger than that of the weak homomorphism. Since
we will be dealing exclusively with OT-homomorphisms, we will not qualify the
name – saying “homomorphism”, we will always mean an OT-homomorphism.

The following few facts are hardly surprising but they are used in later results.

Fact 3.1. An OT-homomorphism φ is

1) mono iff it is injective;
2) epi iff it is surjective;
3) iso iff it is bijective.

The following observation will not be referred to later on, but it is used in a
couple of proofs of the results mentioned in the sequel.

Given A,A′ ∈ MAlgOT (Σ), A′ is a subalgebra of A, A′ (A, iff the inclusion
|A′| ⊂ |A| is a homomorphism. (The categorical definition would not introduce
any significant changes.) In general, an inclusion need not be a homomorphism.
But the following fact holds.

Fact 3.2. Inclusions between subalgebras of the same algebra are OT-homomor-
phisms. I.e., if A1 (A and A2 (A and |A2| ⊂ |A1|, then also A2 (A1.

The following fact ensures that the diagram of subalgebras is directed.

Fact 3.3. For an algebra A and every set X ⊆ |A|, there is a smallest subalgebra
AX (A with X ⊆ |AX |.
Thus, if A1, A2 (A, then there is also (a smallest) A3 (A, with |A1| ∪ |A2| ⊆
|A3|. In the proof, one extends appropriately the set X or, like in the classical
case, verifies that intersection of subalgebras is a subalgebra.

3.1 Bireachability

In order for the quotient construction performed on a carrier of a (classical) Σ-
algebra to yield a (quotient) Σ-algebra, the equivalence must be a Σ-congruence.
However, for any (classical) algebra A and any equivalence ∼ on its carrier, the

Bireachability and Final Multialgebras 415

quotient A/∼, with operations collecting the possibly non-congruent results (i.e.,
defined by RA/∼([a]) = {[n] : n ∈ RA(a′), a′ ∈ [a]}), is a multialgebra, and the
construction works in the same way if we start with a multialgebra, and not
only a classical algebra. Defining the mapping q : A → A/∼ by q(a) = [a], the
operations are obtained as RA/∼ = q−;RA; q. In general, this mapping is only a
weak homomorphism, just like the kernel of a weak homomorphism is, in general,
only an equivalence. (This correspondence is perhaps the clearest expression of
the weakness of this homomorphism notion.) OT-homomorphisms come along
with a much stronger notion of a congruence.

Definition 3.4. An equivalence ∼ on A is OT-congruence iff:∼;RA;∼=∼; RA

Whenever ∼ is an equivalence, the inclusion ∼;R;∼ ⊆ ∼;R is equivalent to:

R;∼ ⊆ ∼;R. (3)

Any equivalence satisfying this last condition is OT-congruence, since the oppo-
site inclusion ∼;RA;∼ ⊇ ∼;RA holds trivially for any reflexive ∼.

This characterisation of OT-congruence can be visualized as the converse
of (bi)simulation. (Bi)simulation requires propagation of ∼ forward, while OT-
congruence backward – we should be therefore allowed to call this relation
“bireachability”.1 On the drawing, the dotted lines indicate the required ex-
istence implied by the regular lines:

(bi)simulation bireachability

b
∼

b′

a

R

��

∼
a′

R

�� b
∼

b′

a

R

��

∼
a′

R

��

∼;R ⊆ R;∼ R;∼ ⊆ ∼;R

(4)

Henceforth, we will use the words “bireachability” and “OT-congruence” as syn-
onyms. The same meaning will be attached also to “congruence”, unless the word
is qualified in some other way.

Fact 3.7. If φ : A→ B is OT then so is its kernel ∼φ.

The opposite does not hold generally; even if the kernel of φ is OT, φ itself may
be not. We have a slightly weaker claim.
1 We are not addressing any details concerning bisimulations. For the sake of analogy,

since OT-congruences are equivalences, it is most convenient to think of bisimula-
tion defined as a symmetric simulation, rather than merely as a simulation with
converse being also a simulation. Exact duality obtains between our bireachability
and the equivalences satisfying the condition that for every R : ∼; RA; ∼ = RA; ∼,
i.e., IT-congruences or bisimulations in (3.6), referred to in remark 2.6. In [4] such
equivalences were called “preserving the arguments” (as opposed to congruences
“preserving the values”). In [9], the relation dual to mere simulation, without the re-
quirement of equivalence, was called “opsimulation,” but the name “biopsimulation”
does not seem very appealing.

416 M. Walicki

Fact 3.8. If ∼ is a bireachability then the mapping q : A → A/∼, q(a) = [a], is
an OT-epimorphism.

This allows us to obtain epi-mono factorisation of morphisms in MAlgOT (Σ).

Fact 3.9. For every homomorphism h : A → B there is a (regular) epi e : A →
Q and mono m : Q → B such that h = e;m.

Bireachability on a Σ-multialgebra has itself a multialgebraic Σ-structure.

Definition 3.10. Given a bireachability ∼ on an A ∈ MAlgOT (Σ), we define
A∼ ∈ MAlgOT (Σ):

– |A∼| = {〈a1, a2〉 : a1, a2 ∈ |A| ∧ a1 ∼ a2}, and
– fA∼

(〈a1, b1〉...〈an, bn〉) = {〈x, y〉 : x ∈ fA(a1...an)∧y ∈ fA(b1...bn)∧x ∼ y},
which yields

– for constants cA
∼

= {〈x, y〉 : x, y ∈ cA ∧ x ∼ y}.

Fact 3.11. Given a bireachability ∼ on A. 1) The two projections π1, π2 : A∼ →
A, πi(〈a1, a2〉) = ai are OT-homomorphisms. 2) Moreover, A/∼ with the quotient
homomorphism q : A → A/∼ is their coequalizer.

Maximal bireachability. Given a collection C = {∼i: i ∈ I} of equivalences
(on a set/algebra A), one defines their lub as the transitive closure of their
union, i.e., ∼ =

∨
i∼i = (

⋃
i∼i)∗. Explicitly, a ∼ a′ iff there exists a finite

sequence a = a0a1...an = a′ and a respective sequence of the equivalences from
C, ∼1∼2 ... ∼n, such that ai ∼i+1 ai+1 for all 0 ≤ i < n.

The same construction applies also to bireachabilities. The following lemma
will be of crucial importance.

Lemma 3.12. Given a collection C = {∼i: i ∈ I} of bireachabilities on a mul-
tialgebra A, then ∼ =

∨
i∼i is a bireachability.

Notice that the maximal bireachability need not be the standard unit relation.
For instance, for the algebra b1 b2

a1

R
�� , the elements b1 and b2 cannot be related

by any bireachability, according to the observation (3.5).
One verifies easily that the construction yields, in fact, the least upper bound

– with respect to the subset relation – of the argument bireachabilities. Thus, the
collection of all congruences on a multialgebra is a complete upper semilattice
with the least element being identity, and so it is a complete lattice. (Greatest
lower bounds are not, however, obtained as mere intersections.)

Fact 3.13. Let B (A, ∼A be a bireachability on A, and ∼B ⊆ ∼A be restriction
of ∼A to the carrier of B, i.e., ∼A ∩ |B|× |B|. Then ∼B is bireachability on B.

Bireachability and Final Multialgebras 417

3.2 Final Objects in MAlgOT (Σ)

Final objects do not exist in MAlgOT (Σ) due to the usual cardinality reasons.
(A multialgebra for an operation f : S → S is essentially a coalgebra for the
existential-image power-set functor.) As stated in the introduction MAlgOT (Σ)
is finitely cocomplete but the existence of final objects has been shown only for
a very special case. We show here such a case mainly to illustrate the interesting
features of the final objects.

Example 3.14. Let Σ = 〈{s1, s2}, {c :→ s1; f : s1 → s2}〉. The final object Z
in MAlgOT (Σ) can be described as follows. (Expressions like “∅1” or “fc∅” are
simple names – mnemonic devices – not any sets or function applications.)

– sZ1 = {c, ∅1}, sZ2 = {fc, f∅, fc∅, ∅2}
– cZ = {c} and fZ(c) = {fc, fc∅}, fZ(∅1) = {f∅, fc∅}.

In words, each sort contains only elements needed to distinguish any combination
of operations returning the elements of this sort. In sZ1 it is enough with one
element to interpret the constant. In addition, there is always a“junky” element
not belonging to the result of any operation, ∅1. sZ2 contains one such element,
∅2, as well as one element characteristic for (belonging only to) fZ(c) � fc, one
for fZ(∅1) � f∅ and one for fZ(c) ∩ fZ(∅1) � fc∅.

If we had two constants of sort s1, we would obtain corresponding collection
{c, d, cd, ∅1} in sZ1 , while sZ2 would now contain characteristic element for every
possible fZ(x) when x ∈ sZ1 , as well as for every intersection

⋂
x∈X f

Z(x) for
every possible X ⊆ sZ1 .

Viewing the set of results of any application, fZ(x), as the set of possible (or
nondeterministic) observations of its argument x, the construction amounts to
providing the minimal number of elements needed for every set of (every series
of) observations to have its unique characteristic result.

The most general form of this construction can be obtained when signature
does not contain any “loops”. Call a signature “acyclic” if there is no derived
operator t with target sort occurring also among the argument sorts.

Fact 3.15. If Σ is acyclic then MAlgOT (Σ) has final objects.

We will now extend the category MAlgOT (Σ) to allow for the existence of final
objects without any restrictions on the signature. As in the case of coalgebras,
we have to either impose some cardinality limits or else leave the set-based
categories and allow algebras with proper classes as carriers. The former case
leads to rather special conditions2 and so we follow the later alternative.

2 E.g., final objects can be obtained if algebras considered are such that every element
of the carrier can be reached from at most finite number of other elements in at most
finite number of ways – the “reachability” restriction which is, in a sense, dual to
restricting the P functor to Pfin returning only finite sets.

418 M. Walicki

4 The Category Outer-Tight with Classes

Given a Σ with sort symbols {s1...sn}, we allow algebras where carrier of each
sort is a class. Likewise, operations and constants can return proper classes.3

But we will need the assumption that

each such algebra is a colimit of its small subalgebras and, more-
over, the category contains all algebras which are such colimits
(over arbitrary and, possibly, large diagrams).

(5)

Since colimit arrows are jointly epi (and, by fact 3.1, our epis are surjective) and
the diagram of (small) subalgebras is directed (fact 3.3), the above assumption
implies that:

for every algebra A and set X ⊆ |A|, there is a small subalgebra
sA (A with X ⊆ |sA|. (6)

We denote this category MAlg∗OT (Σ). (We will comment on more specific condi-
tions which could replace (4.1) ensuring that all our constructions yield appro-
priate results in the concluding section.)

A bireachability R on an A which is a colimit of its small subalgebras Ai, is
itself a colimit of its small subalgebras Ri = R∩|Ai|×|Ai|, i.e., R ∈ MAlg∗OT (Σ).
Lemma 3.12 applies unchanged when the collection is a proper class of small
bireachabilities. Performing the same standard construction on the collection of
all small bireachabilities on a given multialgebra yields the following lemma.

Lemma 4.3. ∀A∈MAlg∗
OT (Σ) there exists a unique maximal bireachability ∼A.

The following easy technicality will be needed in the proof of the next lemma.
(Notation follows the diagram below.)

Fact 4.4. Let {Ai : i ∈ I} be the class of small subalgebras of A (A being their
colimit), R be a congruence on A and Ri the respective restrictions of R to Ai.
Then the family of inclusions {ri : Ri ↪→ R : i ∈ I} is jointly epi and, for every
c : A→ C, if ∀i ∈ I : πi1; ai; c = πi2; ai; c then π1; c = π2; c.

The result which we will actually need is the following one.

Lemma 4.5. Given an algebra A ∈ MAlg∗OT (Σ) and a congruence R on A, the
quotient A/R is a colimit of its small subalgebras.

3 This might cause some foundational worries since functions returning classes, and
hence also indexed families of classes, are not legal objects in the most com-
mon class theory, NBG. This signals that we must use an alternative foundation,
Grothendieck’s hierarchy of universes being the natural candidate. We use the words
“small”/“set” and “large”/“class” in the sense of membership in the lowest level U1

versus in some higher level Ui \ U1 (for i ≥ 2), respectively.

Bireachability and Final Multialgebras 419

Proof: We consider the following (schema of the) diagram:

R Rj
� � rji

πj1

��

πj2

��

Ri
� � ri ��

πi1

��

πi2

��

R

π1

��

π2

��
A Aj

� � aji

qj

����

Ai
� � ai ��

qi

����

A

q

����
ax

++

A/R Aj/Rj

� � arji

xj

,,88888
888888

888888
888888

888888
888888

888 Ai/Ri

� � ari ��

xi

��999
9999

9999
9999

9999
9999

9 A/R

x

��
X

A, resp. R, stand for the whole diagrams consisting of the respective small
subalgebras Ai of A and Ri = R ∩ |Ai| × |Ai| (by Fact 3.13, Ri (R) with the
inclusion arrows aji, resp. rji. A with inclusions ai is colimit of A. The collection
of all ri’s, resp., all ai’s is jointly epi. All qi’s are epi.

The diagram A/R contains all quotient algebras Ai/Ri and inclusion arrows
between them. Since for each i : Ri = R ∩ |Ai| × |Ai|, we have an inclusion
aji : Aj ↪→ Ai iff rji : Rj ↪→ Ri. But then, this implies the existence of a mono
arji : Aj/Rj ↪→ Ai/Ri . For each Ai/Ri , we can obtain an isomorphic algebra by
replacing every element [a]Ri by [a]R (though [a]Ri ⊆ [a]R and the inclusion can
be proper, whenever R(a1, a2) and a1, a2 ∈ |Ai|, then also Ri(a1, a2)). This –
making all monos ari and arij into inclusions – simplifies the argument below.

We want to show that A/R with all inclusions ari is colimit of A/R. Obviously,
for each (existing) arji we do have that arj = arji; ari, since all arrows are
inclusions. So assume an X with arrows xi : Ai/Ri → X such that xj = arji;xi

for all (relevant) i, j.
1. Since qj ; arji = aji; qj , we obtain that for all (relevant) j, i : xj = arji;xi ⇒

qj ;xj = qj ; arji;xi = aji; qi;xi. That is, X with qi;xi is a commutative cocone
over A. Since A is colimit of A, we obtain a unique arrow ax : A→ X such that
for all i : qi;xi = ai; ax.

2. For every i, since πi1; qi = πi2; qi, so also πi1; qi;xi = πi2; qi;xi and by 1,
πi1; ai; ax = πi2; ai; ax. By Fact 4.4, we thus have π1; ax = π2; ax.

3. By Fact 3.11, (A/R, q) is coequalizer of π1, π2, and thus we obtain a unique
arrow x : A/R → X making q;x = ax. This is the arrow we are looking for:

4. Commutativity: qi; ari;x = ai; q;x
3.= ai; ax

1.= qi;xi. But qi is epi and so
ari;x = xi.

5. Uniqueness: assume another arrow y : A/R → X with ari; y = xi for all
i. Then also, qi;xi = qi; ari; y = ai; q; y and thus, for every i : ai; q; y = ai; q;x.
Since ai are jointly epi, this means that q; y = q;x and now, since q is epi, x = y.

�

420 M. Walicki

4.1 Cocompleteness and Final Objects of MAlg∗
OT (Σ)

The positive results for the category MAlgOT (Σ) from table 1, generalise to
the extended category MAlg∗OT (Σ). We only mention the results needed in the
construction of final objects, suggesting the constructions used in the proofs.4

Proposition 4.6. MAlg∗OT (Σ) has initial objects and coproducts.

Proof Idea: Empty algebra is trivially an initial object.
Consider a class {Ai : i ∈ I} of algebras. Its coproduct is the algebra C whose
carrier is the disjoint union of the carriers of all Ai, with operations defined as:

fC(x) =
{
fAi(x) if for all x ∈ x : x ∈ |Ai|
∅ otherwise

and constants as disjoint unions: cC =
⊎

i c
Ai . The injections ιi : Ai → C are

obviously OT, and C is colimit of small subalgebras (of all Ai’s). �

Proposition 4.7. MAlg∗OT (Σ) has all coequalizers.

Proof Idea: Given two arrows φ1, φ2 : A→ B, we start as usual by considering
the equivalence closure ∼ on B of the relation E = {〈φ1(a), φ2(a)〉 : a ∈ |A|}.
Equivalence classes induced by this relation are denoted B1, B2 Assuming
the global axiom of choice, we can choose the representatives bi ∈ Bi, and the
carrier of the coequalizer object C is the collection of such representatives. (We
may occasionally write [bi] for Bi.)5 Operations are defined by:

b2 ∈ fC(b1) ⇐⇒ B2 ⊆ fB(B1)

which for constants specializes to: bi ∈ cC ⇐⇒ Bi ⊆ cB. The arrow ce : B → C
is the usual ∀x ∈ Bi : ce(x) = bi. By the definition of ∼, it makes φ1; ce = φ2; ce.
Verification that it is OT and of the universality is rather lengthy and technical.

�

We have thus shown that the assumption (4.1), according to which MAlg∗OT (Σ)
contains only those colimits of small algebras which happen to exist there, indeed
is a category with all colimits. The main result is now obtained from the following
lemma (with a straightforward proof).

Lemma 4.8. For a given multialgebra A, let ∼A denote the maximal congru-
ence on A (existing by Lemma 4.3). For any algebra B there is at most one
homomorphism B → A/∼A.
4 Notice that due to the difference in the definition of homomorphism, cocompleteness

of MAlgOT (Σ) is not a special case of the general fact about dialgebras, according
to which the category SETF

G has all colimits preserved by the functor F .
5 In case some of the equivalence classes Bi’s are proper classes, we have to follow the

trick of Dana Scott (quoted in [1], Appendix B) in order to obtain the quotient, i.e.,
to consider as Bi only its subset of the elements having the least possible rank in
the cumulative hierarchy.

Bireachability and Final Multialgebras 421

Theorem 4.9. MAlg∗OT (Σ) has final objects.

Proof: Let C be a coproduct of all small algebras in MAlg∗OT (Σ) (which exists
in MAlg∗OT (Σ) by Fact 4.6). Let ∼C be the maximal bireachability on C (existing
by Lemma 4.3), and let Z = C/∼C . By Lemma 4.5, Z ∈ MAlg∗OT (Σ).

For every small algebra A ∈ MAlg∗OT (Σ), there is (at least one) morphism
A→ C and then, composing it with the quotient morphism C → Z, exactly one
(by lemma 4.8) morphism a : A → Z.

Any other (large)A ∈ MAlg∗OT (Σ) is colimit of its small subalgebras, with the
components ιi : Ai → A. Since there is also (exactly) one morphism ai : Ai →
Z for each small subalgebra Ai (A, the colimit property yields a (unique)
morphism u : A → Z (making ιi;u = ai). But then, since there is such a
morphism u : A→ Z so, by lemma 4.8, it is unique. �

5 Conclusion

Multialgebras lie at the intersection of several research currents. They

– represent relations and, generally, Boolean algebras with operators;
– generalise traditional algebras, in particular,
– provide a fundamental instance of power structure construction;
– with one-argument operations, provide particular examples of coalgebras;
– but can also represent arbitrary coalgebras over polynomial functors (simply

by considering the reversed coalgebra arrows);
– provide a specific and well-motivated example of dialgebras, [8].

The apparently poor algebraic structure and, on the other hand, a multiplic-
ity of choices when generalising most of the standard notions might discourage
investigation of multialgebras. We have argued that, as far as the notion of ho-
momorphism is concerned, the number of choices is, after all, not so large and
in fact limited to one, while further choices are mainly conditioned by this one.
The category of multialgebras with outer-tight homomorphisms is cocomplete
and the associated notion of congruence – bireachability – arises as the converse
of the bisimulation equivalence.

We have shown that the category MAlg∗OT (Σ) of multialgebras (admitting
proper classes as carriers) possesses final objects with interesting structure which
reflects the reachability relation in the way analogous to final coalgebras re-
flecting the similarity relation. We have considered only the class of all Σ-
multialgebras and although we expect the existence of final objects can be lifted
to (some) axiomatic classes, the possibility and scope of this lifting remain to be
investigated. The question which still remains open is the existence of products
which, intuitively, should be related (or even equal) to largest bireachability be-
tween the arguments. Attempts to construct counter-examples have failed and
we are convinced that products do exist in MAlg∗OT (Σ), but the claim and an
explicit construction remain to be demonstrated. There remains also the open

422 M. Walicki

question concerning the more specific conditions, than those given in (4.1), on
the actual algebras to be included in the category MAlg∗OT (Σ). As can be seen
from the proof of lemma 4.6, we must allow constants (unary predicates) to de-
note proper classes. We suspect that the following condition may be sufficient
to ensure the existence of final objects and (co)completeness of the category: for
every operation f in an algebra A : if fA(X) is a set then so is X . Sufficiency of
this condition or, possibly, alternative fomulations remain to be investigated.

References

1. Peter Aczel. Non-well-founded sets. Technical Report 14, CSLI, 1988.
2. Peter Aczel and Nax Mendler. A final coalgebra theorem. In G. Goos and J. Hart-

manis, editors, Category Theory and Computer Science, volume 389 of LNCS, pages
357–365. Springer, 1989.

3. Ivica Bošnjak and Rozália Madarász. On power structures. Algebra and Discrete
Mathematics, 2:14–35, 2003.

4. Chris Brink. Power structures. Algebra Universalis, 30:177–216, 1993.
5. Paul M. Cohn. Universal Algebra, volume 6 of Mathematics and Its Applications.

D.Reidel Publishing Company, 1965.
6. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented

Proof Methods and their Comparison. Cambridge University Press, 1998.
7. George Grätzer. A representation theorem for multialgebras. Arch. Math., 13,

1962.
8. Tatsuya Hagino. A Categorical Programming Language. PhD thesis, Department

of Computer Science, University of Edinburgh, 1987.
9. Claudio Hermida. A categorical outlook on relational modalities and simulations.

In Michael Mendler, Rajeev P. Goré, and Valeria de Paiva, editors, Intuitionistic
Modal Logic and Aplications, volume 02-15 of DIKU technical reports, pages 17–34,
July 26 2002.

10. Wim H. Hesselink. A mathematical approach to nondeterminism in data types.
ACM ToPLaS, 10, 1988.

11. Heinrich Hußmann. Nondeterministic algebraic specifications and nonconfluent
term rewriting. In Algebraic and Logic Programming. LNCS vol. 343, Springer,
1988.

12. Heinrich Hußmann. Nondeterministic algebraic specifications. PhD thesis, Fak. f.
Mathematik und Informatik, Universitat Passau, 1990.

13. Heinrich Hußmann. Nondeterminism in Algebraic Specifications and Algebraic Pro-
grams. Birkhäuser, 1993. [revised version of [12]].

14. Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators i. American J.
Mathematics, 73:891–939, 1951.

15. Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators ii. American
J. Mathematics, 74:127–162, 1952.

16. Yngve Lamo. The institution of multialgebras – a general framework for alge-
braic software development. PhD thesis, Department of Informatics, University of
Bergen, 2002.

17. Rozália Madarász. Remarks on power structures. Algebra Universalis, 34(2):179–
184, 1995.

Bireachability and Final Multialgebras 423

18. José Meseguer. Membership algebra as a logical framework for equational spec-
ification. In In 12th International Workshop on Recent Trends in Algebraic De-
velopment Techniques (WADT’97), volume 1376 of LNCS, pages 18–61. Springer,
1998.

19. Günter Pickert. Bemerkungen zum homomorphie-begriff. Mathematische
Zeitschrift, 53, 1950.

20. H.E. Pickett. Homomorphisms and subalgebras of multialgebras. Pacific J. of
Mathematics, 21:327–342, 1967.

21. Jan J.M.M Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249:3–80, 2000.

22. Dietmar Schweigert. Congruence relations on multialgebras. Discrete Mathematics,
53:249–253, 1985.

23. Micha�l Walicki, Adis Hodzic, and Sigurd Meldal. Compositional homomorphisms
of relational structures. In R. Freivalds, editor, Fundamentals of Computation
Theory, volume 2138 of LNCS. Springer, 2001.

24. Micha�l Walicki and Sigurd Meldal. A complete calculus for the multialgebraic and
functional semantics of nondeterminism. ACM ToPLaS, 17(2), 1995.

25. Micha�l Walicki and Sigurd Meldal. Multialgebras, power algebras and complete
calculi of identities and inclusions. In Recent Trends in Data Type Specifications,
volume 906 of LNCS. Springer, 1995.

26. Micha�l Walicki and Sigurd Meldal. Algebraic approaches to nondeterminism – an
overview. ACM Computing Surveys, 29(1), March 1997.

Parametrized Exceptions

Dennis Walter, Lutz Schröder, and Till Mossakowski

BISS, Department of Computer Science,
University of Bremen

Abstract. Following the paradigm of encapsulation of side effects via
monads, the Java execution mechanism has been described by the so-
called Java monad, encorporating essentially stateful computation and
exceptions, which are heavily used in Java control flow. A technical prob-
lem that appears in this model is the fact that the return exception in
Java is parametrized by the return value, so that method calls actu-
ally move between slightly different monads, depending on the type of
the return value. We provide a treatment of this problem in the general
framework of exception monads as introduced in earlier work by some
of the authors; this framework includes generic partial and total Hoare
calculi for abrupt termination. Moreover, we illustrate this framework by
means of a verification of a pattern match algorithm.

1 Introduction

Many imperative languages allow for manipulating the control flow by means of
exceptions. Particularly extensive use of this possibility is made in Java, where
abnormally terminating statements are used e.g. in order to exit from loops or
method calls. Exceptions therefore also play a prominent role in the design of
program logics for Java.

Generally, imperative languages may be represented in standard higher or-
der logic or in functional programming languages by encapsulating side effects
as monads, a principle introduced by Moggi [9]. The Java exception mechanism
has been modelled by the so-called Java monad [6], an instance of Moggi’s ex-
ception monad transformer [8]. In previous work [16, 14, 15], we have developed
monadic computational logics for generic side effects, and we have extended
these logics with a generic treatment of exceptional termination that subsumes
existing Hoare logics for abrupt termination [4, 5].

A technical problem that appears in the monadic modeling of the Java ex-
ception mechanism is the fact that the return exception in Java is parametrized
by the value to be returned, so that method calls actually move between slightly
different monads, depending on the type of the return value. In previous work [4],
this problem has been treated by a workaround which involves storing the return
value in a global variable. Here, we provide a more elegant solution in the shape of
a monadic wrapper routine for method bodies that shifts the value of the return
exception (which is now treated as a part of the exception, in accordance with
the Java language specification [7]) into the value of the monadic computation.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 424–438, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parametrized Exceptions 425

We also provide suitable Hoare rules for this wrapper. The generic framework
is illustrated by means of a benchmark problem appearing also in [4, 6], the
verification of a pattern match algorithm, thus also providing a first example
application for the calculus presented in [15].

2 Monads for Imperative Programming and Specification

Following seminal work by Moggi [9], monads are being used in both semantics
and programming to formalize and encapsulate side effects in an elegant, func-
tional way; in particular, this idea is one of the central concepts of Haskell [11].
Intuitively, a monad associates to each type A a type TA of computations of type
A; a function with side effects that takes inputs of type A and returns values of
type B is, then, just a function of type A → TB, also called a (B-valued) pro-
gram. This approach abstracts away from particular notions of computation such
as store, non-determinism, non-termination etc.; a surprisingly large amount of
reasoning can in fact be carried out independently of the choice of such a notion.

Formally, there are three ingredients to a monad: the computation type con-
structor T , a lifting operation ret : a → T a for each type a, and a binding
operation >>= : T a → (a → T b) → T b for all types a, b. The intuition
behind these operations is that ret x is a computation without side-effects that
just returns the value x (not to be confused with the return expcetions appearing
further below), and that p >>= f executes the computation p : T a and feeds
the resulting values of type a into the program f : a → T b; this is essentially
sequential composition of statements. A strong monad additionally has an op-
eration t : a × T b → T (a × b), called (tensorial) strength, for all types a, b.
These data are governed by equational axioms requiring associativity of binding,
neutrality of retx w.r.t. binding, and compatibility of the strength with binding
and lifting. A slight complication is caused by the fact that programs a → T b
are in practice typically partial functions; a version of the monad axioms accom-
modating partial functions in such a way that typical monads such as the state
monad of Example 1 below are actually subsumed (cf. discussions on this topic
in [3]) is given in [16].

Example 1 ([9]). Computationally relevant monads on Set (all monads on
Set are strong) include

– stateful computations with possible non-termination: TA = (S →? (A×S)),
where S is a fixed set of states and →? denotes the partial function type;

– (finite) non-determinism: TA = Pfin(A), where Pfin denotes the finite power
set functor;

– exceptions: TA = A+ E, where E is a fixed set of exceptions;
– interactive input: TA is the least fixed point of λγ.A+ (U →? γ), where U

is a set of input values;
– non-deterministic stateful computations: TA = S → Pfin(A × S), where,

again, S is a fixed set of states.

426 D. Walter, L. Schröder, and T. Mossakowski

As laid out in [18] and incorporated in the Haskell syntax, monads can be
used to support an imperative style of notation: terms of the form

do x← p; q

(where x may appear in q) are taken to abbreviate p >>= λx. q, and nested
bindings do x← p1; do y ← p2; . . . are denoted in the form do x← p1; y ←
p2; Sequences of bindings x1 ← p1; . . . ;xn ← pn will often be indicated by a
bar notation x̄ ← p̄ below. As indicated above, the notational coincidence with
the usual sequential composition operator indeed conveys the right intuition,
in particular in connection with variants of the above-mentioned state monad.
Imperative control structures such as the while loop can be expressed as recursive
programs in this notation; the definition of a slightly generalized loop construct
iter where a return value is passed through the loop is shown in Fig. 1, along
with a definition of the while loop by specialization to void results.

The background formalism used in Fig. 1 and in the further development
is the wide-spectrum language HasCasl, which extends the standard algebraic
specification language Casl by features aimed at providing support for modern
functional programming languages. These features include higher order logic of
partial functions, type class polymorphism in the style of Haskell, and general
recursion over domains, specified in a bootstrap fashion as complete partial or-
ders (cpo’s) in much the same way as in HOLCF [12]. In the following, we briefly
explain some of the less obvious syntactical features of HasCasl appearing in
Fig. 1 and elsewhere; for further details, the reader is referred to [13, 17].

As indicated above, the treatment of recursion in HasCasl is via a type class
Cpo of complete partial orders; type classes are just subsets of the syntactical
universe of types. The types of total and partial continuous functions between
cpo’s a and b are denoted by a cont−→ b and a cont−→? b, respectively (in contrast
to non-continuous function types a → b and a →? b). Operators containing
type variables of a certain type class in their type are thereby declared to be
polymorphic over that class; e.g. the iter operation of Fig. 1 is polymorphic
over a so-called cpo monad T , i.e. a monad that allows lifting cpo structures on
a to cpo structures on T a in such a way that the monad operations become
continuous. Here, the class CpoMonad is, like the more general class Monad
of monads, a constructor class, i.e. a subset of the syntactical universe of type
constructors. The specification of the class CpoMonad is imported by referencing
the named specification CpoMonad (not shown here), which itself includes the
specification of both cpo’s and monads.

The keyword program invokes syntactical sugar for the fixed point operator
on cpo’s which allows writing programs in much the same style as e.g. in Haskell;
in particular, the equation defining iter in Fig. 1 is an actual recursive definition
rather than just a semantic equation. Program blocks in HasCasl can be au-
tomatically translated into Haskell by means of the Bremen heterogeneous tool
set [10].

As indicated above, HasCasl incorporates a higher order logic of partial
functions. Below, we will freely combine the monadic do-notation and higher

Parametrized Exceptions 427

order formulae, using e.g. monadic computations of truth values. A more detailed
explanation of the required logical framework is given in [16]. We stress that the
use of HasCasl serves mainly to drive home the point that our framework can be
cast in a real specification language; the results as such remain valid essentially
in any suitable higher order logic of partial functions, including standard set
theory and topos logic.

spec Iteration = CpoMonad and Bool then
vars T : CpoMonad; a : Cpo

op iter : (a cont−→ T Bool) cont−→ (a cont−→? T a) cont−→ a
cont−→? T a

program iter test f x =
do b ← test x

if b then
do y ← f x

iter test f y
else return x

op while (b : T Bool) (p : T Unit) : T Unit = iter (λx • b) (λx • p) ()

Fig. 1. The iteration control structure

In [16, 14], generic computational logics have been introduced that allow
reasoning about the correctness of monadic programs. This includes a Hoare logic
for partial correctness, a dynamic logic, and a Hoare logic for total correctness
defined via dynamic logic. While partial Hoare logic works in principle over
arbitrary monads, the semantics of dynamic logic (and hence also of total Hoare
logic) is introduced axiomatically and works only for sufficiently well-behaved
monads, including the monads of Example 1 and excluding e.g. the continuation
monad; in the positive case we say that a monad admits dynamic logic.

A basic concept underlying all these logics is the notion of deterministically
side-effect free (dsef) program engendered by the underlying monad. In the
terminology of [2], p is dsef if p is central in the variety of discardable and
copyable programs. Intuitively, discardability means that the state may be read,
but not changed (this is in contrast to stateless programs, i.e. programs of the
form ret a, which additionally do not access the state), and copyability amounts
to determinism.

The monadic partial Hoare calculus is concerned with Hoare triples

{φ} x̄← p̄ {ψ},
where x̄ ← p̄ is a sequence of bindings for monadic programs pi, φ and ψ are
formulae, i.e. dsef computations of truth values, and ψ may mention the interme-
diate results xi. The semantics of Hoare triples is defined in terms of equations
between computations of truth values. In the monads of Example 1, this seman-
tics instantiates as expected. For example, a Hoare triple {φ} x ← p {ψ} holds
in the state monad iff, whenever φ holds in a state s, then ψ holds for x after

428 D. Walter, L. Schröder, and T. Mossakowski

successful execution of p from s with result x. In the non-deterministic state-
monad, ψ must be satisfied for all possible pairs of results and post-states for p.
A calculus for such Hoare triples may be derived directly from the definition of
the semantics; the rules of the calculus include e.g. a sequencing rule

(seq)

{φ} x̄← p̄ {ψ}
{ψ} ȳ ← q̄ {χ}

{φ} x̄← p̄; ȳ ← q̄ {χ}
and, for cpo monads, a loop rule

(iter)
{φ x ∧ b x} y ← p x {φ y}

{φ e} y ← iter b p e {φ y ∧ ¬(b y)} (b dsef)

which generalizes the usual while rule.
Hoare triples [φ] x̄ ← p̄ [ψ] for total correctness are, as indicated above,

defined using the diamond operator of monadic dynamic logic [16] and hence
can be interpreted only over monads that admit dynamic logic, which however
does not seem to be an overly serious restriction. As for partial Hoare triples, one
can prove the usual set of rules from the definition of the semantics, including
e.g. a rule for total correctness of loops which specializes to the usual total while
rule.

3 Exception Monads and the Java Monad

In modern imperative languages, exceptions are often used as a means of manip-
ulating the control flow, replacing explicit jumps. A maybe somewhat extreme
example is Java, where common control statements such as break, continue,
and return terminate abnormally, and where e.g. bodies of methods with non-
void result type are in fact expressly forbidden to terminate normally. Hoare
calculi for Java as developed e.g. in [4, 5] therefore need to accommodate cor-
rectness assertions for abnormal termination.

In the monadic setting, exceptions are modelled by Moggi’s exception monad
transformer [8] which, given a set E of exceptions, transforms a monadR into the
associated exception monad Ex E R = R (+E) — i.e. Ex E R models the side
effects ofR, extended by exceptions in E. A simple example is the Java monad [6]
Ex E ST , where ST is the state monad of Example 1. In principle, the generic
computational logics described in the previous section do apply to exception
monads; in particular, Ex E R admits dynamic logic if R does. However, since
monadic computational logic as recalled in the previous section treats exceptional
termination like non-termination in the sense that one has {} p {⊥} if p throws
an exception, the generic framework, like the concrete Hoare calculi of [4, 5],
needs to be provided with an explicit treatment of abnormal termination.

Such a generic framework for exception monads has been introduced in [15]. It
is obtained by first giving an equational characterization of exception monads in
the above sense, and then combining this with the existing monadic Hoare logics

Parametrized Exceptions 429

as explained in Sect. 2. The equational description of an exception monad T is
based on operations catch : T a → T (a+E) and raise : E → T a for each type
a. Here, raise e throws an exception, thus freezing the state (so that subsequent
bindings are skipped until the exception is caught), and catch p behaves like p if
p terminates normally, and otherwise returns a thrown exception and unfreezes
the state, i.e. resumes normal execution of statements. If T = Ex E R, then
catch p, which for p : Ex E R a is of type Ex E R (a+ E) = R ((a+ E) + E),
may be expressed in the do-notation for R as

do x← p; case x of inl y → ret (inl (inl y)) | inr e → ret (inl (inr e)).

It is convenient to let catch x̄← p̄ abbreviate catch (do x̄← p̄; ret x̄).
One can then define Hoare assertions that simultaneously cover normal and

abnormal termination. A partial extended Hoare assertion {φ} x̄ ← p̄ {ψ ‖ S}
abbreviates

{φ} y ← (catch x̄← p̄) {case y of inl x̄ → ψ | inr e → S e},
thus stating that, if the program sequence x̄ ← p̄ is executed in a state that
satisfies φ, then if the execution terminates normally, the post-state and the
result x̄ satisfy ψ, and if the execution terminates abnormally with exception
e, the post-state satisfies S e (in particular note that S e is a stateful formula,
although as usual required to be dsef). The conditions ψ and S are referred
to as the normal and the abnormal postcondition, respectively. Similarly, total
extended Hoare assertions [φ] x̄← p̄ [ψ ‖ S] are defined using catch and standard
total Hoare triples; the meaning of a total assertion is thus the conjunction of
the partial assertion and termination of catch x̄ ← p̄. A calculus for extended
Hoare assertions is then easily derived from the standard Hoare calculus and
the equational description of exception monads. The rules for partial extended
Hoare assertions are shown in Figure 2, with the general fixed point rule (Y)
of [15] replaced by its specialization to iter (which then gives rise to a while
rule by further specialization). The rules for total extended Hoare assertions are
largely the same, except for the loop rule, which becomes

(iter-total)

< : P red (c× c) is well-founded
[φ x ∧ b x ∧ (t x = z)] y ← p x [φ y ∧ (t y < z) ‖ S]

[φ e] y ← iter b p e [φ y ∧ ¬(b y) ‖ S]

(subject to the side condition that t x : T c is dsef for all x : a). As explained
in [15], this rule can be specialized to the total exception while rule

[φ ∧ b] p [# ‖ #]
{φ ∧ b ∧ t = z} p {φ ∧ b ∧ t < z ‖ #}

{φ ∧ b} p {# ‖ S}
[φ ∧ b] while b p [⊥ ‖ S]

Further below, we will use a slight variant of this rule, where the well-founded
relation < lives only on a subtype of c and the invariant φ guarantees that results
of t are always in this subtype.

430 D. Walter, L. Schröder, and T. Mossakowski

(seq)

{φ} x̄ ← p̄ {ψ ‖ S}
{ψ} ȳ ← q̄ {χ ‖ S}

{φ} x̄ ← p̄; ȳ ← q̄ {χ ‖ S} (ctr)

{φ} . . . ; x ← p; y ← q; z̄ ← r̄ {ψ ‖ S}
x /∈ FV (r̄) ∪ FV (ψ)

{φ} . . . ; y ← (do x ← p; q); . . . {ψ ‖ S}

(conj)

{φ} x̄ ← p̄ {ψ1 ‖ S1}
{φ} x̄ ← p̄ {ψ2 ‖ S2}

{φ} x̄ ← p̄ {ψ1 ∧ ψ2 ‖ S1 ∧ S2} (disj)

{φ1} x̄ ← p̄ {ψ ‖ S}
{φ2} x̄ ← p̄ {ψ ‖ S}

{φ1 ∨ φ2} x̄ ← p̄ {ψ ‖ S}

(wk)

{φ} x̄ ← p̄ {ψ ‖ S}
φ′ ⇒ φ ψ ⇒ ψ′

S ⇒ S′

{φ′} x̄ ← p̄ {ψ′ ‖ S′} (stateless) {ret φ} q {ret φ ‖ λe. ret φ}

(dsef)
p dsef

{φ} x ← p {φ ∧ x = p ‖ ⊥} (catch)
{φ} x̄ ← p̄ {ψ[inl x̄/y] ‖ λe. ψ[inr e/y]}

{φ} y ← (catch x̄ ← p̄) {ψ ‖ ⊥}

(raise) {φ} raise e0 {⊥ ‖ λe. (φ ∧ e = e0)} (if)

{φ ∧ b} x ← p {ψ ‖ S}
{φ ∧ ¬b} x ← q {ψ ‖ S}

{φ} x ← if b then p else q {ψ ‖ S}

(iter)
{φ x ∧ b x} y ← p x {φ y ‖ S}

{φ e} y ← iter b p e {φ y ∧ ¬(b y) ‖ S}

Fig. 2. The generic Hoare calculus for partial exception correctness

It is shown in [15] that these generic Hoare calculi subsume the calculi of [4, 5]
w.r.t. the treatment of exceptions (the work of [4, 5] covers also aspects of the
Java class mechanism, which is not considered here).

Remark 2. The very simple exception mechanism laid out above can be used
to capture also the more involved aspects of Java’s treatment of exceptions.
For instance, the monadic approach is also suitable for the modeling of side-
effecting expressions. In the encoding, an expression needs to be decomposed
into a sequence of bindings in a do-expression, where each binding corresponds
to an application of a method. Hoare rules that actually work on unencoded
expressions are easily designed using this observation, given a fixed order of
evaluation for subexpressions.

Additionally, the following program tryFinally models Java’s try statement
with a finally block attached. It guarantees execution of the program q repre-
senting the finally block even in case of abnormal termination of the try block
program p. It terminates normally if both p and q do. Otherwise, it raises the
exception of p or q with q’s exceptions overwriting those of p:

Parametrized Exceptions 431

tryFinally p q = do x← catch p
case x of inl → q | inr e → do q; raise e

(i.e. tryFinally p q corresponds to try p finally q; additional catch clauses
can be coded in the obvious way). A corresponding Hoare rule is easily derived
from existing rules of the calculus (cf. Fig. 2), making supplementary use of
a rule for the case construct. The total Hoare rule shown below (the partial
rule is analogous) in particular captures the fact that exceptions in the finally
block dominate those of the try block. Moreover, it subsumes a rule stating that
exceptions in p propagate beyond q supposing q itself does not raise exceptions.

(try-finally)

[φ] p [χ ‖ R]
[χ] q [ψ ‖ S]

[Re] q [S e ‖ S]
[φ] tryFinally p q [ψ ‖ S]

(e fresh)

4 Parametrized Exceptions and Java Return Values

As indicated in the introduction, the translation of Java programs into the
monadic framework faces the following technical problem. In Java, the only
admissible way for a method to return a value is via a return statement, with
the returned value as parameter. The return statement terminates abnormally,
essentially raising an exception marked as a return exception and containing the
return value. The rest of the method body is then skipped; the return exception
is implicitly caught at the end of the method body, where the exceptional return
value is turned into a normal result and normal execution is resumed. In the
monadic framework, this means that the body p of a method m with type a of
return values is of the type

p : Ex (E a) R b,

where E a is a parametrized type of exceptions, with return exceptions carrying
values of type a, and R is the underlying monad; the type b of ‘normal’ results
does not really matter, since the method body is explicitly forbidden to terminate
normally [7]. The standard catch function could be used to turn this into catch p :
Ex (E a) R (b+ E a); however, if the method call to m took place in the body
of a further method with result type c, use of catch p would still lead to a type
error since it is a computation in Ex (E a) R rather than Ex (E c) R.

Possibly for this reason, the translation of method calls in the LOOP tool
as described e.g. in [4] slightly deviates from the above procedure: return ex-
ceptions are treated as unparametrized, so that there is a monomorphic type
E of exceptions. In order to pass the return value of a method to the caller,
one then needs to side-step the exception mechanism, creating instead a new
global variable in which the return value is stored at the time of execution of the
return statement and from which it is later retrieved by the wrapper function

432 D. Walter, L. Schröder, and T. Mossakowski

of the method call. It is clear that this solution is not entirely satisfactory. We
will now propose an alternative solution which conforms to the Java Language
Specification.

We will work with a polymorphic datatype

E a = MRet a | DropOff | . . .
of exceptions, parametrized by the type a of return values. Here, MRet is the
return exception carrying the return value, and DropOff (‘dropped off end of
method body’) is a special exception to be raised when a non-void method ter-
minates normally (i.e. never, since this case should according to [7] be caught at
compile time — however, we will still need to insert some value into the corre-
sponding case statements); the unmentioned further exceptions do not depend
on a.

In our calculus, Java return statements are translated into the throwing of
return exceptions, i.e. statements of the form raise (MRet x), abbreviated by
mret x. Similar to [4], every method body is protected by a wrapper function
mbody , so that for each method m with body p one has m = mbody p. This
wrapper function turns the abnormal state caused by a return exception back
into a normal one; but in contrast to the existing catch operation it additionally
allows shifting the type of return exceptions. This is to say that mbody needs to
have the polymorphic type

mbody : Ex (E a) R b → Ex (E c) R a

for all types a, b, c; the instantiation of c is then determined by the context of
the monadic computation in which the method call appears.

In order to give a generic definition of mbody , we recall that, while we will
usually want to write monadic programs directly in Ex (E a) R, we can also
exploit our knowledge that Ex (E a) R = R (+ E a), and program in the
monadic notation for R. Thus, we can write

mbody p = do
x← p;
case x of

inl → ret (inr DropOff)
| inr e → case e of

MRet v → ret (inl v)
| → ret (inr e)

(type checking e.g. in Isabelle or Haskell will detect that this is the do-notation
in R rather than in Ex (E a) R).

In order to conduct proofs about programs involving mbody , we need to
encapsulate its properties in suitable Hoare rules at the level of Ex (E a) R, i.e.
in the Hoare calculi for abrupt termination. In both the total and the partial
calculus, a single Hoare rule suffices to prove properties of programs that obey
the above-mentioned restrictions, i.e. where method bodies never return values
normally, but always via the mret statement. The partial Hoare rule is

Parametrized Exceptions 433

(mbody)
{φ} x← p {⊥ ‖ λe. case e of MRet y → ψ | e → S e}

{φ} y ← mbody p {ψ ‖ S} ;

the total version is analogous (the only additional statement being that mbody p
terminates, normally or abruptly, if p terminates). Given the definition of mbody
above, the proof of these rules in the monadic Hoare calculus (without abrupt
termination) for R is straightforward, recalling the proper definition of the bind-
ing operation for Ex (E a) R in the do-notation for R.

Note that from these rules one can infer further intuitively expected prop-
erties. E.g. by choosing S such that S (MRet x) = ⊥ for each x, one obtains
that mbody p does not throw or let pass any return exceptions. Furthermore,
one concludes that mbody p only raises a DropOff exception —indicating that p
terminated normally— if either p indeed terminates normally or p itself raised a
DropOff exception, by choosing S such that S DropOff = ⊥. Further illustration
of the use of the rules is given in the example proof in the next section.

5 Verification of a Pattern Match Algorithm

To give an idea of how the calculus described above is applied in the verification
of programs exploiting abnormal termination mechanisms, we will now prove the
correctness of a pattern match algorithm. This algorithm has already been used
as an example for the application of the calculi of [4, 5]; the main point to be
made here is that a concrete algorithm of this kind can indeed be verified in our
generic framework.

The algorithm is implemented in an exception monad with dynamic refer-
ences (implemented in our concrete algorithm as natural numbers). One there-
fore has to axiomatize additional operations on the monad (apart from ret and
>>=); the corresponding HasCasl specification is shown in Figure 3. The nota-
tion should be largely self-explanatory. The type Logical is HasCasl’s built-in
type of truth values. The imported specification ExceptionMonad defines the
exception monad transformer Ex , which is used to generate a reference monad
RE with exceptions over a loosely specified base monad R. This specification, in
turn, imports the specification CpoMonad (cf. Section 2); the imported sym-
bols include the higher order type constructor D which, given a monad T and
a type a, extracts the type D T a of deterministically side-effect free a-valued
T -computations. The specification in Figure 3 extends the axiomatization of the
dynamic reference monad in terms of ‘normal’ Hoare triples given in [14] by ab-
normal postconditions, which in most cases are ⊥, asserting that the correspond-
ing operations do not raise exceptions. An exception is the rule (new-distinct),
which states that subsequent creation of references, with an arbitrary program p
(which may raise exceptions) executed in between, produces distinct references.

A Haskell implementation of the pattern match algorithm (which does not
really look all that different from the corresponding executable HasCasl speci-
fication) is shown in Figure 4. For syntactic reasons, the function read replaces
the *-notation of Fig. 3. The infrastructure functions mbody, mret, and raise
are implemented elsewhere as described above.

434 D. Walter, L. Schröder, and T. Mossakowski

spec ExcReference = ExceptionMonad then
var a : Cpo
types R : CpoMonad; Ref a, E : F latcpo;
type RE := Ex E R

ops read : Ref a
cont−→ D RE a;

:= : Ref a
cont−→ a

cont−→ RE Unit
forall x, y : a; r, s : Ref a
• [] r := x [x = *r ‖ ⊥]
• [x = *r ∧ ¬r = s] s := y [x = *r ‖ ⊥]

%(read-write)%
%(read-write-other)%

spec DynamicExcReference = Reference then
var a, b : Type

op new : a
cont−→ RE (Ref a)

forall x, y : a; t : Ref a;
p : Ref a → RE b; P : D RE Logical

• [] r ← new x [x = *r ‖ ⊥]
• [y = *t] r ← new x [y = *t ∨ t = r ‖ ⊥]
• [P] r ←new x; p r [� ‖ �] ⇒

[P] r ← new x; p r; s ← new y [¬r = s ‖ �]

%(read-new)%
%(read-new-other)%

%(new-distinct)%

Fig. 3. Specification of the reference and the dynamic reference monad

We prove total correctness of the algorithm generically, i.e. without further
assumptions on the underlying monad other than the axioms of Figure 3. For
convenience, we make use of existential equality e= e.g. when comparing elements
of lists. For instance, a!!i e= b!!i means that a!!i and b!!i are defined and equal,
where (!!) :: List a → Int → a is the indexing function for the list datatype,
with a!!i defined only for 0 ≤ i < len a.

For the actual method body p, i.e. the argument of mbody in Figure 4, we
claim that it terminates abnormally, raising either a return exception carrying
as its value an index x that is the starting position of the first occurence of
the pattern in the base string or a failure exception indicating that there is no
occurrence of the pattern in the base string:

[] p [⊥ ‖ λe. case e of
MRet i → MPOS i ∧ ∀j.MPOS j ⇒ i ≤ j
| PatternNotFound → ¬∃i. MPOS i
| → ⊥]

(1)

The abnormal postcondition above will be denoted by POST below. Here,
MPOS i states that the pattern is matched at position i in the base string:

MPOS i ≡ ∀j. 0 ≤ j < len pat ⇒ base!!(i+ j) e= pat !!j.

In order to apply the total exception while rule (cf. Sect. 3), we need to provide
a loop invariant INV and a termination measure t. Putting

INV ≡ (∀i. 0 ≤ i < *r ⇒ base!!(*s+ i) e= pat !!i) ∧
∀i. MPOS i⇒ *s ≤ i

Parametrized Exceptions 435

pmatch base pat = mbody (
do r <- new 0

s <- new 0
while (ret �)

(do u <- read r
v <- read s
if u == len pat

then mret v
else if v + u == len base
then raise PatternNotFound
else if base!!(v+u) == pat!!u

then r := (u+1)
else do s := (v+1); r := 0)

)

Fig. 4. Haskell implementation of the pattern match algorithm

(which implies 0 ≤ *r ≤ len pat and 0 ≤ *s+*r ≤ len base) guarantees that the
dsef term t = (len base−*s, len pat−*r) always yields results of type Nat×Nat ,
on which we have the lexicographic ordering as a well-founded relation.

Establishing the invariant upon entrance into the loop is easy, since from the
axioms given above,

[] r← new 0; s← new 0 [*s = *r = 0 ∧ ¬(r = s) ‖ ⊥] (2)

can be derived by the rules (seq), (conj), (read-new-other) and (new-distinct).
Inside the loop, there are essentially four branches, arising from three applica-
tions of the rule (if), so that the three premises of the total exception while rule
are split into twelve proof goals. We discuss the proof of two of these goals in
more detail.

Firstly, we show that the branch of successful termination (mret v) satisfies
the third premise of the total exception while rule, i.e.

{INV ∧ *r = u ∧ *s = v ∧ *r = len pat} mret v {# ‖ POST}.
From the precondition we infer MPOS v ∧ ∀i.MPOS i ⇒ v ≤ i, a stateless
formula. Noting that mret v is just shorthand for raise (MRet v), we may derive
{} mret v {⊥ ‖ λe. e = (MRet v)} by (raise). Thus, by (stateless), (conj), and
(wk), we obtain

{INV ∧ *r = u ∧ *s = v ∧ *r = len pat} mret v
{⊥ ‖ λe. e = MRet v ∧MPOS v ∧ ∀i.MPOS i ⇒ v ≤ i}.

The formula in the abnormal postcondition implies POST , so that we are fin-
ished by another application of (wk).

Secondly, as part of the second premise of the total exception while rule in
the third branch (r := u+1), we show that the termination measure t decreases,
i.e. we derive the Hoare triple

436 D. Walter, L. Schröder, and T. Mossakowski

{INV ∧ *r = u ∧ *s = v ∧ ¬(u = len pat) ∧ ¬(u + v = len base) ∧
z = (len base − v, len pat − u) ∧ ¬(r = s)}

r := u+ 1
{(len base − *s, len pat − *r) < z ‖ #} (3)

By (read-write) and (read-write-other) one infers {¬(r = s) ∧ v = *s} r :=
u+ 1 {v = *s ∧ u+ 1 = *r ‖ ⊥}, so that in (3) the value of *s carries over from
the pre- to the postcondition, while the value of *r is increased exactly by one.
Taken together, this forces the measure t to decrease strictly.

Having arrived at proving Formula (1) by composing (2) with the conclusion
of the total exception while rule, we can then apply rule (mbody) to obtain the
total correctness of the whole algorithm:

[] i← mbody p [MPOS i ∧ ∀j.MPOS j ⇒ i ≤ j ‖
λe. case e of PatternNotFound → ¬∃i.MPOS i

| → ⊥].

6 Conclusion

The principle of encapsulation of side effects in monads can be applied to model
the imperative aspects of realistic languages such as Java; in particular, the
Java exception mechanism is accurately captured by the so-called Java monad.
Generic program logics including partial and total Hoare logics can be formulated
largely independently of the nature of specific side-effects, i.e. monads [14, 16];
specific Hoare logics for abnormal termination introduced as part of verification
support frameworks for Java are also subsumed by generic logics [15].

Here, we have illustrated this principle by means of a ‘benchmark’ verification
of a pattern match algorithm previously used also as a test case for existing spe-
cific Hoare logics, implemented in a loosely specified dynamic reference monad.
The example has shown that the framework of [15], for which no example appli-
cation had so far been provided, is able to deal with realistic examples making
extensive use of abrupt termination.

A general technical problem with the monadic modelling of the Java ter-
mination mechanism that came up in the verification process is that Java re-
turn exceptions are of a polymorphic type, parametrized over the type of the
return value, so that the Java monad must in fact be regarded as a ‘polymor-
phic monad’ — i.e. each method body is executed in the instance of the Java
monad determined by its result type. In order to deal with this polymorphism,
we have designed a generalized catch function to be implicitly wrapped around
method bodies in the same style as in the translation implemented in the LOOP
tool [4]. This wrapper function shifts return exceptions into regular monadic
return values and converts the resulting computation to fit the ambient monad;
this solution improves on the previous approach, which consisted in bypassing
the exception mechanism by storing return values in global variables [4]. There

Parametrized Exceptions 437

is a natural Hoare rule for wrapped method bodies, so that method calls can be
dealt with in the generic verification framework without further problems.

This work forms part of an ongoing effort to adapt the wide-spectrum lan-
guage HasCasl to the specification of object-oriented programs, in particular
in Java. Open problems include the modelling of the Java class mechanism in
HasCasl and logical support for concurrency. There are indications that the
latter may be integrated in a monadic framework by means of continuations [1].
This motivates the search for a program logic for the continuation monad, to
which by the results of [16] the existing generic computational logics are not
usefully applicable.

Acknowledgements

This work forms part of the DFG-funded project HasCASL2 (KR 1191/7-2).

References

[1] K. Claessen, A poor man’s concurrency monad, J. Funct. Programming 9 (1999),
313–323.

[2] C. Führmann, Varieties of effects, Foundations of Software Science and Compu-
tation Structures, LNCS, vol. 2303, Springer, 2002, pp. 144–158.

[3] The Haskell mailing list, http://www.haskell.org/mailinglist.html, 2002.
[4] M. Huisman and B. Jacobs, Java program verification via a Hoare logic with abrupt

termination, Fundamental Approaches to Software Engineering, LNCS, vol. 1783,
Springer, 2000, pp. 284–303.

[5] B. Jacobs and E. Poll, A logic for the Java Modeling Language JML, Fundamental
Approaches to Software Engineering, LNCS, vol. 2029, Springer, 2001, pp. 284–
299.

[6] , Coalgebras and Monads in the Semantics of Java, Theoret. Comput. Sci.
291 (2003), 329–349.

[7] B. Joy, G. Steele, J. Gosling, and G. Bracha, The Java language specification,
Addison-Wesley, 2000.

[8] E. Moggi, An abstract view of programming languages, Tech. Report ECS-LFCS-
90-113, Univ. of Edinburgh, 1990.

[9] , Notions of computation and monads, Inform. and Comput. 93 (1991),
55–92.

[10] T. Mossakowski, Heterogeneous specification and the heterogeneous tool set, Ha-
bilitation thesis, University of Bremen, 2005.

[11] S. Peyton-Jones (ed.), Haskell 98 language and libraries — the revised report,
Cambridge, 2003, also: J. Funct. Programming 13 (2003).

[12] F. Regensburger, HOLCF: Higher order logic of computable functions, Theorem
Proving in Higher Order Logics, LNCS, vol. 971, 1995, pp. 293–307.

[13] L. Schröder and T. Mossakowski, HasCasl: Towards integrated specification and
development of functional programs, Algebraic Methodology and Software Tech-
nology, LNCS, vol. 2422, Springer, 2002, pp. 99–116.

[14] , Monad-independent Hoare logic in HasCasl, Fundamental Aspects of
Software Engineering, LNCS, vol. 2621, 2003, pp. 261–277.

438 D. Walter, L. Schröder, and T. Mossakowski

[15] L. Schröder and T. Mossakowski, Generic exception handling and the Java monad,
Algebraic Methodology and Software Technology, LNCS, vol. 3116, Springer, 2004,
pp. 443–459.

[16] , Monad-independent dynamic logic in HasCasl, J. Logic Comput. 14
(2004), 571–619.

[17] L. Schröder, T. Mossakowski, and C. Maeder, HasCasl – Integrated functional
specification and programming. Language summary, available at http://www.
informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL

[18] Philip Wadler, How to declare an imperative, ACM Computing Surveys 29 (1997),
240–263.

Property Preserving Redesign of Specifications�

Artur Zaw�locki1, Grzegorz Marczyński1, and Piotr Kosiuczenko2

1 Institute of Informatics, Warsaw University
2 Department of Computer Science, University of Leicester

Abstract. In the traditional formal approach to system specification
and implementation, the software development process consists of a num-
ber of refinement steps which transform the initial specification into its
correct realisation. This idealised view can hardly capture common situ-
ations when a specification changes in a non-incremental way. An extra
flexibility can be added to the development process by allowing for a
redesign of specifications, in addition to refinement steps. In this paper,
the notion of specification redesign is formalised for an arbitrary institu-
tion. Basic properties of redesign are investigated and the formalism is
applied to provide a formal semantics for UML class diagram transfor-
mations. As examples, two refactoring patterns are described in terms
of class diagrams and interpreted as redesigns of corresponding algebraic
specifications.

1 Introduction

In the contemporary software engineering the phases of system specification and
design occur in a series of interleaving steps. As the system specification changes
due to a number of factors including changed or new client requirements, new
technology enablers etc., an extensive re-engineering of the system specification
and design is often needed. In the algebraic approach to the system specification
([AKKB99]) the progress of the software development process is often described
in terms of refinement which by monotonicity assumption can not express the
non-incremental changes to the system structure.

We perceive the signature of the system specification as a description of the
system structure. Therefore changes of the system structure should be reflected
by a changed specification over a new signature. We define in an institution-
independent way (cf. [BG92]) the notion of redesign of specifications as an em-
bedding of two specifications into an intermediate one over a “joint” signature.
That intermediate specification determines the strength of the connection be-
tween the original and the new specifications.

Our definition of redesign of specifications has numerous applications. One
of them is the ability to reason about the transformation of the class structure
of the object-oriented systems.

� This research was supported by the EC 5th Framework project AGILE: Architectures
for Mobility (IST-2001-32747).

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 439–455, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

440 A. Zaw�locki, G. Marczyński, and P. Kosiuczenko

Person

City

<<trace>>

CD1

CD2

*

<<trace>>

 self.phNumber > 0

 self.myPhone.phNumber > 0

<<trace>>

<<trace>>

Person

phNumber: Integer

City
myPhone

1

inCityPhone

phNumber: Integer

inCity

Fig. 1. An example of the Inline Class refactoring pattern

Object-oriented modelling languages provide textual and diagrammatic
means for system specification (like UML, cf. [Obj03]). Class diagrams specify
a common structure and relationships between objects. A well known approach
to redesigning the object-oriented systems is the refactoring method ([Fow99]).
It provides simple patterns to redesign the code and class structure in order to
extend, improve and modify a system without altering its behaviour. Using our
definition of redesign class diagrams (cf. Sect. 4) we make precise the otherwise
ambiguous property of “preserving the system’s behaviour”.

The paper is organised as follows. In Sect. 2 we introduce our approach by
means of an example – we argue that the Inline Class refactoring pattern (cf.
[Fow99]) is indeed a redesign. Then (Sect. 3) we formally introduce a definition
of a redesign diagram in an institution-independent way, describe a redesign of
UML class diagrams (Sect. 4) and show (Sect. 5) an elaborate example — a
formal proof that an application of the Composite design pattern ([GHJV95]) is
a redesign. Finally we discuss related work (Sect. 6) and conclude (Sect. 7) the
paper.

2 A Redesign Example – Inline Class Refactoring Pattern

In this section we present an example of system redesign, expressed on the level
of UML class diagrams ([Obj03]). The redesign is done according to the Inline
Class refactoring pattern ([Fow99]). This pattern allows us to join two classes,
if one of them does not provide much functionality.

Let us consider class diagrams CD1 and CD2 shown on Fig. 1. The class Phone
represents phone numbers, Person represents phone owners and City represents
cities. Each person has a phone and every phone is located in a city. We attach
an OCL constraint (cf. [Obj03]) to the class Person, saying that every person’s
number is larger than 0. The class Phone does not provide much functionality
and is only used by the class Person. Therefore, we join those classes in CD2.
The class City is not affected by the redesign.

Property Preserving Redesign of Specifications 441

We formalise CD1 and CD2 as algebraic specifications SP1 and SP2, respec-
tively. In this case the encoding is self-explanatory. More details are provided in
Sect. 4.

spec SP1 =
sorts Person,Phone,City;
ops myPhone : Person → Phone;

inCity : Phone → City;
phNumber : Phone → Int

vars p : Person
• phNumber(myPhone(p)) > 0

end

spec SP2 =
sorts Person,City;
ops inCity : Person → City;

phNumber : Person → Int
vars p : Person
• phNumber(p) > 0

end

The axioms in SP1 and SP2 result from the formalisation of OCL constraints
attached to CD1 and CD2, respectively.

We use a dependency relationship with the 〈〈trace〉〉 stereotype to relate
elements of both diagrams. According to the convention introduced in [Kos05],
classes with the same names in both diagrams are implicitly related by a 〈〈trace〉〉
relationship. We only need to draw the dashed arrows between attribute and
link names. To represent the 〈〈trace〉〉 relationship at the formal level, we form a
“joint” signature Σ consisting of the sum of sorts and a disjoint sum of operation
symbols from Σ1 and Σ2 (symbols from Σi will be indexed with i in Σ, for
i ∈ {1, 2}). The dependency relationship can be then translated to a set Φ of
Σ-equations:

∀p : Person · phNumber1(myPhone1(p)) = phNumber2(p)
∀p : Person · inCity1(myPhone1(p)) = inCity2(p)

Intuitively, the first equation states that for any person p, the phone number
obtained by evaluating phNumber(myPhone(p)) in the original system will be
the same as the one obtained by evaluating phNumber(p) in the redesigned
system. The second equation can be interpreted in a similar way.

SP1 and SP2 can be translated to the joint signature Σ simply by indexing
all operation symbols in axioms with 1 and 2, respectively. After putting the
translations together we add the equations from Φ to obtain the specification
SP which can be treated as the encoding of the whole redesign diagram shown
on Fig. 1:

spec SP =
sorts Person,Phone,City;
ops myPhone1 : Person → Phone;

inCity1 , inCity2 : Phone → City;
phNumber1 : Phone → Int ;
phNumber2 : Person → Int ;

vars p : Person;
• phNumber1 (myPhone1 (p)) > 0

442 A. Zaw�locki, G. Marczyński, and P. Kosiuczenko

• phNumber2 (p) > 0
• phNumber1 (myPhone1 (p)) = phNumber2 (p)
• inCity1 (myPhone1 (p)) = inCity2 (p)

end

Notice that we can remove either the first or the second axiom from SP with-
out changing the semantics of the specification, since Φ implies their equivalence.

The important property of SP is that it is a conservative extension of both
SP1 and SP2. Roughly, this means that SP does not put any constraints on
interpretations of phNumber1, myPhone1 and inCity1 other than those resulting
from the translation of SP1, and similarly for the operations from Σ2.

For the rest of this section let us adopt the usual notion of a model of a spec-
ification 〈Σ,Ψ〉 as a first-order many-sorted Σ-structure satisfying all sentences
from Ψ . Conservativity of SP with respect to SP1 means that any model M of
SP1 can be extended to a model of SP by interpreting inCity2 as the composi-
tion of myPhoneM and inCityM and interpreting phNumber2 as the composition
of myPhoneM and phNumberM . Such an extension then can be restricted to a
model of SP2 which is a “refactored” version of M . Conservativity of SP with
respect to SP2 is equivalent to the fact that every model of SP2 can be obtained
as a restriction of some model of SP .

3 A Formal Approach

As mentioned in the introduction, the redesign has to preserve the properties
of the system being restructured. To make this statement precise, we must be
able to compare the semantics of system descriptions. In the example above
this involves encoding class diagrams in some specification language, translat-
ing and putting specifications together, as well as comparing specifications that
use different signatures. Such operations can be carried out in an institutional
framework. In this section we formally define a redesign of specifications in an
institution-independent way.

3.1 Preliminaries

Let Set and Cat denote the category of all sets and the category of all categories,
respectively. An institution (cf. [BG92]) is a tuple 〈Sig,Mod,Sen, |=〉, where

– Sig is the category of signatures ;
– Mod : Sigop → Cat is the model functor, assigning a category Mod(Σ) of
Σ-models to every signature Σ ∈ |Sig| and a functor Mod(σ) : Mod(Σ′) →
Mod(Σ) to every signature morphism σ : Σ → Σ′;

– Sen : Sig → Set is the sentence functor assigning a set Sen(Σ) of
Σ-sentences to every Σ ∈ |Sig| and a σ-translation function Sen(σ) :
Sen(Σ) → Sen(Σ′) to every σ : Σ → Σ′;

– |= is a family {|=Σ}Σ∈|Sig| of satisfaction relations, where |=Σ⊆ |Mod(Σ)|×
Sen(Σ).

Property Preserving Redesign of Specifications 443

such that for any signature morphism σ : Σ → Σ′ the functor Mod(Σ) and the
translation function Sen(σ) preserve the satisfaction relation, that is, for any
ϕ ∈ Sen(Σ) and M ′ ∈ |Mod(Σ′)|

Mod(σ)(M ′) |=Σ ϕ iff M ′ |=Σ′ Sen(σ)(ϕ)

We write M |σ for Mod(σ)(M) and just σ(ϕ) for Sen(σ)(ϕ).
Given an institution we can consider specifications as abstract objects, clas-

sified by signatures and defining classes of models.
That is, we require that operations Sig and [[]] be defined on the class of

specifications so that, for every specification SP , Sig(SP) ∈ |Sig| and [[SP]] ⊆
|Mod(Sig(SP))|. Moreover, we require that the class of specifications is closed
under the following specification-building operations ([ST88a]):

– For any Σ ∈ |Sig| and Φ ⊆ Sen(Σ), a presentation 〈Σ,Φ〉 is a specification
with Sig(〈Σ,Φ〉) = Σ and [[〈Σ,Φ〉]] = {M ∈ |Mod(Σ)| |M |= Φ}.

– For any signature morphism σ : Σ → Σ′ and a specification SP such that
Sig(SP) = Σ, the translation of SP along σ is a specification σ(SP) such
that Sig(σ(SP)) = Σ′ and [[σ(SP)]] = {M ′ ∈Mod(Σ′) |M ′ |σ∈ [[SP]]}.

– For any specifications SP1, SP2 such that Sig(SP1) = Sig(SP2), the union
SP1 ∪ SP2 is a specification with Sig(SP1 ∪ SP2) = Sig(SP1) and
[[SP1 ∪ SP2]] = [[SP1]] ∩ [[SP2]].

– For any signature morphism σ : Σ → Σ′ and a specification SP ′ such that
Sig(SP ′) = Σ′, the reduct of SP ′ along σ is a specification SP ′ |σ such that
Sig(SP ′ |σ) = Σ and [[SP ′ |σ]] = {M ′ |σ|M ′ ∈ [[SP ′]]}.
Specifications in an arbitrary institution form a category: a specification mor-

phism (cf. Chap. 4 in [AKKB99]) σ : SP → SP ′ is a signature morphism
σ : Sig(SP) → Sig(SP ′) such that for every model M ′ ∈ [[SP ′]], M ′ |σ∈ [[SP]].
A specification morphism σ : SP → SP ′ is conservative if for every M ∈ [[SP]]
there exists M ′ ∈ [[SP ′]] such that M = M ′ |σ. A composition of conservative
morphisms is also conservative.

By Prop. 4.22 in [AKKB99] (see also [BG92]), if the category Sig is finitely
cocomplete and the class of specifications is closed with respect to the operations
listed above, then the category of specifications is also finitely cocomplete and
every pushout diagram is of the form

σ′2(SP1) ∪ σ′1(SP2)

SP1 P.O. SP2

SP ′

����	σ′
2

� σ′
1

�
σ1 �����	

σ2

From now on we consider only institutions with a finitely cocomplete category
of signatures and classes of specifications closed with respect to the specification-
building operations.

444 A. Zaw�locki, G. Marczyński, and P. Kosiuczenko

Let D be a finite diagram of specifications. The functor Mod preserves a
colimit ofD if it maps a colimit in Sig of the corresponding diagram of signatures
to a limit in Cat. We call such diagram D an amalgamable diagram.

3.2 An Abstract View of Redesign

Adopting an institutional semantics encourages the formulation of concepts on
the level as general as possible, hence we look for a definition of redesign indepen-
dent of the logical system used. We view the structure of the system as described
simply by the signature of system specification. A redesign of the specification
amounts then to expressing system properties using a different signature.

Let SP1 and SP2 be specifications. It would be too restrictive to require the
existence of a specification morphism from SP1 to SP2 in order to consider the
latter a redesign of the former. For instance, in the example of Sect. 2 there exists
no signature morphism from Σ1 to Σ2. Instead, we require the existence of an
intermediate specification SP and two conservative morphisms σ1 : SP1 → SP
and σ2 : SP2 → SP . Conservativity means that the specification SP does not put
any restrictions on the interpretation of symbols from Sig(SP1) and Sig(SP2)
besides those already present in SP1 and SP2. However, SP can also relate the
symbols from the two signatures, for instance define the ones from Sig(SP2) in
terms of those from Sig(SP1).

Definition 1 (Redesign). Let SP be a specification. Let σ1 : Sig(SP1) →
Sig(SP) and σ2 : Sig(SP2) → Sig(SP) be signature morphisms. SP2 is a re-
design of SP1 via σ1, σ2 if σ1 : SP1 → SP and σ2 : SP2 → SP are conservative
specification morphisms. In such a case we say, that

SP1
σ1−→ SP σ2←− SP2 (1)

is a redesign diagram.

Let us observe that the specifications SP1 and SP2 play symmetric roles in
the above definition: SP2 is a redesign of SP1 via σ1, σ2 iff SP1 is a redesign of
SP2 via σ2, σ1.

Moreover, if the model functor preserves coproducts, for arbitrary SP1 and
SP2 there is a redesign diagram with the coproduct SP1 +SP2 as the intermedi-
ate specification. This redesign preserves a “minimal” behaviour, as components
of the two signatures remain totally unrelated. We can require more properties
to be preserved by strengthening the intermediate specification. For instance, if
the invariant properties are expressed by a specification SP ′ with specification
morphisms ρ1 : SP ′ → SP1, ρ2 : SP ′ → SP2, a pushout of the diagram

SP1
ρ1←− SP ′ ρ2−→ SP2

is a redesign, provided the pushout morphisms are conservative.
Let us discuss briefly what are the properties preserved by a redesign of

specifications. Given a specification SP we define the equivalence relation ∼SP
on Sen(Sig(SP)) as

ϕ ∼SP ϕ
′ iff SP |= ϕ ⇐⇒ SP |= ϕ′

Property Preserving Redesign of Specifications 445

We identify properties with abstraction classes of ∼SP and define the set
Prop(SP) of SP-properties as the quotient set Sen(Sig(SP))/∼SP . Observe that
given the redesign diagram as in Def. 1, conservative specification morphisms σ1
and σ2 induce the injective functions (defined in an obvious way)

σ′1 : Prop(SP1) → Prop(SP), σ′2 : Prop(SP2) → Prop(SP)

Pairs of properties preserved by the redesign diagram are elements of the set

{〈p1, p2〉 | σ′1(p1) = σ′2(p2), p1 ∈ Prop(SP1), p2 ∈ Prop(SP2)}

We show that under certain assumptions on the model functor, redesigns can
be composed “vertically”.

Fact 2 (Category of redesigns). If the functor Mod preserves all pushouts
then redesigns form a category in which objects are specifications and a morphism
from SP1 to SP2 is any redesign diagram of the form (1). Identity redesign
diagram of a specification SP with a signature Σ is SP idΣ−−→ SP idΣ←−− SP. The

composition of SP1
σ1−→ SP ′ σ2←− SP2 and SP2

σ′
2−→ SP ′′ σ3←− SP3 is defined using

the pushout construction, as shown below.

SP

SP ′ P.O. SP ′′

SP1 SP2 SP3

�
�τ1

�
�� τ2

�
�σ1

�
�� σ2

�
�σ′

2

�
�� σ3

As pushouts are defined up to an isomorphism, for the above construction to
work, the canonical choice of pushouts guaranteeing the associativity of morphism
composition has to be given.

3.3 Redesigning Structured Specifications

Definition 1 allows us to decide whether a given diagram of specifications is
a redesign. However, in a common scenario the specification SP2 may not be
known in advance: developers want to redesign a specification SP1 to a new
signature Σ2. They relate the symbols of Σ2 to those of Σ1 = Sig(SP1) by means
of a specification SP rel over a “joint” signature Σ with signature morphisms
σ1 : Σ1 → Σ, σ2 : Σ2 → Σ, such that σ1 : SP1 → σ1(SP1) ∪ SP rel is a
conservative specification morphism. The problem now is to find a redesigned
specification SP2 overΣ2, such that σ2 : SP2 → σ1(SP1)∪SP rel is a conservative
specification morphism. Such a specification always exists, since we assumed
that the class of specifications is closed with respect to reducts along signature
morphisms.

446 A. Zaw�locki, G. Marczyński, and P. Kosiuczenko

Fact 3. Let σ1 : SP1 → SP be a conservative specification morphism and let
σ2 : Σ2 → Sig(SP) be a signature morphism. Then

SP1
σ1−→ SP σ2←− SP |σ2

is a redesign diagram.

However, in many applications it is preferable to obtain SP2 as a presen-
tation. For instance, if SP1 is a finite presentation resulting from encoding an
UML class diagram with OCL constraints, we would also like SP2 to consist of a
list of axioms corresponding to OCL constraints for the redesigned specification.
If SP1 is obtained by application of specification-building operations, then we
can use the next lemma to find SP2 by following, to some extent, the structure
of SP1.

Lemma 4. Let SP1
σ1−→ SP σ2←− SP2 be a redesign diagram.

i. (translation) Let τ : SP1 → SP ′
1 be a conservative specification morphism.

If the following pushout diagram is amalgamable

SP ′

SP ′
1 P.O. SP

SP1

�
�

σ′
1

�
�� τ ′

�
��
τ �

�
σ1

then
SP ′

1
σ′
1−→ SP ′ σ2;τ ′

←−−− SP2

is a redesign diagram.
ii. (union) Let SP ′

1 and SP ′
2 be specifications such that Sig(SP ′

1) = Sig(SP1)
and Sig(SP ′

2) = Sig(SP2) and also

[[SP ∪ σ1(SP ′
1)]] = [[SP ∪ σ2(SP ′

2)]]

Then
SP1 ∪ SP ′

1
σ1−→ SP ∪ σ1(SP ′

1)
σ2←− SP2 ∪ SP ′

2

is a redesign diagram.
iii. (coproduct) Let

SP ′
1

σ′
1−→ SP ′ σ′

2←− SP ′
2

be a redesign diagram. If the following three coproduct diagrams are amal-
gamable

SP1 −→ SP1 + SP ′
1 ←− SP ′

1

SP −→ SP + SP ′ ←− SP ′

SP2 −→ SP2 + SP ′
2 ←− SP ′

2

Property Preserving Redesign of Specifications 447

then
SP1 + SP ′

1
ρ1−→ SP + SP ′ ρ2←− SP2 + SP ′

2

is also a redesign diagram, where ρ1 and ρ2 are universal morphisms from
coproducts SP1 + SP ′

1 and SP2 + SP ′
2, respectively.

iv. (reduct) Let ρ : Σ′ → Sig(SP1) be a signature morphism. Then

SP1 |ρ ρ;σ1−−−→ SP σ2←− SP2

is a redesign diagram.

The proof of the above lemma is straightforward.
The property (i) allows us to translate either the original or the redesigned

specification via a conservative specification morphism and obtain a redesign
diagram. This covers situations such as renaming symbols in a signature via an
injective signature morphism or extending the specification with new symbols
and axioms concerning only the new symbols. By (ii), both SP1 and SP2 can
be enriched as long as the enriching parts “correspond to each other modulo
SP”, i.e. represent properties preserved by the redesign, using the terminology
from Sect. 3.2. The property (iii) states that if the original specification is a
disjoint sum of two components, each of the components can be redesigned sep-
arately in order to obtain a redesign of the sum. Finally, by (iv), either the orig-
inal or the redesigned specification can be reduced along an arbitrary signature
morphism.

The above lemma can be applied to the example of Sect. 2. By the property
(ii) in order to conclude that the diagram in Fig. 1 describes a redesign it suffices
to show that

〈Σ1, ∅〉 σ1−→ 〈Σ,Φ〉 σ2←− 〈Σ2, ∅〉
is a redesign diagram, and then to check that

phNumber1(myPhone1 (p)) > 0 ⇐⇒ phNumber2 (p) > 0

follows from Φ.

4 Redesign of UML Class Diagrams

We apply the notions developed in previous sections for reasoning about trans-
formations of UML class diagrams. The idea is to formalise such diagrams as
specifications in the institution of Casl ([CoF04]) — a variant of order sorted,
partial first-order logic — and then to generate an intermediate specification
from dependency relationships between elements of the diagrams. Note that
since the category of Casl signatures is finitely cocomplete such intermediate
specification always exists. A transformation preserves essential system proper-
ties if it gives rise to a redesign diagram in the category of Casl specifications.

448 A. Zaw�locki, G. Marczyński, and P. Kosiuczenko

4.1 Formalising UML Class Diagrams

We represent UML class diagrams annotated with OCL constraints (cf. [Obj03])
as algebraic specifications in Casl institution following [BHTW99]. The only
difference is that in order to make the presentation more readable we omit the
concept of environments used there to represent methods with side-effects.

For a class diagram CD we create a specification SP . In the corresponding
signature Σ each sort name corresponds to a class name from CD. These sorts
represent collections of objects of that class.

Class inheritance is handled by the ordering on corresponding sorts. Unlike in
[BHTW99] we require that the carrier of a sort corresponding to an abstract class
is a disjoint union (up to an isomorphism) of carriers of sorts corresponding to
its direct subclasses. Axioms guaranteeing this property for every abstract class
are added to SP (as in the example in Sect. 5).

As we are aware that this kind of encoding does not permit to express over-
riding we refer the reader to e.g. [ACZ99] for a possible solution of this problem
(see also [Mar04]).

All query methods (the ones that do not change system state) and attributes
are encoded as functions with an additional first parameter representing the
self object. To avoid all problems related to side effects, local object states,
global system environment etc. that are not directly relevant to the problems
described herein, we do not handle any non-query methods. For a similar rea-
son we assume that the only OCL constraints contained in class diagrams are
class invariants (i.e. there are no method pre- and postconditions). Translation
of these OCL constraints to the Casl logic is straightforward using the method
described in [BHTW99]. As in [Kos05] we call the function that takes an OCL
annotated UML class diagram and produces a specification in the Casl insti-
tution the translation function Trans. Formally, since the whole class diagram
can be described as an OCL sentence, Trans is a mapping of OCL terms to
Casl formulas. Specifications SP1 and SP2 in Sec. 2 are example results of this
translation.

In what follows we only consider diagrams consisting of two class diagrams,
say CD1 and CD2, with trace relationships (dependencies marked with the
〈〈trace〉〉 stereotype) connecting corresponding components in both of them
(Fig. 1 contains an example of such a diagram). Let us call such diagrams class
diagrams with traces.

All UML trace dependencies have a mappingExpression attribute used to cap-
ture the relationship between elements linked by trace dependencies. In our ex-
amples only two values of mappingExpression are used — composition and prod-
uct. For instance a trace dependency linking myPhone and inCity in CD1 with
inCity in CD2 on Fig. 1 has mappingExpression set to composition, which means
that inCity in CD2 is a composition of myPhone and inCity in CD1. In cases when
the intended relationship is obvious, mappingExpression may be omitted from the
class diagram.

Property Preserving Redesign of Specifications 449

4.2 Redesign Class Diagrams

Given a UML class diagram with traces CDT that consists of two class diagrams
CD1 and CD2 such that CD2 results from some transformation of CD1 we would
like to decide whether that transformation is a redesign. We assume that CD2 is
already annotated with OCL constraints e.g. using some interpretation function
(cf. Sect. 4.3). We use the translation Trans (described in Sect. 4.1) to represent
CD1 as a specification SP1 with a signature Σ1, and CD2 as a specification SP2
with a signature Σ2.

Let X be a countable set of variables. Let us use traces connecting classes
on CDT to generate a partial sort mapping sm : Sorts(Σ1) →? Sorts(Σ2). We
require that sm preserve the subsort relation and be injective (for the reasons
described below). Similarly, using traces connecting methods and/or attributes
and using the derivation strategy described by mappingExpression of each trace,
we define a partial many sorted term mapping tm : TΣ1(X) →? TΣ2(X) such
that sm is a sort mapping associated with tm. The way of translation of trace
endpoints to terms is straightforward (e.g. the composition of myPhone and
phNumber is translated to a term phNumber(myPhone(x)) where x ∈ Person as
in Sect. 2)

The term mapping tm forms a connection between terms over two different
signatures. We require the denotations of the corresponding terms to be equal.
In general it is impossible to express such property as a sentence from either
Sen(Σ1) or Sen(Σ2). Thus we construct a bigger signature Σ containing all
that is needed to express the equality of terms being mapped by tm.

Let the signature Σrts describe the “rest of the system” i.e. translation of
all UML model classes, attributes, methods etc. depicted neither in CD1 nor in
CD2. We assume that Σrts is a part of both Σ1 and Σ2. As the sort mapping sm
is functional and injective we can assume also that all sorts connected by sm are
common (up to renaming) to both signatures. Thus let us define the signatureΣ′

as Σrts and additionally all sorts from dom(sm) (Σrts and dom(sm) are disjoint).
The perfect candidate for a “joint” signature Σ is the pushout of Σ1 and Σ2
over the signature Σ′

Σ

Σ1 P.O. Σ2

Σ′

��
σ1

���
σ2

��� ��γ

where γ is a signature morphism mapping all Σrts symbols to themselves and
additionally mapping all sorts in s ∈ dom(sm) to sm(s). Since we require that sm
preserves the subsort relation, γ is indeed a Casl subsorted signature morphism.
Having Σ we can express the desired equality on terms. We define the following
set of Σ-equations:

Φ = {∀X · σ1(t) = σ2(tm(t)) | t ∈ TΣ1(X), t ∈ dom(m)}

450 A. Zaw�locki, G. Marczyński, and P. Kosiuczenko

Finally, we are able to formalise the requirements that need to be imposed
on a class diagram to represent a redesign.

Definition 5 (Redesign class diagram). Using the notation introduced
above, the class diagram CDT is a redesign class diagram over the signature
Σ′ if translations of CD1 and CD2 to the Casl institution together with the
specification σ1(SP1)∪ 〈Σ,Φ〉 and the signature morphisms σ1, σ2 form the fol-
lowing redesign diagram (in the sense of Def. 1)

SP1
σ1−→ σ1(SP1) ∪ 〈Σ,Φ〉 σ2←− SP2

The requirement that sm be injective is very sensible since every non-injective
sort mapping leads to non-conservativity of σ1.

4.3 Interpretation Functions

Interpretation functions (cf. [Kos05, Kos01]) are a partial solution to the prob-
lem of finding Σ2-sentences equivalent to given Σ1-sentences for the case of
institutions with sentences containing term equalities. They can be very useful
as a vehicle for an automatic transformation of OCL constraints when changes
to class diagrams are performed.

An interpretation function is a partial function generated by a term mapping
with an orthogonal domain (cf. [Kos05]). These functions have several useful
properties. As stated in [Kos05] they preserve equational proofs, proofs using
propositional tautologies, resolution rule and proofs by induction. From our per-
spective, the following property is the most important: Given a redesign class dia-
gram like the one in Def. 5, the interpretation function f : Sen(Σ1) →? Sen(Σ2)
generated by the same term mapping tm as used in the definition of Φ, and a
sentence φ1 ∈ dom(f), we have

[[SP ∪ σ1(φ1)]] = [[SP ∪ σ2(f(φ1))]]

where SP denotes σ1(SP1) ∪ 〈Σ,Φ〉.
Lemma 4, (ii), can then be applied in order to add φ1 to SP1 and f(φ1) to

SP2.
We use an interpretation function to automatically transform the OCL con-

straint in the example of the next section.

5 An Elaborate Redesign Example – The Composite
Pattern

The class diagram CD1 in Fig. 2 describes a Directed Acyclic Graph (DAG) data
structure. Objects of the class A represent internal graph nodes, objects of the
class B represent leaves. The OCL invariant of A guarantees that the structure
is indeed a DAG (i.e. it doesn’t contain a cycle).

Property Preserving Redesign of Specifications 451

CD1 CD2

B

<<abstract>>

C

<<trace>>

<<trace>>

*

* *

self.children() =
 self.as->union(self.as->collect(a | a.children()))
and not self.children()->includes(self)

bs
as

cs

B A

children() : Set(A) A

children() : Set(A)

Fig. 2. An example of the Composite design pattern in UML

The class diagram CD2 is a result of the application of the Composite design
pattern (cf. [GHJV95]) to the system described by CD1. Note the lack of OCL
constraint describing an invariant of the class A in CD2. Thus CD2 does not
necessarily describe a DAG. To fix the problem we use the interpretation function
to generate the appropriate invariant (cf. Sect. 4.3 and [Kos05] for details). The
following mapping

x.as �→ x.cs−> select(a | a.isKindOf(A))
x.bs �→ x.cs−> select(b | b.isKindOf(B))

is orthogonal and thus it could be extended (cf. [Kos05]) to the interpretation
function that we use to transform the invariant of A in CD1

context A inv :
self.children() = self.as−> union(self.as−> collect(a | a.children()))
and not self.children()−> includes(self)

to the following invariant in CD2

context A inv :
self.children() = (self.cs−> select(a | a.isKindOf(A)))−> union(

(self.cs−> select(a | a.isKindOf(A)))−> collect(a | a.children()))
and not self.children()−> includes(self)

To decide whether the above class diagram with an additional invariant for
A in CD2 is a redesign class diagram we translate CD1 and CD2 augmented with
an invariant to SP1 and SP2, respectively.

452 A. Zaw�locki, G. Marczyński, and P. Kosiuczenko

spec SP1 =
sorts A,B
ops as : A → Set [A];

bs : A → Set [B];
children : A → Set [A];

vars a, a′ : A
• a′ ∈ children(a) ⇔

(a′ ∈ as(a) ∨
∃a′′ • a′′ ∈ as(a) ∧
a′ ∈ children(a′′))

• a �∈ children(a)
end

spec SP2 =
sorts A,B ,C ;A ≤ C ;B ≤ C ;
ops cs : A → Set [C];

children : A → Set [A];
vars a, a′: A; c : C
• a′ ∈ children(a) ⇔

(a′ ∈ A ∧ (a′ ∈ cs(a) ∨
∃a′′ • a′′ ∈ cs(a) ∧
a′ ∈ children(a′′)))

• a �∈ children(a)
• c ∈ A⇔ c �∈ B

end

First two axioms of both specifications are translations of invariants of A.
The last axiom in SP2 says that C is a disjoint union of A and B (the encoding
of the 〈〈abstract〉〉 stereotype on C).

The trace relationships (with the omitted mappingExpression attribute set to
product, cf. Sect. 4.1) result in the following sort mapping sm and term map-
ping tm

sm = {A �→ A;
B �→ B}

tm = {as(x) �→ first(i(cs(x)));
bs(x) �→ second(i(cs(x)));

children(x) �→ children(x)}

where i is an obvious isomorphism between Set[C] and Pair [Set [A],Set [B]] (jus-
tified by the requirement expressed by axioms in SP2 saying that C = A .B),
first and second are product projections defined in the Casl standard library.

We use the procedure described in Sect. 4.2 to define a signature Σ′ common
to both SP1 and SP2, Σ′ = {A,B} ∪ Σrts , where Σrts is a signature with all
standard sorts (e.g. integers, booleans, etc.) and operations on them (it was
implicitly assumed to be a part of signatures of SP1 and SP2). Let Σ be a
pushout of Σ1 and Σ2 over Σ′. The joint specification SP is the following:

spec SP =
sorts A,B ,C ;A ≤ C ;B ≤ C ;
ops as1 : A → Set [A];

bs1 : A → Set [B];
cs2 : A → Set [C];
children1 , children2 : A → Set [A];
i : Set [C] → Pair [Set [A],Set [B]]

vars a, a′ : A, b : B , c : C , s : Set [C]
• as1 (a) = first(i(cs2 (a)))
• bs1 (a) = second(i(cs2 (a)))
• children1 (a) = children2 (a)
• a′ ∈ children1 (a)⇔(a′ ∈ as(a) ∨ ∃a′′ • a′′ ∈ as(a) ∧ a′ ∈ children1 (a′′))

Property Preserving Redesign of Specifications 453

• a �∈ children1 (a)
• c ∈ A⇔ c �∈ B
• (a is in first(i(s))⇔ a is in s) ∧ (b is in first(i(s))⇔ b is in s)

end

The first three axioms are equalities resulting from the term mapping tm
(the set Φ in Sect. 4.2). The last axiom defines the isomorphism i.

It is clear that σ1 : SP1 → SP and σ2 : SP2 → SP are specification mor-
phisms. In the following we show that they are conservative.

First we prove this for σ1. Let us assume M1 ∈ [[SP1]]. We need to find
a model M ∈ [[SP]] such that M |σ1= M1. M can be constructed by putting
AM = AM1 , BM = BM1 , asM1 = asM1 , and similarly for bsM1 and childrenM

1 .
Let CM = AM . BM . The function csM2 : AM → P (CM) is the only function
that makes the following diagram in Set commute (we use the standard set-
theoretical notation here)

P (CM) P (AM)× P (BM)

P (AM)

AM P (BM)

�i
M

�
π1 �

�
�

�
�

��

π2

�

csM
2

�����	asM
1

�bsM
1

The existence of csM2 follows from the universal property of the product P (AM)×
P (BM). Obviously M =M |σ1 .

To show that σ2 is conservative let us assume M2 ∈ [[SP2]]. We need to
find such M ∈ [[SP]] that M |σ2= M2. As C is an abstract class i.e. CM2 =
AM2 . BM2 , we construct M as M2 and additionally interpret two functions
as1 : AM → P (AM) and bs1 : AM → P (BM) as compositions of cs2; i with π1
and π2 respectively. Again is easy to see that M2 = M |σ2 .

5.1 Changing a Redesign Diagram

Imagine the situation that just after we had proved that the above class diagram
is a redesign class diagram we discovered that actually the names of classes on
CD2 were written incorrectly. They should have been (as it is in [GHJV95]) Com-
ponent instead of C, Composite instead of A and Leaf instead of B and also there
should have been additional method name in a class Component. We do not need
to redo a proof that a transformation is a redesign. Since all above described
changes are conservative, we can use1 property (i) of Lemma 4 that any trans-
lation of SP2 by a conservative specification morphism leads to a specification
that is also a redesign of SP1 (via the same intermediate specification).

1 As it is easy to prove that the resulting pushout diagram is amalgamable in Casl.

454 A. Zaw�locki, G. Marczyński, and P. Kosiuczenko

6 Related Work

A number of approaches to redesigning UML class models exist already. One
of them is refactoring (cf. [Fow99]), which provides simple patterns for code
and class structure redesign to extend, improve and modify a system without
altering its behaviour. Model transformations gain a lot of interest in recent
time (cf. [MCG05]). Interpretation functions, used to formalise UML class di-
gram transformations in [Kos01, Kos05] originate in abstract algebra. In [Tay73],
an interpretation function transforms a single operation symbol into a complex
term. Lano uses a form of interpretation function to define the notion of re-
finement for his Real Time Action Logic ([Lan95]). Graph transformations (cf.
e.g. [GRPPS98]) may also be used to describe evolution of a specification.

Our notion of redesign is related to the concept of implementation (cf. e.g.
[ONS96, ST88b]). The implementation of SP1 by SP2, as defined in [ONS96], is
also parametrised by an intermediate specification. The main difference between
the two notions is the constructive nature of the implementation: a constructor
operation must be provided that transforms every model of SP2 to a model of
the intermediate specification that can be then reduced to the model of SP1. A
redesign diagram SP1

σ1−→ SP σ2←− SP2 does not prescribe how to provide such
operations, it merely guarantees that any persistent constructors ([ST88b]) from
[[SP2]] to [[SP]] would implement SP1 by SP2.

7 Conclusion and Future Work

In our paper we have defined a formal notion of the redesign of specifications. Our
approach allows one to reason about such transformations of the system structure
that are incomparable by means of a signature morphism. We have also shown
(see Lemma 4) that, under certain assumptions, a structured specification can
be redesigned in a step-by-step manner, to a specification structured similarly
to the initial one.

As a practical application of our work we have presented a formalisation of
the redesign of UML class diagrams. We have identified the conditions a class
diagram must satisfy in order to describe a property preserving redesign.

While translating UML class diagrams to Casl we handled query methods
only, did not care about objects local state, and did not support method overrid-
ing in subclasses. We are aware that in order to make our approach applicable
in practice, we need not only to investigate all above-mentioned issues, but also
to find a tool support basing on the number of currently available Casl tools.
We plan to look closer at these problems in coming future.

We would like to thank Andrzej Tarlecki for his comments and suggestions.

References

[ACZ99] D. Ancona, M. Cerioli, and E. Zucca. A formal framework with late
binding. In Fundamental Approaches to Software Engineering, FASE’99,
volume 1577 of LNCS, pages 30–44. Springer, 1999.

Property Preserving Redesign of Specifications 455

[AKKB99] E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Alge-
braic Foundations of Systems Specification. IFIP State-of-the-Art Report.
Springer, 1999.

[BG92] R.M. Burstall and J.A. Goguen. Institutions: Abstract model theory for
specification and programming. Journ. of the ACM, 39(1):95–146, 1992.

[BHTW99] M. Bidoit, R. Hennicker, F. Tort, and M. Wirsing. Correct realization
of interface constraints with OCL. In R. France and B. Rumpe, editors,
UML’99: The Unified Modeling Language – Beyond the Standard., volume
1723 of LNCS, pages 399–415. Springer, 1999.

[CoF04] CoFI. Casl Reference Manual, volume 2960 (IFIP Series) of LNCS.
Springer, 2004.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GRPPS98] M. Große-Rhode, F. Parisi-Presicce, and M. Simeoni. Refinements and
modules for typed graph transformation systems. In J.L. Fiadeiro, editor,
Recent Trends in Algebraic Development Techniques, WADT’98, LNCS,
pages 138–151. Springer, 1998.

[Kos01] P. Kosiuczenko. Formal redesign of UML class diagrams. In A. Evans,
R. France, A. Moreira, and B. Rumpe, editors, Practical UML-Based Rig-
orous Development Methods - Countering or Integrating the eXtremists,
volume P-7 of LNI, pages 174–190. German Informatics Society, 2001.

[Kos05] P. Kosiuczenko. Redesign of UML class diagrams. Technical Report CS-
05-01, University of Leicester, Department of Computer Science, 2005.
http://www.cs.le.ac.uk/people/pk82/RedesignTR.pdf.

[Lan95] K. Lano. Formal Object-Oriented Development. Springer, 1995.
[Mar04] G. Marczyński. Specifications of internally dependent structures. Tech-

nical report, Warsaw University, Institute of Informatics. In preparation,
2004. http://www.mimuw.edu.pl/~gmarc/papers/specidp04.pdf.

[MCG05] T. Mens, K. Czarnecki, and P. Van Gorp. A taxonomy of model
transformations. In J. Bezivin and R. Heckel, editors, Language En-
gineering for Model-Driven Software Development, number 04101 in
Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany, 2005.
http://drops.dagstuhl.de/opus/volltexte/2005/11.

[Obj03] Object Management Group. Unified Modeling Language, version 1.5,
2003. http://www.omg.org/cgi-bin/doc?formal/03-03-01.

[ONS96] F. Orejas, M. Navarro, and A. Sánchez. Algebraic implementation of ab-
stract data types: a survey of concepts and new compositionality results.
Mathematical Structures in Computer Science, 6(1):33–67, 1996.

[ST88a] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165–210, 1988.

[ST88b] D. Sannella and A. Tarlecki. Toward formal development of programs
from algebraic specifications: Implementations revisited. Acta Informat-
ica, 25(3):233–281, 1988.

[Tay73] W. Taylor. Characterizing Malcev conditions. Algebra Universalis, 3:351–
397, 1973. Springer, Berlin.

Author Index

Abramsky, Samson 1
Aceto, Luca 52
Adámek, Jiři 67

Bergstra, Jan 83
Bruni, Roberto 98

De Marchi, Federico 114
Doberkat, Ernst-Erich 127

Ferrari, Gianluigi 142
Fokkink, Wan 52
Fox, Anthony 157

Grabmayer, Clemens 175
Gumm, H. Peter 194

Hasuo, Ichiro 213
Hausmann, Daniel 232

Ingolfsdottir, Anna 52

Jacobs, Bart 213

Klin, Bartek 30, 247
Kosiuczenko, Piotr 439
Kupke, Clemens 263
Kurz, Alexander 263

Lanese, Ivan 98

Manna, Zohar 364
Marczyński, Grzegorz 439
Mart́ı-Oliet, Narciso 313
Mersch, John G. 278
Meseguer, José 313, 379

Middelburg, C.A. 83
Milius, Stefan 293
Montanari, Ugo 98, 142
Mossakowski, Till 232, 424
Moss, Lawrence S. 293

Nain, Sumit 52

Palomino, Miguel 313
Pattinson, Dirk 263
Plotkin, Gordon 51
Popescu, Andrei 331
Power, John 348

Roşu, Grigore 331

Sánchez, César 364
Sassone, Vladimiro 30
Schröder, Lutz 232, 424
Sipma, Henny B. 364
Slanina, Matteo 364
Sobociński, Pawe�l 30

Thati, Prasanna 379
Tuosto, Emilio 142

Victor, Björn 142
Viglizzo, Ignacio D. 395

Walicki, Micha�l 408
Walter, Dennis 424

Yemane, Kidane 142

Zaw�locki, Artur 439

	Frontmatter
	Invited Talks
	Abstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories
	Labels from Reductions: Towards a General Theory
	Adequacy for Algebraic Effects with State

	Contributed Papers
	Bisimilarity Is Not Finitely Based over BPA with Interrupt
	Algebra \cap Coalgebra = Presheaves
	Strong Splitting Bisimulation Equivalence
	Complete Axioms for Stateless Connectors
	On the Semantics of Coinductive Types in Martin-L\"{o}f Type Theory
	Look: Simple Stochastic Relations Are Just, Well, Simple
	Modelling Fusion Calculus using HD-Automata
	An Algebraic Framework for Verifying the Correctness of Hardware with Input and Output: A Formalization in HOL
	Using Proofs by Coinduction to Find ``Traditional'' Proofs
	From {\itshape T}-Coalgebras to Filter Structures and Transition Systems
	Context-Free Languages via Coalgebraic Trace Semantics
	Towards a Coalgebraic Semantics of the Ambient Calculus
	The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic
	Ultrafilter Extensions for Coalgebras
	Equational Logic of Recursive Program Schemes
	The Category Theoretic Solution of Recursive Program Schemes
	A Categorical Approach to Simulations
	Behavioral Extensions of Institutions
	Discrete Lawvere Theories
	Final Semantics for Event-Pattern Reactive Programs
	Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing
	Final Sequences and Final Coalgebras for Measurable Spaces
	Bireachability and Final Multialgebras
	Parametrized Exceptions
	Property Preserving Redesign of Specifications

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

